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Simple Summary: Cell–cell communication mechanisms are gathering growing scientific interest, 

particularly in the context of cancer cells and the tumor microenvironment. Extracellular vesicles 

are gaining increased interest due to their relevance in tumor molecular characterization, 

classification, diagnosis, prognosis evaluation, and response to treatment. Many advances have been 

made in the clinical and therapeutic fields, exploiting increasingly precise biomolecular engineering 

strategies. This review aims to focus on the role of extracellular vesicles (EVs) as diagnostic and 

therapeutic tools in lung cancer. 

Abstract: Lung cancer represents the leading cause of cancer-related mortality worldwide, with 

around 1.8 million deaths in 2020. For this reason, there is an enormous interest in finding early 

diagnostic tools and novel therapeutic approaches, one of which is extracellular vesicles (EVs). EVs 

are nanoscale membranous particles that can carry proteins, lipids, and nucleic acids (DNA and 

RNA), mediating various biological processes, especially in cell–cell communication. As such, they 

represent an interesting biomarker for diagnostic analysis that can be performed easily by liquid 

biopsy. Moreover, their growing dataset shows promising results as drug delivery cargo. The aim 

of our work is to summarize the recent advances in and possible implications of EVs for early 

diagnosis and innovative therapies for lung cancer. 

Keywords: lung cancer; NSCLC; SCLC; EVs; BALF; liquid biopsy; personalized medicine; organ 

failure 

 

1. Introduction 

Cancer is the leading cause of mortality globally [1], and a massive effort is being 

focused on finding novel therapeutic approaches and standardizing methods that can 

contribute to early neoplastic detection. Non-invasive techniques that do not involve 

radiation analysis represent a crucial goal. Among different tumors, the principal cause 

of death is lung cancer [1]. Lung cancer can be classified into two main histological 

subtypes: Small-Cell Lung Carcinoma (SCLC) and Non-Small Cell Lung Carcinoma 

(NSCLC), with a higher prevalence of NSCLC (about 80–85%) [2]. In the last decade, the 

high level of mortality due to lung cancer has prompted the onset of many multicenter 

studies seeking to improve early tumor detection by consolidated analysis (imaging by x-
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ray, PET, and PET/CT) and blood tests correlation. The 2004 COSMOS study (Continuous 

Observation of Smoking Subject) (ClinicalTrials.gov ID NCT01248806) enrolled more than 

5000 asymptomatic smoker volunteers from the population because of their higher risk of 

developing lung cancer. Subjects were followed for 5 years with blood tests, spirometry, 

and annual low-dose spiral CT radiological examinations for nodules, alongside an 

evaluation of the correlation between COPD and lung cancer. Furthermore, many more 

studies comprising thousands of healthy patients have evaluated circulating biomarkers 

and radiomic analyses. For example, the CLEARLY study (Circulating and Imaging 

Biomarkers to Improve Lung Cancer EARLY Detection) (ClinicalTrials.gov ID 

NCT04323579), which started in 2018, is a multifactorial “bio-radiomic” protocol designed 

to detect early lung cancer in association with circulating biomarkers and radiomic data. 

Prognostic radiomic profiles for early detection have been correlated with molecular and 

cellular biomarkers such as microRNAs (miRNAs), proteins, circulating tumor cells 

(CTCs), and extracellular vesicles (EVs). EVs are involved in various processes, such as cell 

proliferation, differentiation, and the inflammatory response. 

During the last ten years, circulating EVs have gained growing a�ention not only as 

biomarkers, but also for their ability to mediate cell–cell regulation and be manipulated 

for therapeutic purposes [3]. EV components have been implicated in many biological 

processes, and among them, a clear involvement in cancer invasion and metastasis has 

been observed [4]. Particularly noteworthy are the modulatory effects of EVs released 

from tumors and non-tumor cells such as mesenchymal stromal cells (MSCs) [5,6]. Many 

studies have been carried out to evaluate the effects and compositions of different EVs in 

tumor progression. The presence of regulatory messenger RNA (mRNA), which can 

modulate cancer cell proliferation, has been found within EVs [7]. Additionally, EV 

analysis has revealed the presence of controller proteins from neighboring cells [8], such 

as from the tumoral counterpart. Released EVs shu�le molecules involved in cell 

adhesion, migration, aggressiveness, and resistance to chemotherapeutic treatments [9]. 

The most remarkable molecules carried by EVs are miRNAs, which modulate multiple 

processes (growth, differentiation, apoptosis, migration, and drug/radioresistance) by 

their interaction with non-coding RNAs (ncRNAs), such as mRNAs, long non-coding 

RNAs (lncRNAs), and circular RNAs (circRNAs) [10]. Through these interactions, a single 

miRNA strand can control multiple genes, inhibiting their translation. This uniqueness 

gives relevance both to regulation processes and diagnosis and therapy. Engineering EVs 

with specific ncRNAs represents a promising outcome of the last few years, whereas the 

identification of an miRNA-specific signature from onset tumors still represents a 

challenging target. This review focuses on the role of EVs in diagnosis as components of 

liquid biopsy and in therapies for lung cancer, exploiting their use as theranostic agents. 

Despite many groups in the past describing the relationship between EVs and lung cancer, 

we hope that our work can help to suggest future diagnostic and therapeutic directions, 

improving their applications in fighting lung cancer [11–13]. 

2. Extracellular Vesicles 

Extracellular vesicles (EVs) represent a crucial functional component of intercellular 

communication, acting as important mediators in both physiological and pathological 

processes in different organs and pathologies [14,15]. The classification of EVs reveals a 

complex landscape characterized by several factors. EVs were originally isolated from 

blood cells and showed significant variability in terms of their cellular origin, molecular 

content, size, and therapeutic efficacy [16,17]. Their classification based on size categorizes 

EVs into apoptotic bodies (1–5 µm), microvesicles (0.1–1 µm), and exosomes (30–150 nm) 

[18]. However, alternative classifications have been proposed, introducing considerations 

such as tissue of origin (e.g., prostasomes and oncosomes) and functional parameters [19]. 

EV proteins constitute a key aspect of their classification, reflecting both the cellular origin 

and the contents of the originating compartments. Exosomes (Exo) are generated by the 

endocytic pathway through the interaction between the endocytic vesicles and the 
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endosomal sorting complex required for transport (ESCRT) system, and afterwards, they 

are released by the fusion of multivesicular bodies (MVBs) with the plasma membrane 

[20]. ESCRTs are involved in Exo production regulation also through the autophagy 

system. Autophagy-related genes (Atg) represent key factors for Exo release and their 

expression has been found to be deregulated in cancer cells, promoting proliferation and 

metastasis [21]. The complex network between autophagy and Exo trafficking includes 

many regulatory proteins and was recently revised by Zubkova and coworkers [22]. 

Conversely, microvesicles (MV) and apoptotic bodies arise directly from the plasma 

membrane [22]. In particular, MVs derive from membrane budding, whereas apoptotic 

bodies form from the blebbing of cells that undergo apoptosis. Cancer cells promote EV 

release to induce cancer development, proliferation, and metastasis. Among the EVs 

derived from cancer cells are oncosomes, which differ by size and composition from other 

EVs (Figure 1, Table 1). 

Table 1. EV classification. 

Characteristics of Extracellular Vesicles (EVs) Subtypes 

EV Subtypes Origin Markers Cargo Reference 

Exosomes 
MVBs fuse with plasma 

membrane 

CD63, CD81, CD9, 

HSP60, HSP70, 

Alix, TSG101 

Genomic DNA, mRNA, miRNA, circRNA, 

lncRNA, MHC class I and II 
[23–25] 

Microvesicles 
Outward budding of plasma 

membrane 

Anneximìn A1, 

Integrins, CD62, CD40 

ligand 

mRNA, miRNA, circRNA, lncRNA, 

Lipids, Adesion proteins 
[26–28] 

Oncosomes 

Exclusively shed by cancer cells; 

Outward budding of plasma 

membrane 

CAV-1, Keratin 18, 

ARF6, GAPDH 

Genomic DNA, mRNA, miRNA, circRNA, 

lncRNA, MHC calss I and II 
[29–32] 

Apoptotic bodies 
Outward blebbing from cells in 

apoptosis 

Caspase 3, Annexin V, 

CD63, CD81 

miRNA, mRNA, Fragmented DNA, 

Histones 
[33–35] 

Integral membrane proteins, specifically tetraspanins like CD9, CD63, and CD81, 

stand out as important markers. Furthermore, EVs may contain membrane and 

cytoskeletal proteins, lysosomal enzymes, cytokines, chemokines, antigen presentation-

related proteins (MHC class I and II complexes), and nucleic acids such as DNA, mRNAs, 

and miRNAs, all of which contribute significantly to EV classification [23,36]. The 

existence of DNA in EVs demonstrated in the past decade adds an intriguing dimension 

to their molecular composition. DNA in EVs, different in type (single- or double-stranded, 

mitochondrial) and form (fragment or chromatin-bound), may aid in discriminating EVs 

based on their cell of origin [37,38]. However, due to a lack of sufficient biomarkers and 

an overlap in size range, it is difficult to discriminate between the various types of vesicles. 

EVs function as messengers and can be involved in key physiological conditions such 

as coagulation, pregnancy, metabolism, immunity, and apoptosis [39–43]. Under 

pathological or stress conditions induced by various stimuli, EVs show dynamic responses 

by altering both their quantity and molecular composition [44–48]. These altered vesicles 

hold promise as prospective biomarkers for various diseases, serving as reservoirs for 

potentially dangerous molecules. The pivotal role of EVs extends to their involvement in 

neurodegenerative diseases [47], blood disorders [49], metabolic processes [50], and 

cancer progression [51], where they act as intercellular communicators between cells and 

distant organs. EVs carry functional biomolecules, such as mRNA, proteins, miRNA, and 

metabolites, and can deliver them to cells across short and long distances, using the blood 

as a transport medium. The growing interest in EVs as disease biomarkers is reflected in 

their detectability across various body fluids. 

The innate targeting capacity of EVs has shown considerable potential in cancer 

therapy [52–54], where, to mitigate challenges such as rapid clearance, low uptake rates, 

and off-target effects, researchers have explored EV engineering strategies that involve the 
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modification of the EV surface and internal cargos [55]. Recent studies have demonstrated 

that EV surface cargos significantly influence their uptake, providing a basis for 

engineering strategies. The surface markers, including integrins, CD63, and tetraspanin 8 

[56,57], contribute to EV tropism and are susceptible to engineering to improve their 

uptake efficiency [58]. EVs’ potential in cancer therapy extends to artificial targeting 

strategies, where specific surface molecules are designed to bind to molecules expressed 

on the surface of the desired recipient cells. This approach includes receptor–ligand 

interactions, enzymatic modifications, and antigen–antibody combinations [55]. In 

particular, engineered EVs with ankyrin repeat proteins expressed on the surface of the 

cell membrane exhibited specific binding to HER2-positive breast cancer cells, showing 

the potential of the receptor–ligand interaction strategy [59]. Antibody-mediated 

strategies involve engineering EV surfaces with anti-CD3 and anti-EGFR antibodies, 

leading to the T-cell-mediated elimination of EGFR-positive cancer cells [60]. Enzymatic 

strategies using hyaluronidase on the EV surface aim to increase EV uptake by degrading 

the tumor extracellular matrix, improving permeability for both tumor-specific CD8 T 

cells and drugs in the tumor microenvironment [61]. 

Upon uptake, the EV cargo modulates the activity of recipient cells [62,63], and, in 

this context, EVs secreted by MSCs (MSC-EVs) are a promising therapeutic component of 

the MSC secretome. Most preclinical studies involving MSC-EV therapy are based on 

vesicles produced by MSCs [3,64,65]. Moreover, to potentiate the functional activity of 

MSC-EVs, the strategy of priming/preconditioning their cells of origin was explored by 

using chemicals, cytokines, and growth factors, as well as specific culture conditions 

[3,64,66–69]. For instance, human MSC-EVs produced after stimulation with 

dimethyloxaloylglycine further stimulated angiogenesis through the Akt/mTOR pathway 

to enhance bone healing [70]. Tumor necrosis factor-alpha (TNF-α) was able to prime 

MSCs and improve the bone regenerative properties of MSC-derived EVs, as evidenced 

by the increased proliferation and osteogenic differentiation of osteoblastic cells in vitro 

[71]. Furthermore, several studies explored the effects of inflammatory priming on MSC-

EVs, revealing distinct EV functions compared to other priming conditions. For instance, 

it was recently demonstrated that EVs derived from IFN-γ-primed MSCs have improved 

immunomodulatory properties compared to the 3D culture priming of MSC-EVs, which 

instead showed enhanced angiogenic properties [66]. In this scenario, the yield, size, and 

surface marker composition of MSC-derived EVs exhibited substantial variations with 

various priming treatments, and it is intriguing to understand how the EV content and 

their beneficial properties can be modulated. These studies will no doubt lay the founda-

tion for potential advancements in MSC-EV therapeutics. 
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Figure 1. Overview of extracellular vesicle subtypes and their uptake, biogenesis, and release. They 

are classified into different sub-classes and are generated through the endosomal pathway, released 

as exosomes (30–150 nm), microvesicles (0.1–1 m), apoptotic bodies (1–5 µm), and oncosomes (>1 

µm). 

3. EVs in Diagnosis  

While lung cancer represents, in most cases, a very inoperable disease with a low 

response to radiation therapy or chemotherapy and a low survival rate (with <17% for 

NSCLC and <7% for SCLC), the most important factor contributing to an increase in 

survival rate is early diagnosis and the selection of specific targeted therapeutic 

procedures. The identification of tumor characteristics based on molecular markers plays 

a key role in treatment effectiveness. Recently, a minimally invasive approach known as 

liquid biopsy was introduced, which involves sampling a small portion of body fluids to 

search for circulating tumor cells (CTCs), circulating proteins, and nucleic acids [72]. In 

this scenario, EVs, and particularly Exo, contain mediators influencing tumor progression 

as components of carcinogenesis that can help to identify and classify tumor onset and 

prevent its diffusion.  

Several methods can be used to isolate EVs, such as differential ultracentrifugation, 

size exclusion chromatography, gradient centrifugation, the co-precipitation method, and 

microfluidic devices [73]. Yet, this represents a major challenge for EV application, since 

the development of high-throughput methodologies to allow for the rapid isolation of EVs 

from many samples would enhance their use in diagnosis [74]. 

EVs are known to participate in intercellular communication, immune responses, 

metabolism, and tumor progression, as they are capable of horizontally transmi�ing a 

wide range of biomolecules to target cells, making them important biomarkers for 

diagnosis, as well as promising molecular carriers for targeted therapies. The information 

they carry can influence the behavior of target cells in multiple ways. In particular, they 

can act as indicators, transferring membrane proteins and receptors to target cells, or even 

altering their phenotype through the horizontal transfer of genetic information. It has 

been demonstrated that EVs can deliver not only proteins or lipids, but also miRNAs, 

other ncRNAs, and mRNAs [75]. The analysis of EV miRNA levels in lung cancer patients 
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showed a significant difference compared to control samples, suggesting that circulating 

EV miRNAs might represent a useful screening tool [76]. Compared to other circulating 

biomarkers such as cell-free DNA (cfDNA) and CTC, EVs have the advantage of being 

more abundant and more stable, given their lipid layer, which also protects the 

transported cargo. These characteristics are very important in order to establish sensitive 

and easily repeatable protocols for the early diagnosis of disease. Their role is central in 

certain pathological phenomena; for instance, it is now widely demonstrated that a tumor 

cell can release more than 20,000 of these vesicles in 48 h [77], with a role in conditioning 

the tumor microenvironment (TME). The TME includes several components such as the 

extracellular matrix (ECM), endothelial cells, cancer-associated fibroblasts (CAFs), and a 

strong immune component such as tumor-associated macrophages (TAMs), natural killer 

cells (NK), and T and B lymphocytes. Sanchez and coworkers examined the involvement 

of EVs and their miRNA cargo in the TME, demonstrating how they stimulate the 

formation of the neointima by activating macrophages within the TME, thus generating a 

niche for inflammation [78]. The analysis of EVs can represent a low-impact source for 

lung cancer characterization; notably, it has been demonstrated that EVs derived from 

bronchoalveolar lavage fluid (BALF) liquid biopsy can be used proficiently for epidermal 

growth factor receptor (EGFR) genotyping and the evaluation of EGFR mutations [79]. 

This method, together with the digital droplet PCR (ddPCR) and next-generation 

sequencing (NGS) techniques, can allow for the stratification of patients for TKI treatment 

without invasive methods such as tissue biopsy [79]. In this way, it is possible to quantify 

(copies/mL) and identify, if present, variants relating to the mutated EGFR, perhaps due 

to targetable resistance mechanisms involved in resistance to cancer therapy [80]. In this 

regard, a prospective phase 2 study was carried out to promote EGFR genotyping for 

subsequent therapeutic interventions through the analysis of EV-BALF liquid biopsy 

obtained from advanced NSCLC patients [81]. The study, for the first time, established 

that this platform represents a valid tool for immediate genotyping and allows for rapid 

results for therapeutic initiation in advanced NSCLC patients [81]. Moving forward, 

genotyping the miRNA content in EVs has been widely investigated. A recent study 

evaluated, with low-dose computed tomography (LDCT), the presence of indeterminate 

pulmonary nodules (IPNs) in association with circulating EV miRNAs [82]. The NGS 

analysis demonstrated a specific miRNA signature associated with the patient’s 

prognostic survival [82]. Similarly, another study described an miRNA signature (hsa-

miR-106b-3p, hsa-miR-125a-5p, hsa-miR-3615, and hsa-miR-450b-5p) from plasma-

circulating EVs with the identification of early-stage lung cancer [83]. An analogous result 

was obtained with the RT-PCR analysis of six miRNAs (miR-7, miR-21, miR-126, Let-7a, 

miR-17, and miR-19) in EV-BALF. Despite the limited number of patients, the study 

suggested a correlation between the expression of the analyzed miRNAs and early-stage 

lung cancer [84]. High-throughput transcriptomic analyses allowed for the identification 

of circular RNAs (circRNAs), resulting from the back-splicing of pre-mRNA, among 

numerous RNA strands. Although first described in the early 1970s, circRNAs were, until 

very recently, regarded as byproducts of splicing without any important biological 

function. The main function of circRNAs is the inhibition of miRNAs. They act as miRNA 

sponges, establishing a complex and precise system in the interaction with RNA-binding 

proteins and in the regulation of gene expression [85]. Recently, circRNAs were found to 

be enriched and stable in cancer EVs, suggesting their potential use as cancer biomarkers 

or therapeutic targets. It has been supposed that EVs could represent a mechanism for the 

release of circRNAs [86,87]. 

Cancer patients show circRNA expression levels in the ratio of 2:1 vs healthy controls 

[88]. A valid example of the role of EVs in prognosis is given by the Hongya et al. study 

on circVMP1, which was found to be correlated with the progression of NSCLC and 

resistance to cisplatin therapy [89]. 

Indeed, there is much evidence for circRNAs being involved in promoting tumor 

migration, NSCLC development, resistance to therapies, and tumorigenesis, with 
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different pathways of molecular interaction. Through the miR377-5p/NOVA2 axis, 

circ_007288 promotes the development of NSCLC [90], while circ_0000376 stimulates 

tumorigenesis and promotes drug resistance by positively modulating the action of 

KPNA4 and sponging miR1298-5p [91]. 

Circ_0020123 is particularly interesting for the multiple interaction pathways in 

which it is involved in lung cancer and appears to be capable of promoting cell 

proliferation and migration on tumor growth in vivo, acting on the THBS2/miR590-5p axis 

[92] and favoring cisplatin resistance in NSCLC cells by targeting miR-14-3p [93]. 

In the study conducted by Wei et al., circ_0020123 acts as a competitive endogenous 

RNA (ceRNA) to interact with miR-1283, thus promoting the expression levels of PDZD8, 

a cytoskeletal regulatory protein involved in tumor migration and proliferation [94], also 

involved in the LARP1/miR-330-5p tumor axis mechanism with the homonymous 

CircRNA (circ_PDZD8) [95] or suppressing tumor growth either if not expressed [96] or 

through sponging miR-1299, regulating HMGB3 [97]. Many studies on circRNA in lung 

cancer have demonstrated a repressive role in the disease. The relevance of circRNAs and 

their RNA splice variants for tumor progression and therapy response has been 

demonstrated in preclinical models [98]. Given the plethora of pathways in which 

circRNAs are involved, the use of a specific database is fundamental to shed light on the 

many possible pathways, and this is one of the objectives with which CircInteractome was 

born [99]. 

Recent studies have explored the role of circRNAs derived from the lung and carried 

by EVs [100], and most of them are focused on their expression and role in lung cancer 

[101] (Table 2). 

In a pioneering work in this field, Zhu and coworkers identified the presence of 

circHIPK3 in lung cancer released EVs [102]. This circRNA has been proposed as a novel 

EV-derived biomarker for lung cancer, whose action is connected with miR-637 reduction 

and acts as a tumor suppressor on cellular migration, invasion, and proliferation in NSLC 

[102]. 

Moreover, it was reported that the circRNAs contained in EVs act as novel genetic 

information molecules, mediating the interactions between cancer cells and other cells of 

the TME and regulating key steps in cancer progression [10,103,104]. Nowadays, the use 

of EV-circRNAs as biomarkers for cancer diagnosis and prognosis shows various 

limitations for sample sizes and a lack of standardized evaluation systems, so further 

analysis will support their specific application as early diagnostic markers.  

On the other side, engineering strategies for EV-circRNAs could solve the limitations 

due to the size of circRNAs for efficient packaging and delivery systems, overcoming 

pharmacodynamics, pharmacokinetics, and safety considerations [105]. 

Table 2. circRNA effects on lung cancer. 

CircRNA # Function Pathway Reference 

Circ_0012673 Promote cell proliferation Sponge miR-22; upregulate ErbB3 [106] 

Circ_0067934 Promote cell proliferation, migration, and invasion 
Modulate markers of epithelial-to-

mesenchymal transition (EMT) 
[107] 

Circ_007288 Promote cell proliferation Sponge miR-377-5p/NOVA2 [90] 

Circ_0000376 
To induce resistance to cisplatin and promote 

tumorigenesis 
Sponge miR-1298-5p/KPNA4 [91] 

Circ_PDZD8 Promote cell proliferation Sponge miR330-5p/LARP1 [95] 

Circ_0072309 To promote tumor progression and invasion Sponge miR607/FTO [108] 

Circ_ATAD1 Enhance cancer progression Sponge miR-191-5p [109] 

Circ_0092887 Induce resistance to taxane Sponge miR490-5p/UBE2T [110] 

Circ_0007385 
Promote cell proliferation, migration, tumourigenesis, 

and invasion 
Sponge miR-181 [111] 
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Circ_0013958 
Promote cell proliferation and invasion and prevent 

apoptosis 
Sponge miR-134/cyclin D1 [112] 

Circ_0020123 Inhibit proliferation and invasion Sponge miR1299/HMGB3 [97] 

Circ_008305 Inhibit tumor metastasis 
Sponge miR-429/miR-200b-

3p/PTK2 
[113] 

Circ_CRIM1 Inhibit tumor metastasis and invasion Sponge miR-93 and miR-182; [114] 

Circ_RNF13 Inhibit tumor proliferation and metastasis Sponge miR-93-5p [115] 

CircSH3PXD2A Inhibit tumor chemoresistance miR-375-3p/YAP1 [116] 

In addition to nucleic acid evaluation, recent progress in EV analysis has been 

implemented by looking at the protein content by proteomic profiling. Lung cancer EVs 

contain several tumor-associated proteins, such as EGFR, KRAS, inducer of extracellular 

matrix metalloproteinase, claudins, and RAB family proteins. In NSCLC, other proteins 

have been found such as exo markers like CD91, CD317, and EGFR. CD151, CD171, and 

tetraspanin 8 represent very reliable markers for lung cancer characterization and 

identification. Furthermore, METTL1 and the HIST family of proteins have been found to 

be overexpressed mostly in tumor samples [117]. Many studies are focusing on identifying 

the protein profiles of EVs from different stages and histologies of lung cancer, which is 

very important as a potential diagnostic tool [118,119]. A good example is given by 

Hoshino et al., who were able to characterize the complete proteomic profile of EVs from 

the plasma of 16 different cancer types and identified the proteins up- or down-regulated 

in cancer-associated EVs. Notably, the study revealed that cancer-derived proteins were 

not potential tumor tissue biomarkers and that approximately 50% of them arose from 

distant organs. Tumor-specific proteins were detected only in plasma, supporting the 

systemic nature of cancer and strengthening the potential use of EVs as liquid biopsy 

markers for early cancer diagnosis [117]. It has been reported that NSCLC-EVs shu�le 

specific proteins capable of inducing metastasis. Taverna et al. demonstrated that 

Amphiregulin, a ligand of EGFR contained in NSCLC-EVs, could induce metastasis, 

activating the EGFR pathway in pre-osteoclasts with an enhanced activity of proteolytic 

enzymes, leading to bone metastasis formation [120]. NSCLC EVs show an increased 

expression of FAM3C, a gene encoding for interleukin-like EMT inducer (ILEI). This 

results in an enhanced detection of FAM3C from lung tumor patients vs healthy subjects 

[121]. Furthermore, Du and coworkers identified that SCLC tumor-cell-derived EVs 

expressing PD-L1 play an important role in EVs and immune system crosstalk, suggesting 

a potential use of EV PD-L1 in the design of anticancer strategies [122]. From a prognostic 

point of view, the expression proteins of the A549 cell line (NSCLC) were analyzed before 

and after cisplatin treatment [123] by mass spectrometry (LC–MS/MS analysis). The 

results define a protein profile enriched for cholesterol metabolism pathway activation, 

indicating the role of EVs in lipogenesis activation and cell proliferation after 

chemotherapeutic treatment [123]. Nonetheless, a uniform consensus on protein markers 

from EVs is still missing for the restricted human sample datasets to drive interpretations 

of data analyses. To date, various resources have deposited the contents of EVs, especially 

regarding miRNAs, which can be consulted online: EVpedia [124,125] and Exocarta [126]. 

While the observation of new diagnostic information is strongly promoted, ctDNA 

represents an interesting target for liquid biopsy investigations in lung cancer detection 

[127]. However, the study of EVs and their protein cargo or CTCs has not yet entered 

clinical practice, and their application is limited to research studies (Table 3). 

Table 3. Diagnostic application of EVs from different body fluids in lung cancer. 

Disease Body Fluid Samples Source Description Reference 

Lung Cancer BALF LC-MS analysis of proteome profile. [128] 
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DNMT3B protein complex as potential 

therapeutic target.  

Early-Stage Lung 

Adenocarcinoma 
BALF 

Quantitative analysis of miRNAs with 

diagnostic value. 

miR-126 and Let-7a possible diagnostic 

biomarkers: higher levels in lung 

adenocarcinoma than in control subjects. 

[84] 

Early-Stage Lung 

Adenocarcinoma/Invasive 

Stage Lung Adenocarcinoma 

Plasma 

A signature drawn up with four miRNAs 

(hsa-miR-106b-3p, hsa-miR-125a-5p, hsa-

miR-3615, and hsa-miR-450b-5p) for early 

diagnosis. 

[83] 

Advanced-Stage Lung 

Adenocarcinoma 
BALF 

Next-Generation Sequencing (NGS) of EV 

DNA content to identify genetic alterations, 

suitable for a clinical approach. 

[129] 

(Advanced) NSCLC BALF 

EGFR mutation analysis on BALF EVs as 

method more accurate, specific and rapid 

than cfDNA evaluation. 

[79] 

(Advanced) NSCLC Plasma and BALF 

BALF EV DNA analysis as alternative 

diagnostic method in accordance with 

tissue biopsy and greater efficiency for 

detecting the p.T790 M mutation in the 

patients resistant to EGFR-TKIs. 

[130] 

(Advanced) NSCLC BALF 

A phase 2 study on BALF EV as platform 

for EGFR genotyping and rapid therapeutic 

intervention. 

[81] 

Adenocarcinoma, 

Squamous Cell Carcinoma, 

NSCLC 

Bronchial Washing 
Detection of EGFR mutation and evaluation 

of its prognostic value. 
[131] 

Early-Stage Malignant Pleural 

Mesothelioma (MPM) 

vs Benign Conditions and 

Metastatic Adenocarcinomas 

Pleural Effusions 

Characterization of surface marker or 

proteins differentially expressed as 

diagnostic markers. 

[132] 

Indeterminate Pulmonary 

Nodules (IPNs) 
Plasma 

CircEV-miR profile as a molecular model to 

distinguish the benign and malignant IPNs. 

miR-30c-5p, miR-30e-5p, miR-500a-3p, miR-

125a-5p, and miR-99a-5p: five miRNAs 

differentially expressed and associated to 

an overall survival. 

[82] 

Chinese 

Clinical 

Trials: 

ChiCTR18000

19877 

4. EVs in Lung Cancer Therapy 

Until a few years ago, the most common lung cancer treatment was chemotherapy. 

Recent progress in oncology has prompted the use of immune-checkpoint monoclonal 

antibody blockades in association with chemotherapeutic treatment [133] or as a single 

agent, depending on PD-1 IHC expression. On the other hand, next-generation 

sequencing technologies allow for the identification of the most recurrent mutations in 

lung cancers, providing a unique tool for evaluating oncogene addiction and the role of 

targeted therapy. Some of the identified mutations include epidermal growth factor 

receptor (EGFR), where mutations occur in 15% of NSCLC adenocarcinoma cases [134]. 

This allows for the targeting of these tumors by specific tyrosine kinase inhibitors (TKIs) 

and/or monoclonal antibodies, as recommended by current guidelines [135]. Different 

TKIs have been employed in several clinical trials, which have demonstrated a positive 
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effect on progression-free survival (PFS) and fewer side effects compared to standard 

chemotherapy (platinum) [136]. Unfortunately, many patients have shown resistance to 

the specific EGFR inhibitor treatment. To overcome this problem, TKI treatment can be 

associated with anti-EGFR monoclonal antibodies (cetuximab, necitumumab, and 

panitumumab), as supported by numerous clinical trials reviewed by Ciardiello and 

colleagues [137]. Another therapeutic target identified in lung cancers is anaplastic 

lymphoma kinase (ALK), whose translocation with the EML4 gene affects 5% of NSCLC 

patients [138]. Specific TKI inhibitors have been identified: crizotinib, second-generation 

ceritinib and alectinib, and the new-generation lorlatinib, recently preferred for resistance 

mutations [139]. Interestingly, crizotinib has also been employed as a treatment for 

NSCLC patients positive for ROS-1 chromosomal rearrangements with clinical signs 

similar to ALK mutations [140,141]. Similar to NSCLC cancers, some mutations have been 

identified in mainly SCLC patients. In particular, these alterations concern the suppressor 

genes TP53 and RB1 [142]. Despite their identification, SCLC tumors do not show 

targetable mutations, and recently, researchers have been focusing their a�ention on RB1 

as a potential therapy target, as demonstrated by in vivo studies [143,144]. Innovative 

therapeutic approaches have been studied in the last few years, revealing that EVs play a 

relevant role in physiological and pathological conditions, such as cancer and 

cardiovascular and neurodegenerative diseases. Over the last ten years, EV research has 

focused on their potential application as therapeutic agents. As already underlined, EVs 

can carry molecules, particularly non-coding RNAs, influencing cancer growth, 

progression, metastasis, or drug resistance [145]. Therefore, non-coding RNA has gained 

importance as a therapeutic tool and has been employed in several clinical studies (Table 

4). Among the ncRNAs, a pivotal role is played by miRNA, which can be easily carried 

and delivered by EVs or other vectors. Specifically, miR34 has been widely studied in 

different tumors. Recently two different phase I multicenter trials were conducted to 

study by dose escalation the safety, pharmacokinetics, and pharmacodynamics of an miR-

34 mimic (MRX34), administered by liposomal injection in patients with melanoma 

(NCT02862145) and other selected solid tumors: primary liver cancer SCLC, NSCLC, 

lymphoma, melanoma, multiple myeloma, and renal cell carcinoma (NCT01829971). The 

melanoma trial was withdrawn due to high toxicity, and the other study on solid tumors 

showed stable disease (SD) in 6 out of 47 patients [146]. This study represented the first 

miRNA-based clinical trial on cancer [147]. The capacity of miR-34 to inhibit tumor growth 

has been demonstrated by various studies, and the ability of EVs to carry this miRNA and 

inhibit tumor growth in a paracrine way has been assessed [148]. EVs can be considered a 

peculiar vector for anti-cancer delivery systems due to their natural and advantageous 

properties, such as their high biocompatibility and limited systemic toxicity. Specific 

nanocarrier-targeted action can be improved by engineering and functionalizing their 

surface, for example, by inducing the expression of specific proteins on the EV membrane 

or through the loading of miRNA, which can be inserted exogenously on isolated EVs 

(electroporation, sonication, and RNA cholesterol conjugation), or indirectly by genetic 

modification of the donor cells before EV isolation (RNA transfection, RNA encoding 

plasmid transfection, and virus transfection) [145]. For example, EVs isolated from 

mesenchymal stem cells have been demonstrated to transfer miRNA efficiently in 

different kinds of tumors. This observation has raised the possibility of engineering cells 

such as MSCs for miR-34 delivery to inhibit tumor growth by EV release [149]. Notable 

for their ability to migrate towards inflammation or tumoral regions, MSCs have the 

peculiar characteristic of being able to be genetically modified, and when employed for 

this purpose, they act as living delivery vectors [150,151]. It was observed recently that 

engineered bone marrow MSCs (BMSCs) can deliver miR-193a, reducing the cisplatin 

resistance of NSCLCs by targeting leucine-rich repeat-containing protein 1 (LRRC1) [152]. 

In the same way, BMSC-derived EVs carrying miR-126-3p suppressed the viability, 

migration, and invasion of NSCLC cells by targeting protein tyrosine phosphatase non-

receptor type 9 (PTPN9) [153]. Similarly, another group showed that engineered BMSCs 
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with miR-598 inhibited cell proliferation, migration, and invasion in NSCLC. They 

demonstrated that miR-598-loaded EVs acted in lung cells by down-regulating Derlin-1, 

the zinc finger E-box-binding homeobox 2 (ZEB2), and also Thrombospondin-2 (THBS2), 

in this way inhibiting growth and metastasis [154]. The same effect was obtained with 

exosomal miR-338-3p through the inhibition of MAPK signaling, reducing the cell 

adhesion molecule L1-like protein (CHL1) activity and the subsequent down-regulation 

of NSCLC proliferation and apoptosis [155]. Engineered exosomes loaded with miR-449a 

selectively inhibit the growth of homologous NSCLC [156]. Among them, Zhou and 

colleagues focused their a�ention on miR-449-a, which affects the migration and invasion 

of human NSCLC cells. They isolated exosomes from A549 cells and engineered them 

(miR-449a exo) to allow for the transfer of this miRNA, thereby demonstrating its anti-

tumor activity both in in vitro and in vivo models [156]. Similarly, another group used 

MDA-MB-231 breast cancer cells as a source of engineered lung-targeted exosomes with 

miRNA-126, which reduced proliferation and migration through the PTEN/PI3K/AKT 

pathway in A549 cells and an in vivo lung metastasis mouse model [157]. 

Besides their application as miRNA carriers, EVs have been used for tumor RNA 

interference (RNAi) therapy through siRNA targeted against specific oncogenes. For 

example, KRAS, whose mutations account for 90% of pancreatic cancers and 20–25% of 

lung adenocarcinomas, represents an area of great interest for tumor-targeted gene 

therapy. Recently, lipid nanoparticles carrying KRAS siRNAs reduced its expression in 

several lung cancer cell lines, including human (A549 and H441) and mouse (CMT-167 

and Lacun3) cells, and proliferation was observed through colony-forming assays [158]. 

During the last few years, various approaches have been studied and pursued to 

employ EVs as therapeutic applications or targets in lung cancer. It is well known that the 

EVs released by tumor cells can promote the spread and diffusion of the tumor and also 

counteract the immune response by inhibiting CD-positive T cells with anti-tumor 

functions [159] or favoring immune escape, a�enuating cytotoxic CD8+ T cells through 

the expression of PD-L1, considered as a target for monoclonal therapy in NSCLC patients 

[160]. Because of these characteristics, EVs have been considered as target therapeutic 

strategies. Some pharmacological agents act on EV trafficking or lipid membrane 

metabolism and are extremely important for membrane fluidity and, as a consequence, 

for EV shedding/release. For example, GW4869 inhibits the membrane-neutral 

sphingomyelinase (nSMase) and exosome/EV biogenesis; it has been tested in PC9 lung 

adenocarcinoma cells, counteracting the antagonistic effects of gefitinib and cisplatin, 

which are widely used for NSCLC patient treatment [161]. 

Among the numerous molecular partners involved in membrane trafficking is 

Rab27A, a protein expressed in numerous cell types, including A549, which could regulate 

EV release. One research group demonstrated that specific shRNA against Rab27A carries 

a lower release of EVs and a reduction in tumor growth in an in vitro model of human 

lung adenocarcinoma cells [162]. 

Considering the impact of EVs on immune escape, over the years, clinical trials have 

been undertaken to apply them as a cancer vaccine [163–167] The EVs released by tumor 

cells proficiently trigger anti-tumor immunity; for example, in a study focused on EVs in 

vitro isolated from 3LL lung tumor cells, the activation of dendritic cells and T cells after 

being subjected to heat stress was induced through EV inflammatory chemokine contents 

[163]. Similarly, dendritic cells release vesicles (termed dexosomes) that have been 

demonstrated to prime T cells and present antigens to T CD8+ and CD4+ cells [168,169]. 

These cells and their secretome are of great scientific interest; indeed, dendritic cells were 

tested as autologous vaccinations in a clinical trial involving NSCLC patients, providing 

interesting immunologic responses [164]. A phase I clinical trial demonstrated the 

tolerance of engineering dexosomes with MAGE antigens in NSCLC patients’ MAGE+ 

[167]. These dexosomes were also used in a phase II trial on NSCLC patients, resulting in 

the stabilization of 32% of the recruited patients [166]. 
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In a similar way to miRNA delivery, researchers are a�empting to use EVs for 

drug/chemotherapy delivery. EVs loaded with paclitaxel were administered to a 

metastatic mouse model of NSCLC [170]. In particular, this research group demonstrated 

that exosomes efficiently vehicle the paclitaxel [171] and subsequently improved the 

formulation of these exosomes, demonstrating that this new delivery system exerts a 

higher ability to reach cancer cells with a be�er therapeutic effect [170]. Recently, 

exosomes isolated from M1 macrophages were evaluated as a drug vehicle for cisplatin, 

both in in vitro (Lewis lung cancer cells) and in vivo mouse models. The study 

demonstrated that the exosomes from M1 macrophages as chemotherapy carriers 

improved the anti-lung cancer effect of cisplatin and induced tumor cell death; 

specifically, in vitro experiments demonstrated the involvement of apoptosis through Bax 

and Caspase-3 [172]. In another in vitro study with two NSCLC cell lines (H1299 and 

A549), researchers used exosomes loaded with gold nanoparticles conjugated with 

doxorubicin, obtaining a greater particle uptake by target cells and drug release and more 

specific cytotoxicity with fewer side effects [173]. 

Table 4. Therapeutic in vitro and in vivo application of EVs in lung cancers. 

Target/Study Models Subject Description Reference 

(Advanced) NSCLC 

Vaccination trial with 

tumor antigen-loaded 

dendritic cell-derived 

exosomes 

Maintenance immunotherapy in 47 patients with dexosomes to 

improve their PFS. 
NCT01159288 

Solid tumors: primary liver 

cancer, SCLC, lymphoma, 

melanoma, multiple 

myeloma, renal cell 

carcinoma, NSCLC 

Multicenter phase I 

study of MRX34, 

microRNA miR-RX34 

liposomal injection 

Phase I, open-label, multicenter, dose escalation study to 

investigate the safety, pharmacokinetics, and pharmacodynamics 

of the micro ribonucleic acid (microRNA) MRX34 in patients with 

unresectable primary liver cancer or advanced or metastatic 

cancer with or without liver involvement or hematologic 

malignancies. 

NCT01829971 

[147] 

(Advanced) NSCLC 

Phase I study of 

dexosome 

immunotherapy 

Phase I study to evaluate safety and efficacy of autologous 

dexosomes loaded with tumor antigens (MAGE-A3, -A4, -A10, 

and MAGE-3DPO4), administered in 4 doses. Measurement of 

the immunologic responses and monitoring the clinical outcomes 

in 13 patients at different stages. 

[167] 

H1299 and A549 (NSCLC) 

Nanosomes carrying 

doxorubicin anticancer 

activity against human 

lung cancer cells 

In vitro analysis of gold nanoparticles (GNPs) loaded with 

doxorubicin to evaluate the release kinetics and the cytotoxic 

activity. 

[173] 

Mice injected with B16F10 

cells to produce lung 

metastasis 

EVs melanoma gold 

conjugated 

nanoparticle targeting 

lung tumors 

The study provided an application system where exosomes 

isolated from cancer cells incorporated gold nanoparticles were 

tested in a mouse model to improve targeting system in 

metastatic foci. 

[174] 

In vitro: murine carcinoma 

cell line (3LL-M27); 

in vivo: mouse model with 

pulmonary metastases 

Paclitaxel-loaded EVs 

against cancer cells 

In vitro and in vivo study aims to introduce a new formulation 

for Paclitaxel distribution through exosomes (PTX-exo, fom RAW 

264.7 cell line), providing high stability in tumor environment 

and a better effectiveness in vivo murine model. 

[171] 

In vitro: A549 and H1299 

(NSCLC); 

In vivo: mouse model with 

lung cancer xenograft 

Celastrol EVs 

formulation against 

lung cancer 

Study focused on the effect of the natural compound celastrol 

loaded into exosomes, a new delivery system improved efficacy 

and reduced dose toxicity. 

[175] 

In vitro: A549 and H1299 

(NSCLC); 

In vivo: nude mice with 

xenograft 

Anthocyanidins EVs 

against multiple 

cancer types 

The study aimed to obtain a nano-formulation of the natural 

derived compound, anthos, with exosomes. Exosomes enhanced 

the anti-proliferative and anti-inflammatory activity of anthos (vs 

the free compound) and the therapeutic affect toward lung 

cancer. 

[176] 
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Nude mice with lung tumor 

xenografts 

Milk-derived 

exosomes for oral 

delivery of paclitaxel 

A study on chemotherapeutic paclitaxel delivery through 

exosomes in a formulation for oral administration, which 

exhibited greater therapeutic efficacy and lower systemic toxicity. 

[177] 

5. Conclusions and Remarks 

The potential applications of EVs in therapeutic and diagnostic approaches are far 

from being fully achieved. Over the last decade, the EV cancer field has experienced 

significant advancements that have fundamentally changed our understanding of 

intercellular communication and cancer biology.  

However, a deeper knowledge of EV’s role in lung cancer is crucial in order to define 

biomarkers for prognosis and diagnosis, as well as to develop new therapeutic strategies 

for such deadly tumors [1]. So, to transfer this knowledge from bench to bedside, other 

studies need to be conducted to clarify and confirm the potential role of EVs in lung cancer 

and beyond. Tumor heterogeneity, in particular looking at EGFR mutations, is currently 

under investigation to further correlate cellular modifications with therapeutic response 

[81]. 

Their utility as delivery vehicles for various drugs, proteins, and nucleic acids has 

been evaluated by many laboratories. Their lipid composition contributes to their stability 

in body fluids and provides, at the same time, valid support for their cellular delivery by 

cell membrane fusion [178]. Moreover, the immunological properties of MSC offer a 

unique tool for EV secretion, combining their specific transfer ability aptitude (drugs, 

nucleic acids, and proteins) with immunomodulatory pharmacological effects [179] or 

new therapeutic approaches in numerous diseases, including lung cancer (Table 4). 

Despite MSCs’ natural tropism against tumors, which can represent a valid site-specific 

EV throughput tool, dendritic cell-derived exosomes can support the targeted tumor 

delivery of EVs and represent a promising example of vaccination due to their 

immunostimulatory capability (NCT01159288). On the other hand, from a diagnostic 

point of view and given the important role for cancer biology, the use of circulating EVs 

has gained a growing interest primarily for their availability. Conversely, one of the main 

challenges is represented from EVs’ origin, because their release is not exclusively related 

to the disease but can arise from any tissue. A wider analysis of EVs’ composition can 

support fast stratification and early detection. In this regard, a substantial analysis of EV 

circRNA signatures can identify lung-cancer-regulated miRNA [100,102]. Furthermore, a 

proteomic analysis of EV content offers the opportunity to acquire more information 

about EV biology and identify new biomarkers, contributing to early diagnosis and the 

design of valid treatments [180] (Figure 2). There are many difficulties and limitations, but 

the multi-omics approach has a very bright future and will undoubtedly provide much 

more information on these nano-sized biological entities. Despite numerous studies on 

experimental models and various pathologies, there are still many points that can be 

improved, for example, identifying cellular sources safe for immunogenicity and sources 

that can guarantee significant quantities, as well as trying to introduce standardized 

procedures to improve the workflow throughput. We hope that groundbreaking tests on 

the diagnostic and prognostic meaning of EV evaluation can draw new routine 

procedures for dissecting tumor heterogeneity and narrowing therapeutic intervention 

protocols.  

Last, but not least, scientists must investigate EVs’ structure deeply to maximize their 

engineering and applications as carrier systems (Figure 2). Another area to be further 

explored is related to their turnover. Studies have already focused on their release 

inhibition, and, considering the importance of the uptake step, it could be interesting to 

try to selectively reduce uptake mechanisms, although the pathways involved are numer-

ous [181,182]. 
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Figure 2. EVs in lung cancer diagnosis and therapy. EVs are important players in intercellular 

communication, released through the endosomal pathway by the plasma membrane as exosomes 

(30–150 nm), microvesicles (0.1–1 m), and apoptotic bodies (1–5 µm). Tumor-derived EVs are good 

candidates for liquid biopsy since they contain many components such as tumor-derived DNA, 

mRNA, miRNAs, and proteins. Their analysis from plasma or body fluids (BALF) offers significant 

information about tumor diagnosis through biomarkers crucial for early detection or prognosis and 

treatment response. The potential application of EV in therapy comprises their application in 

targeted therapy through the delivery of specific miRNAs, drug delivery of chemotherapy agents, 

or their employment as anti-cancer vaccines. 
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