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Simple Summary: Patients undergoing radiation therapy can experience stress because of the fear of
treatment. Stress can reduce the accuracy of the patient setup. In this study, we used biological signals
to identify the stress response and artificial intelligence to predict this response during radiation
therapy. Stress was calculated by analyzing biological signals measured before and during radiation
therapy. We used various artificial intelligence models to verify those that were optimized for stress
prediction. Our findings indicate that over 90% of patients experience stress during treatment and
artificial intelligence can predict this stress with over 80% accuracy. And we validated the impact
of stress on respiratory irregularity. This study is pivotal for identifying patients requiring stress
reduction before treatment, potentially enhancing the precision of cancer radiation therapy.

Abstract: This study aimed to predict stress in patients using artificial intelligence (AI) from biological
signals and verify the effect of stress on respiratory irregularity. We measured 123 cases in 41 patients
and calculated stress scores with seven stress-related features derived from heart-rate variability. The
distribution and trends of stress scores across the treatment period were analyzed. Before-treatment
information was used to predict the stress features during treatment. AI models included both non-
pretrained (decision tree, random forest, support vector machine, long short-term memory (LSTM),
and transformer) and pretrained (ChatGPT) models. Performance was evaluated using 10-fold
cross-validation, exact match ratio, accuracy, recall, precision, and F1 score. Respiratory irregularities
were calculated in phase and amplitude and analyzed for correlation with stress score. Over 90%
of the patients experienced stress during radiation therapy. LSTM and prompt engineering GPT4.0
had the highest accuracy (feature classification, LSTM: 0.703, GPT4.0: 0.659; stress classification,
LSTM: 0.846, GPT4.0: 0.769). A 10% increase in stress score was associated with a 0.286 higher phase
irregularity (p < 0.025). Our research pioneers the use of AI and biological signals for stress prediction
in patients undergoing radiation therapy, potentially identifying those needing psychological support
and suggesting methods to improve radiotherapy effectiveness through stress management.

Keywords: radiation oncology; artificial intelligence; biological signals; physiological stress; heart
rate variability; machine learning; respiratory irregularity

1. Introduction

Cancer is a leading cause of death worldwide, and efforts to find successful treatments
pose a significant challenge to global health initiatives [1]. Various treatment modalities,
such as chemotherapy, immunotherapy, hormonal therapy, surgery, and radiation therapy,
are used alone or in combination to treat cancer [2,3]. The role of radiation therapy has been
increasing owing to its non-invasive characteristics that are feasible for older patients and
the technical advancement of treatment techniques focusing radiation on targeted tumors.
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A necessary procedure in radiation therapy involves the creation of an individual
treatment plan using simulation computed tomography images to focus high-energy radia-
tion on the tumor while sparing adjacent critical organs. For successful radiation therapy,
the accurate positioning of the patient, identical to that in the treatment plan, is essential.
If the patient’s position is different from that in the treatment plan, the therapeutic effect
is reduced, and damage to normal tissues can occur [4–6]. For head and neck cancer, a
positioning error of even 3 mm can reduce the dose to the tumor by as much as 10% [7].
Similarly, in cervical cancer, a rotational error of 1◦ can result in a 2% reduction in the
tumor dose and an 11% increase in the dose to adjacent organs at risk [8]. Therefore,
accurate beam alignment in accordance with the treatment plan is critical for optimizing
therapeutic outcomes.

The accuracy of radiation treatment is influenced by both technological and human
factors [9]. Technological uncertainties encompass mechanical issues with radiation therapy
equipment, such as imprecision in the leaf position, beam output, and beam profiles, which
are typically addressed through regular quality assurance procedures [10,11]. Human
factors, such as respiratory and gastrointestinal motion, shrinkage of the targeted tumor
volume, and patient stress (anxiety) play significant roles [12–14]. The inherent variability in
human respiratory and digestive system movements can cause unpredictable displacements
of the body and internal organs, which can be mitigated using techniques such as gating,
tumor tracking, and image-guided radiation therapy [15]. A treatment plan was modified
using adaptive radiotherapy to accommodate the shrinkage of the target volume [16,17].
Although various methods to counteract these factors are used in daily patient treatment
and are under development, there is a noticeable scarcity of research addressing the impact
of patient stress on radiation therapy.

Psychological stress triggers the sympathetic nervous system, leading to physiological
changes such as increased heart rate (HR), blood pressure, breathing rate, and muscle
stiffness [18–21]. Assessment of stress levels in the general population is commonly con-
ducted through surveys [22,23], and this methodology extends to studies examining stress
in patients undergoing medical treatment [24]. During the pandemic, the decline in mental
health and quality of life of patients with cancer was assessed through a survey [25], and
the stress of patients with benign prostatic hyperplasia was confirmed using this same
method [26]. He et al. [27] evaluated the influence of anxiety survey responses on treatment
setup errors in patients receiving radiation therapy and showed that high anxiety at the ini-
tial treatment session tended to result in high setup errors. In other words, stress can impair
the accuracy of the radiation therapy setup. Although survey research can efficiently yield
data, the reliability of self-reported information is a subject of concern [28]. Consequently,
a growing body of research has focused on the measurement of stress through biological
signals, which may offer more objective data points than self-reported surveys.

Evaluation of stress through biological signal monitoring is an emerging and piv-
otal field of medical research. This approach encompasses a variety of metrics, including
photoplethysmogram (PPG), electrocardiogram (ECG), body temperature, respiratory pat-
terns, vocal properties, and electroencephalogram (EEG), each offering unique insights into
the physiological manifestations of stress [29–31]. Under stress, the sympathetic nervous
system triggers an increase in body temperature and alters the respiratory dynamics to
a faster and shallower pattern. Vocal attributes change noticeably under stress, typically
resulting in higher pitch and greater variability. Additionally, EEG recordings reveal an
increase in beta-wave activity during stress. Two of the most significant indicators in this
field are PPG and ECG, both of which monitor changes in blood flow. Changes in blood
flow are instrumental in determining heart rate variability (HRV), a key metric in stress
evaluation [32,33]. The reliability and utility of HRV as a stress measure have been substan-
tiated by comparison with traditional stress surveys [34]. Moreover, the integration of HRV
analysis into wearable technologies, such as smartwatches, has opened new avenues for
real-time, noninvasive stress monitoring [35]. Hence, HRV analysis is a promising alterna-
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tive to survey-based methods and offers a more objective and continuous assessment of
stress levels.

Stress in patients undergoing radiation therapy has been identified in survey studies [36,37].
It was observed that a majority of these patients experience heightened stress levels,
particularly in the initial stages of their treatment. This underscores the need for effective
stress-management strategies. However, implementing universal stress-reduction measures
for all patients can be resource-intensive and requires additional manpower and time. To
address this challenge, we leveraged artificial intelligence (AI) techniques in conjunction
with biological signal analysis to identify patients who are susceptible to stress during
radiation therapy. Our approach involved training machine learning models on HRV
data collected both before and during the treatment sessions. This study aimed to use
before-treatment HRV data to predict the likelihood of patients experiencing significant
stress during therapy sessions. Additionally, we investigated the influence of measured
stress on clinical parameters. For that purpose, the correlation of the calculated stress score
with irregularities in patients’ respiration was assessed. This prediction enables us to tailor
stress management interventions more effectively by focusing on those who need them
the most.

2. Materials and Methods
2.1. Patients

The study protocol, including patient recruitment and data collection methods, was
approved by the Institutional Review Board of the Samsung Medical Center (IRB num-
ber 2020-11-162). Prior to enrollment, written informed consent was obtained from all
participants, confirming their voluntary participation and understanding of the study’s
aims and processes. Our study prospectively enrolled patients who underwent radia-
tion therapy for lung cancer. The recruitment period spanned from December 2020 to
November 2023. The inclusion criteria were carefully defined to ensure a representative
and relevant patient cohort. These criteria included (1) adult patients (aged < 80 years)
receiving radiation therapy for the first time to capture initial stress responses untainted by
previous experiences; (2) patients capable of effective communication, ensuring accurate
self-reporting and feedback regarding the study procedures and their well-being; and
(3) patients who could comfortably wear the sensor without experiencing discomfort, as
any discomfort could confound stress measurements. The patient recruitment process
is illustrated in Figure 1. Initially, 238 patients were approached for participation in this
study. Of these, 79 consented to participate, reflecting a 33% response rate. During the
study, certain patients were excluded due to reasons such as discomfort while wearing
the sensor, discontinuation of radiation therapy, or data errors from sensor malfunction.
These exclusion criteria helped to maintain the integrity and reliability of the collected
data. To ensure the privacy and confidentiality of the participants, all collected data were
anonymized. Identifiable information was removed and replaced with unique codes,
thereby guaranteeing patient privacy and adhering to ethical data-handling practices.

2.2. Data Acquisition and Processing

Data collection commenced with patients wearing a biological sensor (Laxtha, Ubpulse
360, Daejeon, Republic of Korea) upon arrival in the waiting room prior to receiving
radiation therapy. The sensor was positioned on the finger to ensure no interference during
the treatment procedure. After a 10 min acclimatization period, the patients were escorted
to the treatment room where they continued to wear the sensor throughout their radiation
treatment session. The radiation treatment time ranged from 16 to 42 min with an average of
27 min. Upon completion of the treatment, the sensor was returned, and the collected PPG
data were securely transferred to a dedicated computer system for analysis. Signals arising
from patient movements and those resulting from sensor errors were carefully removed to
ensure data integrity. To analyze stress changes during treatment, a minimum of 1 day and
a maximum of 5 days of data were extracted for each patient. Subsequently, the PPG data



Cancers 2024, 16, 1964 4 of 17

were segmented into two distinct phases for analysis: the before-treatment phase, captured
while the patient was in the waiting room, and the during-treatment phase, recorded when
the patient was lying on the treatment couch. To account for potential HR elevations due
to movement, we isolated 5 min of data following a 2 min stabilization period in both
the before- and during-treatment phases. From these phases, the HRV was computed by
analyzing the intervals between successive PPG peaks. Preprocessing of the PPG data and
subsequent HRV analyses were conducted using MATLAB R2020b (MATLAB, MathWorks,
Natick, MA, USA) to ensure a standardized and reproducible methodology.
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2.3. Stress Features

Identification and accurate quantification of stress features are important for the
assessment of stress levels using HRV analysis. In this study, we operationalized stress
using a set of physiological markers derived from PPG signals. The second derivative
of the PPG signal was used to pinpoint the heartbeat peaks, and HRV was calculated by
measuring the intervals between these peaks. The selection of HRV-related stress features
was based on a comprehensive literature review, identifying seven features consistently
associated with physiological stress responses [38–48]. These features were HR, standard
deviation of normal-to-normal (NN) intervals (SDNN), square root of the mean sum of
squares of successive NN interval differences (RMSSD), percentage of successive NN
intervals differing by more than 50 ms (pNN50), power of high-frequency range (HF),
ratio of low-frequency range/high-frequency range (LF/HF), and total power of frequency
range (TP). Under stable conditions, stress was typically indicated by increased HR and
LF/HF, whereas SDNN, RMSSD, pNN50, HF, and TP decreased (Table 1). We employed
these stress features to calculate the stress score (range: 0−100%) by observing changes
before and during treatment.

Table 1. Summary of stress-related features based on heart rate variability.

Features Unit Description Stressful

HR bpm Average number of heart beats per minute Increase
SDNN ms Standard deviation of normal-to-normal (NN) intervals Decrease
RMSSD ms Square root of the mean sum of squares of successive NN interval differences Decrease
pNN50 % Percentage of successive NN intervals differing by more than 50 ms Decrease

HF ms2 Power of the high-frequency range (0.15–0.4 Hz) Decrease
LF/HF ms2 Ratio of the low-frequency range/high-frequency range Increase

TP ms2 Total power of the frequency range (0.004–0.4 Hz) Decrease

2.4. Stress Prediction

Predicting patient stress in the waiting room before treatment is crucial to enhance the
accuracy of preparing patients for radiation treatment. This enables the early implementa-
tion of measures to reduce stress, potentially improving treatment efficacy. Non-pretrained
and pretrained models were used for stress prediction. The non-pretrained model cate-
gories included decision tree (DT) [49], random forest (RF) [50], support vector machines
(SVM) [51], long short-term memory (LSTM) [52], and transformer [53]. The pretrained
models used were OpenAI’s ChatGPT, which is based on a large language model (LLM)
and enables prompt engineering and fine-tuning. Prompt engineering involves the strate-
gic design of input prompts to elicit the desired responses from an LLM [54], whereas
fine-tuning refers to the process of adjusting an LLM’s parameters on a specific dataset
to improve its performance for particular tasks [55]. The non-pretrained models were
assessed using 10-fold cross-validation to evaluate their ability to handle eight different
input datasets (Type 1, only before-treatment features; Type 2, before-treatment features
with age; Type 3, before-treatment features with sex; Type 4, before-treatment features
with day; Type 5, before-treatment features with age and sex; Type 6, before-treatment
features with age and day; Type 7, before-treatment features with sex and day; and Type 8,
before-treatment features with age, sex, and day). These datasets included treatment day,
age, sex, and seven stress features identified before treatment. The model outputs were
designed to classify the predicted changes in stress features during treatment (Figure 2).
Subsequently, the top three input datasets from the performance of the non-pretrained
models were selected for further analysis with the pretrained models. The pretrained
model was evaluated against a representative one-fold out of a 10-fold cross-validation of
the non-pretrained model. Therefore, the pretrained and non-pretrained models compared
the results of the one-fold dataset. The pretrained models performed prompt engineering
in GPT-3.5 and GPT-4.0 and fine-tuning in GPT-3.5-turbo-1106.
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Figure 2. Stress prediction workflow using artificial intelligence. (A) The training process of the
non-pretrained and pretrained models. (B) Feature classification evaluation process. (C) The stress
classification evaluation process based on 50% of the stress score calculated using the results of feature
classification. ↑: increase; ↓: decrease; O: done; X: not done; HR: heart rate; SDNN: standard deviation
of normal-to-normal (NN) intervals; RMSSD: square root of the mean sum of squares of successive
NN interval differences; pNN50: percentage of successive NN intervals differing by more than 50 ms;
HF: power of high-frequency range; LF/HF: ratio of low-frequency range/high-frequency range;
TP: total power of frequency range.

2.5. Evaluation

A comprehensive evaluation of our predictive models involved several statistical and
machine learning metrics to assess the stress score distribution and its variation throughout
the treatment course. We analyzed the aggregated stress score changes and classified
them by sex to observe potential differences in stress patterns between male and female
patients over a period of up to four days. The non-parametric Wilcoxon signed-rank test
was employed for paired comparisons, whereas the Friedman test was used to analyze
changes across multiple-day trends. The Mann–Whitney U test was used to compare stress
scores between males and females.

To assess the predicted stress features during treatment, we adopted two analytical
approaches: feature classification (multi-label) and stress classification (binary). Feature
classification utilized the raw output from our models to evaluate prediction accuracy
across multiple labels. The key metrics included the exact match ratio (EMR) and standard
classification metrics such as accuracy, recall, precision, and F1 score, providing a holistic
view of the models’ performance. The feature classification result was calculated as a stress
score, but the stress classification uses the categories of “yes (>50%)” or “no (<50%)” based
on the criterion of a stress score of 50%. The effectiveness of the stress classification was
quantified using accuracy, recall, precision, and F1 score.

To investigate whether stress measured through biological signals has an impact on
clinical parameters, we assessed respiratory irregularities in patients during treatment. We
defined respiratory irregularity using the mean of the standard deviations (STD) of the
peaks and valleys of breathing signals [56].

Respiratory irregularity =
STD(peaks) + STD(valleys)

2
, (1)
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Irregularity Equation (1) was utilized to calculate irregularities in both amplitude and
phase. Amplitude irregularity was quantified by its height, while phase irregularity was
assessed through period measurements. Our analysis investigated the correlation between
respiratory irregularity and predefined stress categories (“yes” or “no”), as well as the
increase in stress score. We employed generalized estimating equations to accommodate
the correlated structure of the repeated measures data [57].

The non-pretrained models were developed using Python (version 3.7.16) with tradi-
tional machine learning algorithms, such as DT, RF, and SVM, implemented via the Scikit-
learn library (version 1.3.2). Deep learning algorithms, such as LSTM and transformer, were
operationalized using Pytorch (version 1.7.1), and all computations were performed on
an NVIDIA GeForce 2080Ti GPU. The Scikit-learn library was utilized to compute various
performance metrics to ensure consistency and reliability in our evaluation methodology.

3. Results
3.1. Patient Characteristics

Our study enrolled 41 patients, comprising 27 males (65.85%) and 14 females (34.15%)
with a mean age of 67.15 years (interquartile range: 47.0–80.0 years). Table 2 presents a
detailed summary of the characteristics of the enrolled patients, including sex distributions
and age ranges. Regarding stress analysis, we observed 123 cases of stress measurements
over the course of the study. Of these, 12 were identified without stress indicators, repre-
senting a stress-free state. The most frequently observed stress score was 85.71% (n = 26).
Stress was recorded for up to 14 days. However, from the fifth day onward, the number of
stress cases recorded each day was less than 10.

Table 2. Characteristics of enrolled patients.

Characteristic N (%)

All patients 41 (100)
Sex

Male 27 (65.85)
Female 14 (34.15)

Age
All Mean, 67.15 (Range, 47–80)

Male Mean, 66.56 (Range, 47–80)
Female Mean, 68.29 (Range, 57–80)

Stress case
All 123 (100)

Male 81 (65.85)
Female 42 (35.15)

Stress score
0% 12 (9.76)

14.29% 18 (14.63)
28.57% 18 (14.63)
42.86% 17 (13.82)
57.14% 6 (4.88)
71.43% 17 (13.82)
85.71% 26 (21.14)
100% 9 (7.32)

Stress case day
1 17 (13.82)
2 18 (14.63)
3 22 (17.89)
4 20 (16.26)

5–14 46 (37.40)
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3.2. Stress Score Changes as Treatment Progresses

Using data from days one to four, when more than 15 stress cases were obtained, we
confirmed the change in stress score over time (Figure 3). There were no differences by
date or overall trends in the all, male, and female data. Although the trend throughout
treatment was not significant, stress scores increased in males and decreased in females.
The difference in stress scores between males and females on day four was significant
(p = 0.0384) (Table 3).
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Table 3. Stress scores of males and females on each day.

Day 1 Day 2 Day 3 Day 4

Male 44.69 ± 33.70% 42.90 ± 35.67% 61.01 ± 29.83% 58.39 ± 22.37%
Female 41.31 ± 39.45% 48.26 ± 37.40% 46.99 ± 31.67% 32.17 ± 31.28%
p-value 0.8707 0.6691 0.2978 0.0384

3.3. Non-Pretrained Model Features Classification

In our analysis, we utilized stress case data to classify the treatment features using
non-pretrained models across eight different input datasets. The average results of the
10-fold cross-validation are summarized in Table 4. In terms of the EMR, the LSTM model
using the Type 8 dataset performed the best, achieving an EMR of 0.172. However, the
RF model exhibited superior performance across all other datasets. Regarding accuracy,
the LSTM model with the Type 7 dataset had the highest accuracy of 0.699. Moreover, the
LSTM model had the highest metrics in recall with the Type 6 dataset, reaching a peak
value of 0.793. Regarding the precision and F1 scores, the DT model using the Type 1
dataset demonstrated the strongest results.

Table 4. Non-pretrained model features classification.

Dataset Model EMR Accuracy Recall Precision F1 Score

Type 1

DT 0.147 0.638 0.638 0.683 0.639
RF 0.163 0.646 0.654 0.645 0.625

SVM 0.108 0.599 0.593 0.671 0.606
LSTM 0.115 0.669 0.665 0.487 0.539

Transformer 0.138 0.628 0.528 0.390 0.412

Type 2

DT 0.123 0.637 0.643 0.669 0.632
RF 0.165 0.645 0.673 0.616 0.615

SVM 0.074 0.580 0.577 0.677 0.599
LSTM 0.156 0.679 0.764 0.537 0.598

Transformer 0.113 0.631 0.571 0.347 0.394

Type 3

DT 0.148 0.618 0.609 0.677 0.620
RF 0.165 0.645 0.656 0.612 0.616

SVM 0.106 0.571 0.559 0.649 0.576
LSTM 0.156 0.689 0.700 0.501 0.567

Transformer 0.131 0.617 0.456 0.287 0.323

Type 4

DT 0.115 0.611 0.617 0.665 0.615
RF 0.164 0.656 0.673 0.640 0.635

SVM 0.083 0.573 0.575 0.624 0.572
LSTM 0.132 0.662 0.719 0.499 0.565

Transformer 0.122 0.624 0.491 0.323 0.362

Type 5

DT 0.106 0.644 0.643 0.663 0.632
RF 0.147 0.653 0.670 0.641 0.632

SVM 0.074 0.557 0.542 0.631 0.560
LSTM 0.124 0.678 0.698 0.496 0.559

Transformer 0.130 0.610 0.461 0.373 0.394

Type 6

DT 0.107 0.620 0.611 0.679 0.621
RF 0.147 0.649 0.673 0.604 0.612

SVM 0.091 0.566 0.566 0.644 0.573
LSTM 0.115 0.689 0.793 0.517 0.604

Transformer 0.114 0.609 0.486 0.319 0.361

Type 7

DT 0.140 0.615 0.614 0.661 0.614
RF 0.164 0.651 0.675 0.640 0.631

SVM 0.090 0.573 0.574 0.645 0.578
LSTM 0.139 0.699 0.776 0.549 0.615

Transformer 0.131 0.611 0.370 0.348 0.336
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Table 4. Cont.

Dataset Model EMR Accuracy Recall Precision F1 Score

Type 8

DT 0.100 0.621 0.612 0.662 0.614
RF 0.163 0.641 0.656 0.612 0.609

SVM 0.082 0.554 0.546 0.627 0.558
LSTM 0.172 0.680 0.708 0.487 0.551

Transformer 0.073 0.611 0.404 0.355 0.344
Underlined values are the best for each dataset, and underlined and bold values are the best overall. Type 1: only
before-treatment features; Type 2: before-treatment features with age; Type 3: before-treatment features with sex;
Type 4: before-treatment features with day; Type 5: before-treatment features with age and sex; Type 6: before-
treatment features with age and day; Type 7: before-treatment features with sex and day; Type 8: before-treatment
features with age, sex, and day; EMR: exact match ratio; DT, decision tree; RF, random forest; SVM: support vector
machine; LSTM: long short-term memory.

3.4. Pretrained Model Features Classification

Datasets 6, 7, and 8 exhibited the highest scores for recall, accuracy, and EMR, respec-
tively, in the non-pretrained model and were selected for pretrained model evaluation
(Table 5). The pretrained model was evaluated only one-fold, and for an intuitive com-
parison, the non-pretrained model performance shown in Table 5 was a one-fold result
selected from the 10-fold data. Across the three datasets, GPT3.5 with prompt engineering
did not achieve an accuracy exceeding 0.5. In contrast, GPT4.0 outperformed GPT3.5 in
all evaluation metrics. In the Type 8 dataset, the fine-tuned GPT3.5-turbo-1160 model
exhibited the most impressive results, whereas its performance in the Type 7 dataset was
comparatively lower. When focusing on the Type 7 dataset, the LSTM model achieved
the highest accuracy and recall. However, for the Type 8 dataset, GPT4.0 with prompt
engineering emerged as a superior model in terms of EMR, precision, and F1 score.

Table 5. Non-pretrained and pretrained model features classification.

Dataset Model EMR Accuracy Recall Precision F1 Score

Type 6

DT 0.000 0.637 0.727 0.635 0.672
RF 0.077 0.637 0.777 0.611 0.669

SVM 0.077 0.670 0.799 0.646 0.701
LSTM 0.154 0.681 0.895 0.552 0.655

Transformer 0.077 0.505 0.552 0.332 0.360
GPT3.5 (P) 0.077 0.440 0.610 0.330 0.397
GPT4.0 (P) 0.000 0.615 0.746 0.665 0.674

GPT3.5-turbo-1160 (F) 0.154 0.527 0.726 0.412 0.503

Type 7

DT 0.077 0.582 0.688 0.593 0.632
RF 0.154 0.626 0.768 0.585 0.649

SVM 0.154 0.637 0.783 0.581 0.646
LSTM 0.154 0.703 0.907 0.587 0.707

Transformer 0.000 0.560 0.453 0.563 0.492
GPT3.5 (P) 0.077 0.396 0.538 0.358 0.416
GPT4.0 (P) 0.077 0.560 0.667 0.629 0.638

GPT3.5-turbo-1160 (F) 0.000 0.484 0.593 0.512 0.538

Type 8

DT 0.000 0.637 0.727 0.635 0.672
RF 0.154 0.626 0.768 0.585 0.649

SVM 0.077 0.648 0.780 0.599 0.660
LSTM 0.231 0.692 0.781 0.635 0.685

Transformer 0.000 0.560 0.375 0.571 0.451
GPT3.5 (P) 0.077 0.407 0.369 0.278 0.246
GPT4.0 (P) 0.231 0.659 0.742 0.731 0.723

GPT3.5-turbo-1160 (F) 0.077 0.615 0.714 0.613 0.646

Underlined values are the best for each dataset, and underlined and bold values are the best overall. Type 6: before-
treatment features with age and day; Type 7: before-treatment features with sex and day; Type 8: before-treatment
features with age, sex, and day; EMR: exact match ratio; DT, decision tree; RF, random forest; SVM: support vector
machine; LSTM: long short-term memory; (P): prompt engineering; (F): fine-tuning.
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3.5. Stress Classification

Stress classification was binary (Figure 2C). The feature classification result is calcu-
lated as a stress score, but the stress classification uses the categories of “yes (>50%)” or “no
(<50%)” based on the criterion of a stress score of 50%. Therefore, these results differ from
those of the feature classification. As shown in Table 6, among the non-pretrained models,
the LSTM using the Type 7 dataset achieved the highest accuracy (0.846) in stress classifi-
cation. For the pretrained models in the Type 8 dataset, GPT4.0 with prompt engineering
demonstrated the highest accuracy at 0.769, and GPT3.5 with prompt engineering had the
highest recall at 0.800 but the lowest accuracy at 0.385. The RF and SVM models exhibited
equivalent performances across the three types of datasets. The DT and transformer models
were the most effective for the Type 8 dataset.

Table 6. Non-pretrained and pretrained model stress classification.

Dataset Model Accuracy Recall Precision F1 Score

Type 6

DT 0.615 0.375 0.429 0.400
RF 0.769 0.400 0.571 0.471

SVM 0.769 0.400 0.571 0.471
LSTM 0.692 0.444 0.500 0.471

Transformer 0.538 0.571 0.400 0.471
GPT3.5 (P) 0.385 0.600 0.300 0.400
GPT4.0 (P) 0.615 0.500 0.444 0.471

GPT3.5-turbo-1160 (F) 0.615 0.375 0.429 0.400

Type 7

DT 0.615 0.250 0.400 0.308
RF 0.769 0.400 0.571 0.471

SVM 0.769 0.400 0.571 0.471
LSTM 0.846 0.364 0.667 0.471

Transformer 0.538 0.571 0.400 0.471
GPT3.5 (P) 0.462 0.500 0.333 0.400
GPT4.0 (P) 0.385 0.200 0.167 0.182

GPT3.5-turbo-1160 (F) 0.462 0.167 0.200 0.182

Type 8

DT 0.692 0.333 0.500 0.400
RF 0.769 0.400 0.571 0.471

SVM 0.769 0.400 0.571 0.471
LSTM 0.769 0.400 0.571 0.471

Transformer 0.692 0.000 0.000 0.000
GPT3.5 (P) 0.385 0.800 0.333 0.471
GPT4.0 (P) 0.769 0.300 0.600 0.400

GPT3.5-turbo-1160 (F) 0.615 0.250 0.400 0.308

Underlined values are the best for each dataset, and underlined and bold values are the best overall. Type 6: before-
treatment features with age and day; Type 7: before-treatment features with sex and day; Type 8: before-treatment
features with age, sex, and day; EMR: exact match ratio; DT, decision tree; RF, random forest; SVM: support vector
machine; LSTM: long short-term memory; (P): prompt engineering; (F): fine-tuning.

3.6. Respiratory Irregularity

Among the patients who participated in the study, 77 cases of respiratory irregularity
were calculated from 27 patients (18 males and 9 females, average age 67.91) whose respi-
ratory signals were monitored using AN RPM respiratory gating system (Varian Medical
System, Palo Alto, CA, USA) during radiation therapy. The average phase irregularity
was 10.060 with a minimum of 3.354 and a maximum of 29.651. The average amplitude
irregularity was 0.143 with a minimum of 0.086 and a maximum of 0.370. As shown in
Table 7, a 10% increment in stress and a high stress score (>50%) were both significantly
correlated with phase irregularity, while the correlation with amplitude irregularity did
not reach statistical significance. Figure 4 visualizes the similarity between the breathing
irregularity increments and the stress scores.
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Table 7. Analysis of the influence between stress and respiratory irregularity.

Irregularity Stress Beta 95% LCL 95% UCL p-Value

Phase
Stress score 10% 0.286 0.036 0.536 0.0247
Stress “yes” or “no” 2.191 0.399 3.982 0.0166

Amplitude Stress score 10% 0.003 −0.001 0.007 0.1111
Stress “yes” or “no” 0.018 −0.006 0.042 0.1323

Stress score 10%: a 10% rise in stress score. Stress “yes” or “no” refers to categories of “yes (>50%)” or “no (<50%)”
determined by a 50% threshold in stress score for classification. Beta: the increase in respiratory irregularity
associated with a 10% increase in the stress score or the differentiation between “yes” or “no” stress categories.
LCL: lower confidence limit. UCL: upper confidence limit.
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4. Discussion

Stress in patients undergoing radiation therapy can lead to muscle stiffness, which can
affect the accuracy of treatment setup and potentially cause accidents due to movement
or falls. Although posttreatment surveys have validated stress in patients undergoing
radiation therapy, in-room stress during treatment remains unmeasured. Our study utilized
biological signals and found that 90% of patients experienced stress during treatment. Our
research enables the identification of cancer patients undergoing radiation therapy who
require interventions to reduce stress before treatment. By recognizing and mitigating
stress in advance, the accuracy of radiation therapy can be enhanced, ultimately improving
treatment outcomes.

Table 2 presents the distribution of the during-treatment stress scores measured using
biological signals from 41 patients. Of the 123 stress cases, 12 (9.76%) showed no stress,
while 111 (90.24%) indicated stress. The highest stress score distribution (85.71%) was ob-
served in 26 patients (21.14%). The evaluation of the presence of stress based on a 50% stress
score threshold was 47.15%. Stiegelis et al. [58] found that 21−54% of patients undergoing
radiation therapy experienced stress. This range is reflective of our findings; that is, using a
50% stress score as a threshold, we observed that 47.15% of cases experienced stress.

Figure 3 shows the variation in patients’ stress scores over different days. For males,
the stress scores on days 1 and 2 were similar, exceeding 50% on day 3 and remaining
similar on day 4. In females, there was a slight increase on day 2, a decrease on day 3, and
a significant decrease on day 4. Overall, except for day 2, males exhibited higher stress
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scores than females on all dates. Furthermore, males exhibited an increasing trend in stress
as treatment progressed, whereas females showed a decreasing trend. However, trends
in stress score changes were not statistically significant. Irwin et al. [59] indicated that
female stress decreased over the course of treatment, whereas male stress did not change
significantly. Although not statistically significant, our study’s stress score trends showed
tendencies similar to those of other research findings.

Implementing pre-treatment measures to reduce stress is challenging for all patients.
When calculating stress using a threshold of a 50% stress score, 47.15% of the cases exhibited
a stress response. Antoni et al. [36] and Irwin et al. [59] found that factors such as age,
occupation, marital status, and sex differences do not significantly affect stress. While our
study found higher initial stress in females, the overall stress scores were higher in males.
Considering the referenced studies and our research, it may be inaccurate to select specific
patient groups for before-treatment stress-reduction measures. Therefore, it is necessary to
predict stress in all patients prior to treatment.

Our study utilized five non-pretrained models and eight dataset types to classify
changes in the features during treatment (Table 4). The RF model exhibited the best overall
EMR across the datasets, and the LSTM model had the highest EMR of 0.172 for the Type
8 dataset. The LSTM performed best in terms of accuracy across all datasets, particularly
in the Type 7 dataset, with an accuracy of 0.699. Similarly, LSTM had the highest recall
across all datasets. The DT model had the highest precision and F1 scores of 0.683 and
0.639, respectively. In predictive modeling, accurately identifying actual stress states is
crucial, rather than mislabeling non-stressed individuals as stressed. Hence, the Types 6,
7, and 8 datasets exhibited the highest recall, accuracy, and EMR, respectively, and were
selected to evaluate the pretrained model using one-fold data.

In the analysis presented in Table 5, for the Types 6 and 7 datasets, the LSTM model con-
tinued to outperform the others in terms of EMR, accuracy, and recall, which is consistent
with the findings shown in Table 4. However, in the Type 8 dataset, both GPT4.0 and LSTM
demonstrated superior performance in EMR, achieving a score of 0.231. While LSTM led to
accuracy and recall, GPT4.0 excelled in precision and F1 score. The GPT3.5 model displayed
the lowest performance across all indicators in these datasets, with GPT3.5-turbo-1160
achieving an accuracy of 0.615 for the Type 8 dataset.

Considering all models, including non-pretrained and pretrained models, the LSTM
model demonstrated robust performance across all evaluation indices and datasets, mak-
ing it the most suitable for feature classification during treatment. In scenarios where
implementing a machine learning model is challenging, the pretrained GPT4.0 model,
particularly with the Type 8 dataset, emerged as the most appropriate choice.

Stress classification uses the categories of “yes (>50%)” or “no (<50%)” based on the
criterion of a stress score threshold of 50% (Table 6). In stress classification, the LSTM of
the Type 7 dataset classified stress effectively with an accuracy of 0.846. The RF and SVM
models exhibited a stability of 0.769 accuracy across all datasets. For the pretrained model,
GPT4.0 showed an accuracy of 0.769 in the Type 8 dataset that included all data, but in the
Type 7 dataset, all pretrained models failed to exceed the accuracy of 0.5. As with feature
classification, LSTM was the best among all models for stress classification, with GPT4.0
being superior for the Type 8 dataset. The GPT4.0 model is suited for predictions using
diverse patient information, whereas LSTM is recommended because of its stability in
scenarios with limited information.

Datasets 6, 7, and 8, which are used for comparison in Tables 5 and 6, contain the
treatment days. The treatment day is important information for stress prediction. The per-
formance of the non-pretrained model was similar across the three dataset types. However,
the pretrained model’s performance was the best in the Type 8 dataset, which included
age, sex, and treatment day, and the worst in the Type 7 dataset, in which age was omit-
ted. Stress prediction using a pretrained model may be better when using all available
patient information.
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Our study is a pioneer in the use of before-treatment information to predict during-
treatment stress, in contrast to most studies that have focused on current stress. Gazi et al. [60]
predicted stress in surveys using biological signals such as respiration, ECG, and elec-
trodermal activity and showed an accuracy of 86%, and Vulpe-Grigoras, i et al. [61] used
ECG and neural networks to predict survey stress with 85% accuracy. A few studies have
predicted future stress levels. Clark et al. [62] used the driver’s breathing, ECG, and gal-
vanic skin response signals in real time to predict stress after 1 min with 94% accuracy.
Taylor et al. [63] used signals such as the participant’s 24 h physiology, weather, number of
calls, and location to predict the next day’s mood with an accuracy of 82.2%. Although a
direct comparison with these studies is difficult, in our study, the LSTM using the Type 7
dataset showed an accuracy of 84.6%. The accuracy of our research in predicting future
information and HRV information obtained through limited PPG was sufficiently high,
and we believe that the addition of learning datasets and patient biological signals will
result in even higher accuracy.

To investigate the potential impact of stress on radiation therapy, we analyzed stress
influences on respiration irregularity during treatment delivery (Table 7). Phase irregularity
exhibited a significant increase in the stressed group compared to the non-stressed group,
with an estimated mean difference of 2.191 (p < 0.017). A 10% rise in stress score was
correlated with a 0.286 increase in phase irregularity (p < 0.025). Although stress also
showed a tendency to elevate amplitude irregularity, the difference did not reach statistical
significance. Phase-based gated radiotherapy relies on the consistency of the respiratory
cycle, and irregular respiratory can compromise treatment accuracy and prolong delivery
time [64]. Our findings demonstrate a significant association between stress and respiratory
irregularity, suggesting that stress management could enhance treatment accuracy and
precision for radiation therapy patients undergoing gated delivery.

This study had certain limitations. This study focused on patients with lung cancer
who underwent their first radiation therapy session. The use of finger-worn sensors
did not affect therapy for patients with lung cancer. However, the limited number of
methods for measuring biological signals and the narrow patient population resulted in
restricted participant diversity and a lack of standardization in stress assessment methods.
Expanding the research to include various cancer patients using sensor technologies that
do not interfere with treatment could enhance the accuracy of stress prediction and enable
more precise evaluations. Although AI-based stress prediction using biological signals
has demonstrated over 80% accuracy, the impact of the measured stress score on the
actual radiation therapy remains insufficiently validated. Although a correlation between
elevated stress and respiratory irregularity has been established, further research is required
to analyze the correlations between stress indicators and variables related to treatment
accuracy, such as setup error, and setup times. Nevertheless, the correlation between stress
and respiratory irregularity suggests that stress may influence radiation therapy outcomes.
Assigning weights to features with a high correlation could lead to more accurate stress
assessments. Future research will aim to select appropriate sensor technologies and involve
diverse cancer patient groups.

The effect of stress on radiation therapy is difficult to quantify and is not clearly
understood. To the best of our knowledge, this is the first study to develop a tool to
quantify stress in patients undergoing radiation therapy. We demonstrated the validity of
the developed method by showing a significant correlation between the stress score and
respiratory irregularity in patients. Respiratory irregularity is one of the parameters that
exhibits the impact of stress on radiation therapy accuracy.

5. Conclusions

This study successfully predicted the stress scores of patients undergoing radiation
therapy and demonstrated a correlation between stress and respiratory irregularity. This
tool has the potential to improve the accuracy of radiation therapy through the psycho-
logical care of patients with high stress. This study will pave the way for understanding
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patient stress during radiation therapy and exploring its impact on various aspects, thereby
providing better care for the success of cancer treatment with radiation beams.
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