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Simple Summary: Accurate pre-operative surgical risk predictions form the foundation of pre-op-
erative counseling and informed consent. There are currently no validated risk calculators that are 
able to accurately predict post-operative complications for women undergoing gynecological cancer 
surgery in both high- and low-middle-income healthcare settings. Using the dataset from the inter-
national GO SOAR database, we present a novel artificial intelligence surgical risk calculator capa-
ble of accurately predicting the risk of complications associated with gynecological cancer surgery. 
The GO SOAR surgical risk calculator uses readily available pre-operative data available across all-
income healthcare settings, ensuring benefits to women globally. 

Abstract: The medical complexity of surgical patients is increasing, and surgical risk calculators are 
crucial in providing high-value, patient-centered surgical care. However, pre-existing models are 
not validated to accurately predict risk for major gynecological oncology surgeries, and many are 
not generalizable to low- and middle-income country settings (LMICs). The international GO SOAR 
database dataset was used to develop a novel predictive surgical risk calculator for post-operative 
morbidity and mortality following gynecological surgery. Fifteen candidate features readily avail-
able pre-operatively across both high-income countries (HICs) and LMICs were selected. Predictive 
modeling analyses using machine learning methods and linear regression were performed. The 
area-under-the-receiver-operating characteristic curve (AUROC) was calculated to assess overall 
discriminatory performance. Neural networks (AUROC 0.94) significantly outperformed other 
models (p < 0.001) for evaluating the accuracy of prediction across three groups, i.e., minor morbid-
ity (Clavien–Dindo I-II), major morbidity (Clavien–Dindo III-V), and no morbidity. Logistic-regres-
sion modeling outperformed the clinically established SORT model in predicting mortality (AU-
ROC 0.66 versus 0.61, p < 0.001). The GO SOAR surgical risk prediction model is the first that is 
validated for use in patients undergoing gynecological surgery. Accurate surgical risk predictions 
are vital within the context of major cytoreduction surgery, where surgery and its associated com-
plications can diminish quality-of-life and affect long-term cancer survival. A model that requires 
readily available pre-operative data, irrespective of resource setting, is crucial to reducing global 
surgical disparities. 
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1. Introduction 
There is considerable uncertainty in health care, and risk prediction plays a funda-

mental role in a surgeon’s ability to drive clinical decisions, counsel patients, and evaluate 
outcomes. Studies have shown that clinicians are imperfect when predicting medical and 
surgical risk and often rely on their experience and subjective global assessment of patient 
fitness for surgery [1–4]. Surgical risk calculators are a set of tools with the potential to 
mitigate the highly variable perception of patient risk [5–8]. 

Quality and safety remain essential to the practice of all surgery, and implicit in this 
process is the accurate risk assessment of planned surgical procedures using surgical risk 
calculators [9–11]. To engage in a meaningful process of informed consent and mitigate 
anticipated surgical risks, patient, disease, and surgical factors must be considered in a 
robust risk assessment. Application of this information using surgical risk calculators can 
clarify the risk-to-benefit profile of surgery, particularly within the context of major cy-
toreduction surgery, which can often involve multiple visceral organ resections impacting 
quality of life [12–14]. Risk calculators are important instruments for shared decision-mak-
ing between patients and doctors [13,15,16]. However, pre-existing surgical risk calcula-
tors are limited in their ability to accurately predict risk for major gynecological oncology 
surgeries and are not validated for use in such a population. In addition, the applicability 
of pre-existing calculators is limited in low-income resource settings, as restricted re-
sources preclude the widespread use of biochemical and radiological tests, and even sta-
ble internet access limits the utility of some technologies for risk prediction. In order to 
inform consent and shared decision-making, a robust, globally applicable surgical risk 
prediction model is needed to predict individualized morbidity and mortality risk for pa-
tients undergoing gynecological oncology surgery. The aim of this study is to develop a 
novel machine learning-based surgical risk calculator to accurately predict thirty-day 
postoperative morbidity and mortality risk in women undergoing gynecological oncology 
surgery in high- and low-middle-income country settings. 

2. Materials and Methods 
2.1. Source Data and Participants 

An international, multicenter, prospective cohort study (GO SOAR1, NCT04579861) 
included consecutive patients undergoing surgery for ovary, uterus, cervix, vulva, and 
vaginal cancers over a thirty-day period in seventy-three hospitals across twenty-seven 
countries in low-middle-income (LMIC) and high-income (HIC) settings. Patients under-
going elective and emergency surgeries were included between January 2021 and Novem-
ber 2022. Inclusion criteria were women aged ≥18 years undergoing curative or palliative 
surgery for primary or recurrent gynecological malignancies. The surgical modalities in-
cluded were open, minimal access (laparoscopic and robotic), and vaginal. Elective and 
emergency cases were included. Patients were excluded if their primary pathology was 
not a gynecological malignancy, benign, or borderline disease, and if they had undergone 
a diagnostic procedure. Investigators were required to monitor patients for a minimum of 
thirty days post-operatively to identify complications. A full study methodology has been 
published previously [17,18]. 

The data collected on the prospective GO SOAR database as part of the GO SOAR1 
study were used to conduct predictive modeling analyses in two separate settings, i.e., 
one to discriminate between minor (Clavien–Dindo I–II) and major morbidity (Clavien–
Dindo III–V) from a group without morbidity (analysis 1), and the second to discriminate 
between individuals who died and those who survived (analysis 2) thirty days from sur-
gery. The study has been approved and registered with the School Ethics Review Board 
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for the School of Medicine, Medical Sciences at the University of Aberdeen, UK 
(SERB/2021/10/2194). 

2.2. Candidate Predictor Variables 
We planned to include variables that are readily available globally, even in resource-

limited environments, without the need for additional tests. To enable this model to in-
form pre-operative decision-making, we only selected variables that are systematically 
available before surgery. To achieve this, sixteen candidate predictors were selected a pri-
ori to be included and processed. These were selected from three domains, i.e., patient, 
disease, and surgical predictors. Patient predictors included the following: age (linear); 
ethnicity (white versus non-white); body mass index (kg/m2, linear); hemoglobin (g/dL, 
linear); white cell count (109/L, linear); albumin (g/L, linear); American Society of Anes-
thesiologists (ASA) grade (1–2 versus 3–5); and Eastern Cooperative Oncology Group 
(ECOG) performance status (0–2 versus 3–4). Disease predictors included the following: 
primary cancer (ovary, uterine, cervical, vulva/vagina); radiological FIGO stage (stage I–
II versus stage III–IV); and neoadjuvant chemotherapy (yes versus no). Surgical predictors 
included the following: history of previous abdominal surgery (minimal access (laparos-
copy/robotic) versus laparotomy); mechanical bowel preparation (yes versus no); intra-
operative antibiotics (yes versus no); surgical modality (minimal access versus laparot-
omy); and surgical complexity score (estimated pre-operatively based on radiological im-
aging, low = ≤8, moderate = 9–16, high = ≥16). The surgical complexity score was divided 
into five separate groups, i.e., pelvic surgery, bowel surgery, urological surgery, upper 
abdominal surgery, and lymphadenectomy. Each of these five groups was further subdi-
vided into specific surgical procedures and allocated a complexity score based on expert 
consensus (Supplementary Table S1). 

2.3. Missing Data 
From the sixteen candidate predictors, a predictor was excluded if ≥20% of values 

were missing. Analyses were performed using both complete cases and an imputed da-
taset. Missing data were handled using the multivariate imputation by chained equations 
(MICE) method, generating five different datasets [19]. This approach allowed for more 
robust analysis by retaining all available information while addressing missing data. 

2.4. Model Building and Validation 
For analysis 1, we employed the following machine learning methods: support vector 

machines, random forests, gradient boosting, and feedforward neural networks. These 
methods were chosen based on their established performance in similar predictive tasks. 
For each method, leave-one-out cross-validation (LOOCV) was utilized to evaluate the 
accuracy of prediction across the three classes, i.e., minor morbidity, major morbidity, and 
no morbidity. For every patient, each of the methods was trained using all the data but 
the present patient, and then the resulting model was used to make a prediction for the 
index patient. To account for the fact that the data were imbalanced, the synthetic minority 
oversampling technique (SMOTE) was used at each LOOCV step. Because the outcome 
was not binary but rather categorical, with three classes, no feature selection was em-
ployed. Additionally, the multiclass area under the receiver operating characteristic curve 
(AUROC) was calculated to assess the overall discriminatory performance [6]. The statis-
tical significance of differences in accuracies among methods within each class was eval-
uated using McNemar’s test. 

For analysis 2, we aimed to assess whether logistic regression, a straightforward bi-
nary classification approach, could outperform the SORT (surgical outcome risk tool) cal-
culator, which is an established risk prediction calculator for predicting postoperative 
mortality in clinical practice [20]. Given the limited sample size, logistic regression was 
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chosen as it offers simplicity and interpretability. We employed Monte Carlo cross-valida-
tion with 1000 iterations, splitting the data into training and testing sets in a 50:50 ratio at 
each step. Logistic regression models were trained using the training set and then evalu-
ated on the test set. At each training step, feature selection was employed based on 
Akaike’s information criterion (AIC) to identify a subset of the most predictive features, 
which were then used for the test set. Performance was compared against the SORT cal-
culator in terms of AUROC and sensitivity at a clinically sensible specificity threshold of 
90%. The Wilcoxon rank sum test was used to assess the significance of differences in AU-
ROC measures and sensitivities between logistic regression and SORT. All statistical tests 
were two-sided, and a p value < 0.05 was considered statistically significant. 

The analyses were performed using Python version 3.8 and R version 3.5.1. This pre-
diction model is reported in alignment with TRIPOD [21] and PROBAST [22] guidelines. 

3. Results 
Analysis 1 included 1310 patients with no morbidity, 374 patients with minor mor-

bidity, and 127 patients with major morbidity. Table 1 summarizes the spread of candidate 
predictors between the three groups. Of the sixteen a priori candidate predictors selected, 
fifteen were used in analysis 1. Albumin was excluded as it was missing in 71% of cases 
in the entire dataset. 

Table 1. Candidate predictors of patients included in analysis 1. 

Candidate Predictor Subgroups 
No Morbidity 

N = 1310 

Minor Mor-
bidity 

N = 374 

Major Mor-
bidity 

N = 127 

p-
Value 

Age Median (IQR) 61 ((51–69) 60 (52–69) 62 (53–71) 0.331 

Ethnicity 
Non-white 442 (33.7%) 150 (40.1%) 46 (36.2%) 

0.073 
White 868 (66.3%) 224 (59.9%) 81 (63.8%) 

BMI Median (IQR) 27.2 (23.5–32) 27.3 (23.2–32) 26 (21.8–29.2) <0.001 

ASA grade 
3, 4 272 (20.8%) 109 (29.1%) 32 (25.2%) 

0.002 
1, 2 1038 (79.2%) 265 (70.9%) 95 (74.8%) 

ECOG status 
4, 5 19 (1.5%) 4 (1.1%) 6 (4.7%) 

0.012 
1, 2, 3 1291 (98.5%) 370 (98.9%) 121 (95.3%) 

Previous laparotomy 
No 870 (66.4%) 222 (59.4%) 68 (53.5%) 

0.002 
Yes 440 (33.6%) 152 (40.6%) 59 (46.5%) 

Previous laparos-
copy 

No 1049 (80.1%) 265 (70.9%) 91 (71.7%) 
<0.001 

Yes 261 (19.9%) 109 (29.1%) 36 (28.3%) 
Pre-operative hae-
moglobin Median (IQR) 

14.3 (12.4–
127) 

14.2 (12–
123.8) 13.2 (11.7–108) 0.002 

Pre-operative white 
cell count 

Median (IQR) 7.1 (5.7–8.9) 7 (5.5–9.4) 7.4 (6–9.5) 0.318 

Neoadjuvant chemo-
therapy 

No 437 (33.4%) 138 (36.9%) 50 (39.4%) 
0.219 

Yes 873 (66.6%) 236 (63.1%) 77 (60.6%) 

Surgical modality 
Laparotomy 720 (55%) 279 (74.6%) 91 (71.7%) 

<0.001 Laparoscopic 
or robotic 590 (45%) 95 (25.4%) 36 (28.3%) 

Mechanical bowel 
preparation 

No 730 (55.7%) 152 (40.6%) 63 (49.6%) 
<0.001 

Yes 580 (44.3%) 222 (59.4%) 64 (50.4%) 
Intra-operative anti-
biotics 

No 205 (15.6%) 37 (9.9%) 14 (11%) 
0.01 

Yes 1105 (84.4%) 337 (90.1%) 113 (89%) 
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FIGO stage 
III, IV 436 (33.3%) 200 (53.5%) 74 (58.3%) 

<0.001 
I, II 874 (66.7%) 174 (46.5%) 53 (41.7%) 

Primary cancer 

Cervix 117 (8.9%) 38 (10.2%) 10 (7.9%) 

<0.001 
Endometrium 597 (45.6%) 120 (32.1%) 38 (29.9%) 
Ovary 503 (38.4%) 179 (47.9%) 64 (50.4%) 
Vagina 8 (0.6%) 6 (1.6%) 0 (0%) 
Vulva 85 (6.5%) 31 (8.3%) 15 (11.8%) 

Surgical complexity 
score 

Low 907 (69.2%) 193 (51.6%) 53 (41.7%) 
<0.001 Moderate 341 (26%) 119 (31.8%) 43 (33.9%) 

High 62 (4.7%) 62 (16.6%) 31 (24.4%) 

All continuous variables are described through the median and the 25th and 75th 
percentiles. Categorical variables are shown with percentages, and p values were calcu-
lated depending on the type of variable with Kruskal–Wallis for continuous and the chi-
squared or Fisher test for categorical. 

Table 2 shows accuracies in each of the three groups of patients for every method as 
well as multiclass AUROC values. The neural network approach significantly outper-
formed other methods in each of the groups (p ≤ 0.001), with a multiclass AUROC of 0.94. 
The neural network model had accuracies of 98.5% (1290/1310), 85.8% (321/374), and 
92.9% (118/127) for predicting no morbidity, minor morbidity, and major morbidity, re-
spectively. Figure 1 shows the confusion matrix for the performance of the neural net-
works as the best-performing approach. 

Table 2. Performance based on leave-one-out cross-validation. 

Machine Learning 
Methodology 

Accuracy 
No Morbidity 

Accuracy 
Minor Morbidity 

Accuracy 
Major Morbidity 

Multiclass 
AUROC 

SVM 92.3% 17.4% 9.4% 0.565 
RF 88.5% 24.9% 11% 0.581 
GB 87.3% 25.7% 15.7% 0.581 
NN 98.5% 85.8% 92.9% 0.941 
SVM—support vector machines; RF—random forest; GB—gradient boosting; NN—neural net-
works. 
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Figure 1. Heatmap of the confusion matrix of the performance of the neural networks. Shaded 
areas represent accuracy of respective true outcome. 

Analysis 2 included 24 patients with postoperative deaths and 1787 without. Table 3 
summarizes the spread of candidate predictors between the three groups. Albumin was 
once again excluded. Table 4 shows AUROC and sensitivity values at a specificity of 0.9 
for the logistic regression and SORT based on the Monte Carlo cross-validation approach. 
Logistic regression significantly outperformed SORT for both parameters (p ≤ 0.001). Fig-
ure 2 shows boxplots reflecting the AUROCs and the sensitivities at a specificity of 90% 
for the logistic regression and for SORT. Logistic regression and SORT had an AUROC of 
0.66 and 0.61, respectively, and sensitivity at a specificity of 0.9 of 0.25 and 0.22, respec-
tively. Supplementary Table S2 summarizes the final clinical features for each iteration of 
Monte Carlo cross-validation that has been used to develop the linear regression model. 
The frequency of being incorporated into the final model for each clinical feature was cal-
culated. Age, surgery involving gastrointestinal, urological, vascular, or thoracic proce-
dures, FIGO stage, ethnicity, and performance status were clinical features with the high-
est frequencies. 

Table 3. Candidate predictors of patients included in analysis 2. 

Candidate Predictors Subgroups Alive 
N = 1787 

Dead 
N = 24 

p 
Value 

Age Median (IQR) 61 (51–69) 68.5 (59.3–76) <0.001 

Ethnicity 
Non-white 624 (34.9%) 14 (58.3%) 

0.03 
White 1163 (65.1%) 10 (41.7%) 

BMI Median (IQR) 27 (23.1–32) 
28.2 (26.9–

32.9) 0.182 

ASA grade 
3, 4 402 (22.5%) 11 (45.8%) 

0.014 
1, 2 1385 (77.5%) 13 (54.2%) 

ECOG status 
4, 5 26 (1.5%) 3 (12.5%) 

<0.001 
1, 2, 3 1761 (98.5%) 21 (87.5%) 

Previous laparotomy 
No 1144 (64%) 16 (66.7%) 

0.957 
Yes 643 (36%) 8 (33.3%) 

Previous laparoscopy 
No 1384 (77.4%) 21 (87.5%) 

0.354 
Yes 403 (22.6%) 3 (12.5%) 

Pre-operative haemoglobin Median (IQR) 14.2 (12.3–126) 12.8 (10.6–
104.3) 0.025 

Pre-operative white cell 
count 

Median (IQR) 7.1 (5.7–187.4) 7.6 (6–11.9) 0.177 

Neoadjuvant chemotherapy 
No 613 (34.3%) 12 (50%) 

0.164 
Yes 1174 (65.7%) 12 (50%) 

Surgical modality 
Laparotomy 1072 (60%) 18 (75%) 

0.2 Laparoscopic or ro-
botic 715 (40%) 6 (25%) 

Mechanical bowel prepara-
tion 

No 933 (52.2%) 12 (50%) 
0.992 

Yes 854 (47.8%) 12 (50%) 

Intra-operative antibiotics 
No 252 (14.1%) 4 (16.7%) 

0.766 
Yes 1535 (85.9%) 20 (83.3%) 

FIGO stage 
III, IV 693 (38.8%) 17 (70.8%) 

0.003 
I, II 1094 (61.2%) 7 (29.2%) 

Primary cancer Cervix 165 (9.2%) 0 (0%) 0.254 
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Endometrium 741 (41.5%) 14 (58.3%) 
Ovary 736 (41.2%) 10 (41.7%) 
Vagina 14 (0.8%) 0 (0%) 
Vulva 131 (7.3%) 0 (0%) 

Surgical complexity score 
Low 152 (8.5%) 3 (12.5%) 

0.135 Moderate 1142 (63.9%) 11 (45.8%) 
High 493 (27.6%) 10 (41.7%) 

All continuous variables are described through the median and the 25th and 75th 
percentiles. Categorical variables are shown with percentages, and p values were calcu-
lated depending on the type of variable with the Wilcoxon rank-sum test for continuous 
and the chi-squared or Fisher test for categorical. 

Table 4. Comparison of logistic regression with AIC-based feature selection with SORT using Monte 
Carlo cross-validation. 

Model AUROC Sensitivity at a Specificity = 0.9 
Logistic regression 0.661 (0.602–0.704) 0.25 (0.182–0.333) 
SORT 0.614 (0.575–0.654) 0.222 (0.154–0.28) 
Note: 1000 splits into 50%:50%. 

 
Figure 2. Distribution of the AUROC and sensitivities values across 1000 splits for the logistic re-
gression and SORT. 

4. Discussion 
In this study, we present the first internally validated machine learning risk predic-

tion model that is capable of accurately predicting thirty-day postoperative morbidity and 
mortality for women undergoing major gynecological oncology surgery. The GO SOAR 
surgical risk calculator is globally applicable and consists of variables that are readily 
available across all resource settings. The model is derived and validated in a global da-
taset (seventy-three hospitals, across twenty-seven countries). 
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Within peri-operative gynecological oncology surgical practice, widely used surgical 
risk calculators include the American College of Surgeons National Surgical Quality Im-
provement Program (ACS NSQIP) and SORT. The ACS NSQIP surgical risk calculator is 
designed to predict the risk of any complication, any serious complication (defined as 
death, cardiac arrest, myocardial infarction, pneumonia, progressive renal insufficiency, 
acute renal failure, pulmonary embolus, deep venous thrombosis, return to theatre, deep 
incisional surgical space infection (SSI), organ space SSI, systemic sepsis, unplanned intu-
bation, urinary tract infection (UTI), wound disruption), seven individual postoperative 
serious complications, readmission, length of stay, and discharge to post-acute care. The 
calculator was originally developed using a regression model to determine the strength of 
the association between pre-operative variables and postoperative outcomes using data 
from 1.4 million patients at 393 NSQIP hospitals. The variables within the calculator were 
weighted based on the regression coefficient [23,24]. Data from all surgical specialties ex-
cept trauma and transplant were included in the development of the calculator. However, 
patients undergoing gynecological surgery consist of only 5.3% of the original cohort, and 
only 1.1% of the population was used to develop the discharge-to-post-acute care predic-
tion tool [23,24]. Due to the widespread use of the ACS NSQIP calculator within gyneco-
logical oncology, there have been numerous retrospective studies that have attempted to 
validate it within a gynecological oncology cohort. All of these studies, without exception, 
have found the predictive ability of the ACS NSQIP calculator in gynecological oncology 
patients to be inferior compared to its performance within a colorectal surgical cohort, 
which served as the original validation dataset for the calculator [23,25–27]. 

Attempts to validate other multi-specialty surgical risk calculators, such as the Na-
tional Surgical Quality Improvement Program Universal Surgical Risk Calculator (de-
rived from the ACS NSQIP dataset), within gynecological oncology have also shown poor 
performance and inaccurate risk predictions [23,28]. 

A major limitation of pre-existing calculators is that while they consider patient fac-
tors, there is little to no consideration of disease and surgical complexity. In part due to 
the usage of these risk calculators across multiple surgical specialties and across both on-
cological and benign settings, the incorporation of a cross-specialty surgical complexity 
score would be challenging and could not account for all the different specialty-specific 
surgeries. To overcome this limitation and improve the accuracy of risk prediction, the 
development and clinical validation of specialty-specific risk prediction calculators are 
crucial. 

The generalizability of pre-existing surgical risk prediction calculators is limited 
within resource-poor LMIC settings for multiple reasons [29]. Firstly, calculators devel-
oped require additional tests that are not routinely performed pre-operatively. For exam-
ple, the physiological and operative severity score for the enumeration of mortality and 
morbidity (POSSUM) surgical risk calculator [30] requires a blood urea nitrogen (BUN) 
entry. The pre-operative laboratory results, collected as part of our international prospec-
tive GO SOAR database, indicate that this is not a widely performed test in LMIC 
healthcare facilities. Secondly, the datasets used to validate risk calculators such as ACS 
NSQIP, SORT, and POSSUM are from HIC settings and are not representative of LMIC 
populations. Thirdly, there is a lack of robust validation of pre-existing surgical risk cal-
culators within LMIC settings. 

Strengths of our study include the development and internal validation of the first 
gynecological oncology-specific surgical risk prediction calculator. In addition, because 
the GO SOAR surgical risk prediction calculator has been derived from a large perspective 
dataset incorporating both HIC and LMIC populations, it may be used across all income 
and resource settings as the data points required are widely available pre-operatively, ir-
respective of resources and infrastructure. This will also enable individuals identified as 
being at increased risk of postoperative surgical morbidity to access pre-operative preha-
bilitation, thereby reducing disparities in surgical morbidity between HIC and LMIC set-
tings. 
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Limitations include the small number of deaths in the dataset that was used to vali-
date our model. The GO SOAR database is continuing to capture HIC and LMIC data, and 
future collected data will be used to refine our model and improve mortality prediction. 
In addition, future work is planned to externally validate the GO SOAR surgical risk cal-
culator to identify patients at low, moderate, or high risk of post-operative morbidity and 
mortality. It was not possible to compare the performance of our model’s morbidity pre-
diction to pre-existing models such as ACS NSQIP. This was due to the inability to accu-
rately match the extent of gynecological oncology surgery (particularly ovarian cancer cy-
toreduction surgeries) to the very limited gynecological surgical options available as part 
of the ACS NSQIP calculator. Mismatched selections are a key reason for the poor perfor-
mance of the ACS NSQIP calculator in the multiple retrospective studies that have at-
tempted to validate the calculator within a gynecological oncology population. 

Accurate pre-operative surgical risk predictions form the cornerstone of pre-opera-
tive counseling and informed consent. Particularly within the context of major cytoreduc-
tion surgery, where surgery and its associated complications can diminish quality of life 
and affect long-term cancer survivorship. It is important that women with gynecological 
malignancies globally are able to make informed decisions balancing cancer survival and 
quality of life following major surgery. 

5. Conclusions 
The medical complexity of surgical patients is increasing, and surgical risk calcula-

tors are a valuable tool in providing high-value, patient-centered surgical care. The GO 
SOAR surgical risk calculator outperforms the SORT surgical risk prediction calculator 
that is widely in use in gynecological oncology clinical practice. Accurate surgical risk 
calculators that can be used in both HIC and LMIC settings are important to reduce inter-
national disparities in surgical care. 
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