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Simple Summary: This study included 227 patients, among whom 27.7% (63/227) were diagnosed 
with tumors spread through air spaces (STASs), which have been shown to be associated with 
shorter recurrence-free survival and poor prognosis. A prediction model was developed to forecast 
tumor STAS in early-stage lung adenocarcinoma pathology images. The radiomics prediction model 
demonstrated good performance, with an AUC value of 0.83. This prediction model can assist 
pathologists in the diagnostic processes of clinical practice. 

Abstract: The presence of spread through air spaces (STASs) in early-stage lung adenocarcinoma is 
a significant prognostic factor associated with disease recurrence and poor outcomes. Although cur-
rent STAS detection methods rely on pathological examinations, the advent of artificial intelligence 
(AI) offers opportunities for automated histopathological image analysis. This study developed a 
deep learning (DL) model for STAS prediction and investigated the correlation between the predic-
tion results and patient outcomes. To develop the DL-based STAS prediction model, 1053 digital 
pathology whole-slide images (WSIs) from the competition dataset were enrolled in the training set, 
and 227 WSIs from the National Taiwan University Hospital were enrolled for external validation. 
A YOLOv5-based framework comprising preprocessing, candidate detection, false-positive reduc-
tion, and patient-based prediction was proposed for STAS prediction. The model achieved an area 
under the curve (AUC) of 0.83 in predicting STAS presence, with 72% accuracy, 81% sensitivity, and 
63% specificity. Additionally, the DL model demonstrated a prognostic value in disease-free sur-
vival compared to that of pathological evaluation. These findings suggest that DL-based STAS pre-
diction could serve as an adjunctive screening tool and facilitate clinical decision-making in patients 
with early-stage lung adenocarcinoma. 

Keywords: deep learning; spread through air space; lung adenocarcinoma; digital histology; whole 
slide image; pathology 
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1. Introduction 
The presence of spread through air spaces (STASs) in early-stage lung adenocarci-

noma is a significant prognostic factor associated with disease recurrence and poor out-
comes [1,2]. STAS has been reported to be a significant risk factor for recurrence in small-
sized NSCLCs treated with limited resection [3,4]. Among patients with STAS-positive T1 
lung adenocarcinoma, those treated with lobectomy have been shown to have better out-
comes than those treated with sublobar resection [3]. Traditionally, STAS detection relies 
on pathological examinations by experienced pathologists. However, the advent of artifi-
cial intelligence (AI) and deep learning offers new opportunities for automated analysis 
of histopathological images. 

Recent advancements in AI and deep learning have revolutionized medical image 
analysis, particularly in the detection, segmentation, and classification of tumor tissues in 
histological images [5–17]. Numerous studies have highlighted the efficacy of deep learn-
ing models in extracting critical information from routine pathological images, offering 
valuable clinical insights [18–26]. For instance, deep learning has been utilized for quanti-
tative image analysis to forecast disease progression patterns, prognoses, and other clini-
cal outcomes [27–31]. Despite these advancements, there remains a paucity of study spe-
cifically addressing AI-based STAS prediction using histopathological images. 

Most existing STAS prediction methods rely on radiomic features derived from com-
puted tomography (CT) imaging [32–41]. These methods, while useful, often face limita-
tions due to the complexity of feature extraction and model intricacies, which can hinder 
their effectiveness in clinical settings. 

In contrast, deep learning approaches have shown promise in capturing intricate fea-
tures within images more effectively. By employing end-to-end training, these methods 
enhance predictive capabilities and provide more accurate prognostic information [27–
31]. For example, recent studies have demonstrated the application of deep learning mod-
els to various medical imaging tasks, achieving high performance metrics. Elazab et al. 
used a combination of YOLOv5 and ResNet50 for brain tumor detection and classification 
[26]. Tsuneki et al. used the EfficientNetB1 model in their study on multi-organ adenocar-
cinoma classification [21]. These examples highlight the potential of deep learning in med-
ical image analysis. 

Given the complexity and variability of histopathological images, our study seeks to 
explore the potential of deep learning models for STAS prediction. We hypothesize that 
by analyzing complex patterns and relationships within the histopathological images, our 
model can provide a reliable prediction of STAS presence. This involves not just detecting 
the presence of certain cells or structures but understanding their distribution, morphol-
ogy, and spatial relationships. 

Although previous studies have involved artificial intelligence (AI)-based interpre-
tation of pathological slide images [5–17], AI-based STAS prediction studies are still lim-
ited. This study aims to analyze the whole slide image of pathological slides from patients 
with early-stage lung adenocarcinoma using an existing AI model to ascertain the pres-
ence of STAS. By training deep learning models on a substantial dataset of pathology im-
ages encompassing cases with and without STAS, models can be trained to discern subtle 
variances and features associated with STAS. Subsequently, these models can be deployed 
to evaluate new pathological images and provide predictions regarding the presence or 
absence of STAS. 

2. Materials and Methods 
2.1. Study Population 

We used a dataset containing 1053 cases from the “Lung Adenocarcinoma Patholog-
ical Slide Image Tumor Airway Spread Detection Competition I” (https://tbrain.trendmi-
cro.com.tw/Competitions/Details/21, accessed on 11 April 2022) as the training set for 
model development. Each case included a cropped digital pathology whole slide image 
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(WSI) in the Joint Photographic Experts Group (JPEG) format and a corresponding exten-
sible markup language (XML)-formatted STAS annotation file. The image data were col-
lected from The Cancer Genome Atlas Program (TCGA), and annotations were provided 
by the Institute of Biomedical Informatics at National Yang-Ming Chiao Tung University. 
The testing data were collected between January 2017 and December 2017 during lung 
resections performed on 630 patients at the National Taiwan University Hospital for lung 
cancer treatment; 399 patients were diagnosed with adenocarcinoma. Digital pathology 
WSI was used to capture pathological hematoxylin and eosin-stained permanent section 
slides from 227 patients diagnosed with stage I lung adenocarcinoma. Staging was per-
formed according to the 8th edition of the American Joint Committee on Cancer (AJCC) 
criteria for lung cancer. After surgery, the patients underwent regular chest computed to-
mography scans at 6-month intervals for follow-up evaluations. This retrospective study 
was approved by the Research Ethics Committee of NTUH (protocol code 
202207035RIND; date of approval: 14 July 2023), and the requirement for informed patient 
consent was waived. 

2.2. Pathological Data Review 
Hematoxylin and eosin-stained slides of 227 resected stage I lung adenocarcinomas 

were reviewed by two experienced thoracic pathologists (M. S. H. and H. W. H.). The 
histological features, including STAS, were evaluated based on the 2021 World Health Or-
ganization (WHO) classification of thoracic tumors [19]. STAS was defined as the spread 
of tumor cells beyond the main tumor edge into the air spaces, the presence of STAS tumor 
cells in at least one airspace beyond the tumor edge, and the presence of tumor cell nests 
in multiple airspaces. Artifacts were identified as randomly situated clusters of tumor cells 
at the edge of the tissue section, lack of continuous spread in airspaces, normal benign 
pneumocytes or bronchial cells, and linear strips of cells detached from alveolar walls [42]. 
Histological grading followed the 2021 WHO classification criteria [42,43], categorizing 
tumors into grade 1 (lepidic-predominant with <20% high-grade patterns), grade 2 (acinar 
or papillary-predominant with <20% high-grade patterns), and grade 3 (tumors with ≥20% 
high-grade patterns). Digital pathology images were scanned using the Hamamatsu 
NanoZoomer S360 Digital Slide Scanner (Shizuoka, Japan) at ×40 magnification. 

2.3. Pathological Spread Through Air Space (STAS) Prediction Model Development 
The overall model development procedure consisted of (1) preprocessing of the test-

ing data, (2) STAS candidate detection, (3) false-positive reduction, and (4) patient-based 
STAS prediction. In the preprocessing step, the digital pathology WSI data were magni-
fied and cropped to the same size to normalize the attributes of the input image. Subse-
quently, the STAS candidate detection model was trained to detect the potential candidate 
area that could be a tumor cell spread into the airspace. To select promising candidates 
belonging to the STAS, a false-positive reduction model was trained to remove low-confi-
dence candidates. The selected candidates were integrated to predict the patient’s STAS 
presence. A flowchart is shown in Figure 1. 
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Figure 1. Framework for predicting tumor spread through air space (STASs) in early-stage lung 
adenocarcinoma. Summary of the analysis procedure: (1) Utilizing YOLOv5 for STAS detection 
training, with an image size of 1716 × 942, totaling 4212 images. (2) Cropping external test data to 
match the training data size, comprising 227 patients and 5800 images. (3) Further categorizing the 
detection results into STAS tumor positives/negatives using ResNet-18. (4) Evaluating the perfor-
mance of the STAS tumor detection model with confidence > 0.5 as the criterion. 

2.3.1. Image Preprocessing 
The training image provided by the competition was zoomed in and cropped to 20x 

magnification and 1716 × 942 pixels from the WSI, respectively. The digital pathology test 
images obtained from the NTUH were the original WSI scanned using a Hamamatsu 
NanoZoomer S360 digital slide scanner (Shizuoka, Japan). Therefore, to normalize the at-
tributes of the images across the two cohorts, an image preprocessing method is proposed 
in this study. Specifically, the original WSI of the testing set is first zoomed in at 20x mag-
nification. Subsequently, the zoomed-in WSI is partitioned into several non-overlapping 
patches with an image size of 1716 × 942 pixels, matching the image attributes of the train-
ing set. Eventually, 24,995 patches are produced from 227 cases. 

2.3.2. Spead Through Air Space (STAS) Candidate Detection 
Subsequent to image preprocessing, the training data were applied to train a deep 

learning model for detecting the conditions that could potentially indicate a cell spreading 
into the air. Given that You Only Look Once version 5 (YOLOv5) is characterized by rapid 
inference speed and high accuracy in object detection, it is currently a widely accepted 
detection model for object detection [44–48]. Thus, this study applied YOLOv5 for prelim-
inary detection of STAS candidates using digital pathology images. Specifically, the digital 
pathology images (1716 × 942 pixels) are forwarded to the trained YOLOv5 to predict the 
STAS candidate bounding box, which is represented by the upper-left coordinates (x, y), 
width, and height. In the YOLOv5 training process, the original YOLOv5 loss function 
[44–48] is applied to guide the gradient update. A stochastic gradient descent optimizer 
was used at an initial learning rate of 0.01. Furthermore, the model training was stopped 
early when no further improvement in the validation loss was detected within 100 contin-
uous epochs. Within the epoch limit, the model with the lowest validation loss was saved 
as the best model for cross-validation. The other training parameters were set as follows: 
batch size, 16; L1 regularization penalty term, 1 (fully connected layer). Our model was 
trained using Python (version 3.8), PyTorch (version 2.0.0), and PyTorch-Cuda (version 
11.7) on an Ubuntu server with two Quadro RTX 3090 ti (NVIDIA Corporation, Santa 
Clara, CA, USA) graphic processing units. 

2.3.3. False-Positive Reduction 
After the YOLOv5 model detected candidates from digital pathology images, low-

confidence candidates were further excluded to reduce false positives. To achieve a false-
positive reduction, a ResNet-18 [49] model was applied to predict low- or high-confidence 
candidates. Specifically, for model training, the detected candidate area was first resized 
to 128 × 128 pixels using bilinear interpolation. The resized candidates and their corre-
sponding pathological ground truths were then applied to train ResNet-18 to predict 
whether the candidates had high STAS confidence or not. During the testing process, the 
same process was applied to predict the STAS confidence for each candidate. Once the 
confidence was predicted, this study applied a cut-off value of 0.5 to classify the strong-
confidence candidates (≥0.5) from low-confidence candidates (<0.5). In the training pro-
cess of ResNet-18, a loss function called CrossEntropyLoss was used to guide the gradient 
updates. The Adam optimizer was utilized with an initial learning rate of 0.001, and the 
model with the lowest validation loss was saved as the best model for cross-validation. 
The other training parameters were set as follows: batch size, 8; epochs, 30. The model 
was trained on the same software environment and Ubuntu server as YOLOv5. 
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2.3.4. Patient-Based Spread Through Air Space (STAS) Prediction 
Once the candidates were selected by false-positive reduction, the low-confidence 

candidates were excluded; however, several strong-confidence candidates might still be 
included in a digital pathology image. Therefore, an integration method is required to 
aggregate these candidate results to finally identify the presence of STAS in a patient 
(hence termed patient-based STAS prediction). In this study, we propose an averaging 
method to aggregate the results of the candidates. Specifically, the confidence values for 
all high-confidence candidates within a digital pathology image are averaged into a value 
indicating patient-based confidence. The average confidence is then applied as the final 
predictor for patient-based STAS prediction.  

2.4. Correlation Analysis between Histological Grades and Model Prediction 
Given the strong correlation between STAS and high histological grades [50–54], this 

study also investigated whether predicted confidence correlates with histological grades. 
In other words, we were interested in determining whether the higher the patient’s histo-
logical grade, the more candidates would be detected with strong confidence. To explore 
this correlation, patients were divided into three histological grades based on the latest 
grading system [40]. The distribution of low- and high-confidence candidates was calcu-
lated for each histological grade. Statistical methods were then applied to assess any sig-
nificant differences in candidate distribution across the histological grades. 

2.5. Statistical Analyses 
Patient characteristics, pathological features, and peri-operative outcomes were ana-

lyzed using descriptive statistics. Categorical variables were presented as counts and per-
centages, while continuous variables were expressed as mean ± standard deviation. 
Kaplan–Meier survival curves were used to evaluate disease-free and overall survival. 
Two-sample t-tests compared the average confidence levels between patients with and 
without STAS. The chi-square test was employed to compare the distribution of low- and 
high-confidence candidates across histological grades. Statistical analyses were per-
formed using IBM SPSS Statistics for Mac (version 25.0), with significance set at p < 0.05.  

3. Results 
3.1. Patient Demographics and Clinicopathological Characteristics 

A total of 227 patients were enrolled in this study. Table 1 presents an overview of 
patient demographics and clinicopathological features. The majority of our study cohort 
consisted of females (64.8%), and a significant proportion were non-smokers (83.3%). The 
mean age of the patients was 61.1 years. Among stage I patients, T1a lesions were predom-
inant, accounting for 62.1% of the cases. The mean tumor size was 1.7 ± 1.0 cm. Sublobar 
resection was performed in 145 (63.9%) patients. Overall, 63 specimens (27.7%) exhibited 
STAS. In terms of tumor histological grading, 60 cases (26.4%) were grade 1, 126 cases 
(55.5%) were grade 2, and 32 cases (14.1%) were grade 3. 

Table 1. Demographic and clinical features. 

 N = 227 
Age (year) 61.1 ± 10.5 

Gender  
Female 147 (64.8%) 
Male 80 (35.2%) 

Smoking history  
Smoker 38 (16.7%) 

Non-smoker 189 (83.3%) 
Tumor size (cm) 1.7 ± 1.0 
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T stage  
T1a 141(62.1%) 
T1b 31 (13.7%) 
T2a 47 (20.7%) 

Location  
RUL 82 (36.1%) 
RML 19 (8.4%) 
RLL 34 (15.0%) 
LUL 58 (25.6%) 
LLL 32 (14.1%) 

Surgical procedure  
Lobectomy 82 (36.1%) 

Sublobar resection 145 (63.9%) 
Post-operative hospital stay (days) 4.1 ± 4.9 

Complication  
Chylothorax 2 (0.9%) 
Air leakage 1 (0.4%) 

Atrial fibrillation 1 (0.4%) 
STAS  

Present 63 (27.7%) 
Absent 164 (72.3%) 

Histological grading  
1 60 (26.4%) 
2 126 (55.5%) 
3 32 (14.1%) 

Values are presented as n (%) or mean ± standard deviation. LUL, left upper lobe; LLL, left lower 
lobe; STAS, spread through the air space; RUL, right upper lobe; RML, right middle lobe; RLL, right 
lower lobe. 

3.2. Peri-Operative Outcomes and Survival Analysis 
No surgical mortalities occurred within 30 days. The average hospital stay after the 

operation was 4.1 ± 4.9 days. Two patients developed post-operative chylothorax. All the 
patients recovered with a low-fat diet and adequate chest tube drainage. One patient de-
veloped prolonged air leakage and atrial fibrillation after the surgery. The patient was 
discharged on post-operative day 18 with extended chest tube drainage and antiarrhyth-
mic medications. The overall complication rate was 1.3%. 

We conducted an analysis of disease-free survival and overall survival in patients 
with and without STAS, as interpreted by pathologists. Figure 2 illustrates the statistically 
significant decline in disease-free survival among patients with STAS (p = 0.01). However, 
there was no significant difference in overall survival between the two groups. 
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Figure 2. (A) Kaplan–Meier curves of disease-free survival and (B) overall survival of the STAS(+) 
group and STAS(−) group. 

Figure 3 illustrates a remarkable reduction in disease-free survival among patients 
who underwent sublobar resection in the STAS-positive group compared to the STAS-
negative group (p < 0.001). However, among patients who underwent lobectomy, there 
was no significant difference in the DFS between the STAS-positive and STAS-negative 
groups (p = 0.22). 

 
Figure 3. Kaplan–Meier curves of disease-free survival in the (A) sublobar resection and (B) lobec-
tomy in the STAS(+) group and STAS(−) group. 

3.3. Performance of Pathological Spread Through Air Space (STAS) Prediction Model and 
Correlation Results between different histological grades 
Confidence and Histological Grades 

In the testing set, STAS tumor prediction achieved an AUC of 0.83 (Figure 4A), an 
accuracy of 72% (163 of 227), and a specificity of 63% (111 of 163) while operating with a 
sensitivity of 81% (52 of 64; threshold of 0.30) (Table 2). Previous experimental results can 
be found in the Supplementary Materials. Furthermore, as shown in Figure 5B, the aver-
age confidence level of patients with STAS was significantly higher than that of patients 
without STAS (p < 0.001).  
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Figure 4. (A) Receiver operating characteristic curves (ROCs) for STAS prediction by the proposed 
method in the testing cohort (n = 227). (B) Distribution of predicted average confidence between 
patients with STAS positives and without STAS (STAS negatives). AUC, area under the ROC curve; 
STAS, spread through air space.  

Table 2. Performance of STAS detection model. 

Methods Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC (%) 
Proposed 

model 
72 (163/227) 81 (52/64) 68 (111/163) 50 (52/104) 90 (111/123) 83 

The accuracy, sensitivity, specificity, PPV, NPV, and AUC are all presented as percentages. PPV: 
positive predictive value; NPV: negative predictive value; AUC: area under the receiver operating 
characteristic curve. 

In the correlation analysis between confidence and histological grade (Table 3), there 
were 9498 candidates detected in grade 1, 35,296 in grade 2, and 11,698 in grade 3. For 
grade 1, 21% (1962/9498) of the candidates were strong-confidence candidates, 36% 
(12,842/35,296) were grade 2 candidates, and 51% (5934/11,698) were grade 3 candidates. 
Based on the statistical test, the results indicated that the proportion of strong-confidence 
candidates was significantly lower in grades 2 (p < 0.001) and 1 (p < 0.001) than in grade 3. 

Table 3. Comparative analysis of tumor histological grades. 

Histological Grades † Number of  
Detection Candidates  

Number of  
Strong-Confidence Candi-

dates * (%) 

Number of 
Low-Confidence Candi-

dates * (%) 
p-Value ** 

Grade 1 (60/227) 9498 21 (1962/9498) 79 (7536/9498) <0.001 
Grade 2 (126/227) 35,296 36 (12,842/35,296) 64 (22,454/35,296) <0.001 
Grade 3 (32/227) 11,698 51 (5934/11,698) 49 (5764/11,698) reference 

The detection candidate confidence numbers are presented as percentages. * Data with confidence 
values greater than 0.5 are considered strong confidence candidates. Conversely, for data with con-
fidence values less than 0.5, they are considered as low-confidence candidates. ** These statistics 
were calculated using the chi-square test and compared with grade 3. † There were nine patients 
without a completed pathological report; they were excluded from this correlation analysis. 

3.4. Survival Analysis Based on Artificail Intelligence (AI) Pathological Feature Analysis 
The developed AI model was applied to our patient cohort. Figure 5 presents a com-

parison of disease-free survival and overall survival between the AI-predicted STAS-pos-
itive and STAS-negative groups. We observed a significant reduction in disease-free sur-
vival in the AI-predicted STAS-positive group (p = 0.005); however, there were no signifi-
cant differences in overall survival (p = 0.921). 
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Figure 5. (A) Kaplan–Meier curves of disease-free survival and (B) overall survival of the AI-pre-
dicted STAS(+) group and STAS(−) group. 

As shown in Figure 6, the AI-predicted STAS-positive group displayed a significantly 
worse disease-free survival when undergoing sublobar resection (p = 0.007). However, 
there were no significant differences in disease-free survival among this group when they 
underwent lobectomy (p = 0.22). 

 
Figure 6. Kaplan–Meier curves of disease-free survival in the (A) sublobar resection and (B) lobec-
tomy in the AI-predicted STAS(+) group and STAS(−) group. 

A comparison between the presence or absence of the STAS and the AI prediction 
results is shown in Figure 7. It can be observed that AI predictions for DFS in cases with 
and without STAS were similar to the pathological results. Moreover, DFS was worse in 
cases predicted by AI to have no STAS than in those predicted to have STAS, mirroring 
the pathological findings. Overall, there were no significant differences among the four 
groups. 
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Figure 7. (A) Kaplan–Meier curves of disease-free survival and (B) overall survival between STAS 
present group, STAS absent group, AI-predicted STAS(+) group and STAS(−) group. 

4. Discussion 
Previous studies have consistently reported that the presence of STAS in early-stage 

lung adenocarcinoma is associated with a higher risk of disease recurrence [55]. Our co-
hort also demonstrated similar results, as STAS was a significant factor associated with 
shorter disease-free survival (p = 0.01) but did not affect overall survival. Again, in agree-
ment with previous research [3], our study showed that STAS was a significant factor for 
shorter disease-free survival only in patients undergoing sublobar resection and not in 
those who underwent lobectomy.  

Detecting STAS requires experienced pathologists who are well versed in the diag-
nostic criteria for true STAS and who meticulously examine tumor borders on all HE-
stained slides. The development of an AI model as a screening tool for STAS detection 
would be intriguing. Currently, most research is focused on using AI to analyze patients’ 
computed tomography radiomic data and predict STAS presentation [35,56-58]. These 
studies reported prediction AUCs ranging from 0.75 to 0.84 and accuracies between 0.74 
and 0.81 [2,32,33,50,51]. Our study could potentially be the first to employ an AI model 
that predicts STAS based on digital pathological slide images. Our AI model achieved an 
AUC of 0.83 in predicting STAS, with a sensitivity of 81% and a specificity of 63%. The 
accuracy was 72% (163 of 227), which is comparable to the prediction values reported in 
previous studies based on radiomics data. 

The AI model in this study gave each case hundreds of STAS candidates with low 
and strong confidence. These candidates outnumbered the true STAS defined by strict 
pathological criteria, and most of these candidates did not fulfill the strict pathological 
criteria of STAS. Cases with stronger confidence candidates were more likely to be STAS-
positive. By highlighting candidates with strong confidence in STAS on WSI, we believe 
that our AI model can serve as a screening tool for pathologists. 

Importantly, the AI-predicted STAS-positive and STAS-negative groups showed re-
markably similar results in disease-free survival and overall survival compared with the 
results of the pathologically defined STAS-positive and STAS-negative groups. The AI-
predicted STAS-positive group had significantly shorter disease-free survival only in 
those who underwent sublobar resection. These findings suggest that our AI model is a 
valuable tool for predicting the prognosis of patients with stage I lung cancer. This can 
facilitate thoracic surgeons in tailoring post-operative treatment plans for patients. 

This study had some limitations. Firstly, the AI model could only select candidates 
for STAS, and most of these candidates were not true STAS. More effort may be required 
to annotate each STAS nest in the testing set to improve the AI model. Additionally, train-
ing the model requires a large amount of data, and the available public datasets mainly 
provide images in JPEG format. Therefore, under these constraints, we chose to use JPEG 
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images. However, using JPEG images may affect the results of image analysis, especially 
when applying deep learning algorithms, as JPEG compression reduces high spatial fre-
quency information, which could be crucial for capturing subtle features. 

Secondly, our AI model cannot identify tumor borders, and many candidates are lo-
cated within the tumor. These candidates represent high-grade tumor patterns, such as 
micropapillary nests formed by tumor cells in glandular structures. Correlation analysis 
indicates that the proportion of strongly confident candidates is significantly higher in 
patients with grade 3 tumors than in those with grade 2 or 1 tumors. This result is con-
sistent with previous reports, showing a strong correlation between histological grade 3 
adenocarcinoma and STAS. This result is consistent with previous reports showing a 
strong correlation between histological grade 3 adenocarcinoma and STAS [18,28–30]. 

Thirdly, the testing cohort includes patients with stage I lung adenocarcinoma. Fur-
ther studies are needed to determine whether this AI model has the same AUC for stage 
II–IV lung adenocarcinoma. The statistical power of this study is somewhat limited, pos-
sibly due to the small sample size. Furthermore, the effects of the different types of digital 
pathology WSI are unknown.  

In summary, the application of the developed AI model for the prediction of STAS to 
the research cohort yielded an AUC of 0.83 and an accuracy of 72%. The AI model also 
predicted the disease-free survival of patients with state-I lung adenocarcinoma. The re-
sults of disease-free and overall survival between STAS-positive and STAS-negative 
groups were similar between the pathologically defined and AI-predicted groups. This 
underscores the reliability of the model as a valuable tool for aiding clinicians in treatment 
decision-making.  

5. Conclusions 
We employed deep learning techniques to create a predictive model to identify the 

presence of STAS on pathological slides. This model has the potential for practical clinical 
applications, aiding both thoracic surgeons and pathologists in making informed deci-
sions regarding treatment selection. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/xxx/s1, Table S1. A comprehensive review of recent studies on predicting 
spread through air spaces (STAS) using CT imaging; Table S2. review and synthesis of literature on 
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