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Simple Summary: Multidisciplinary treatment, including surgery, chemotherapy, or
chemoradiotherapy, which are individualized based on the tumor progression, is used
for esophageal cancer (EC) management. A novel testing modality for monitoring tu-
mor burden throughout treatment is required to perform this individualized treatment.
Liquid biopsy has recently become popular because conventional tests, such as upper
gastrointestinal endoscopy and computed tomography (CT), are insufficient to evalu-
ate minimal residual diseases. It requires taking a small body fluid sample and testing
it for circulating tumor DNA (ctDNA), microRNA (miRNA), or circulating tumor cells
(CTCs). Liquid biopsy may help predict EC prognosis and recurrence, stratify high-risk
populations, and determine cases with complete responses to preoperative treatment. Ad-
ditionally, it may determine the suitability for postoperative chemotherapy and conversion
surgery. The potential of liquid biopsy to enhance treatment decisions will drive further EC
treatment advancements.

Abstract: Esophageal cancer (EC) is one of the leading causes of cancer-related deaths
globally. Surgery is the standard treatment for resectable EC after preoperative chemora-
diotherapy or chemotherapy, followed by postoperative adjuvant chemotherapy in certain
cases. Upper gastrointestinal endoscopy and computed tomography (CT) are predom-
inantly performed to evaluate the efficacy of these treatments, but their sensitivity and
accuracy for evaluating minimal residual disease remain unsatisfactory, thereby requiring
the development of alternative methods. In recent years, interest has been increasing in
using liquid biopsy to assess treatment responses. Liquid biopsy is a noninvasive technol-
ogy for detecting cell components in the blood and other body fluids. It involves collecting
a small sample of body fluid, which is then analyzed for the presence of components,
including circulating tumor DNA (ctDNA), microRNA (miRNA), or circulating tumor cells
(CTCs). Further, ctDNA and miRNA are analyzed with various techniques, including
digital polymerase chain reaction (dPCR) and next-generation sequencing (NGS). CTCs are
isolated by determining surface antigens using immunomagnetic techniques or by filtering
the blood according to cell size and rigidity. Several studies indicate that investigating
these materials helps predict EC prognosis and recurrence and possibly stratifies high-
risk groups. Liquid biopsy may also apply to the selection of cases that have achieved a
complete response through preoperative treatment to prevent surgery and preserve the
esophagus, as well as identifying the suitability of postoperative chemotherapy and the
timing of conversion surgery for unresectable EC. The potential of liquid biopsy to enhance
treatment decisions will further advance EC treatment.
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1. Introduction
Esophageal cancer (EC) is the 11th most prevalent cancer and the seventh leading

cause of cancer-related deaths in the world [1]. A total of 511,054 new EC cases were
reported globally in 2022, with 445,391 deaths from the condition [1]. Adenocarcinoma,
which primarily originates in Barrett’s esophagus, is the most prevalent histological type
of EC in Western countries. In contrast, squamous cell carcinoma accounts for most cases
in Asia [2]. The incidence and mortality have not significantly improved globally, and the
prognosis remains poor [3].

Endoscopy, surgery, radiation therapy (RT), and chemotherapy are used for EC treat-
ment. Endoscopic submucosal dissection is performed to manage early-stage EC, and
surgery or chemoradiotherapy is considered when endoscopic resection is contraindi-
cated [3]. Patients who are eligible for surgery receive neoadjuvant chemotherapy (NAC)
and chemoradiotherapy (NACRT), followed by postoperative adjuvant chemotherapy
based on their status (Figure 1). Unresectable EC is administered with systemic chemother-
apy. Multidisciplinary treatment for EC has been individualized according to the tumor
progression. Various testing modalities, such as computed tomography (CT), endoscopy,
and positron emission tomography (PET), have been used to evaluate the tumor burden
during treatment. However, their accuracy remains unsatisfactory [4,5]. Recently, liquid
biopsy has become popular as a new diagnostic technique, and its importance is increas-
ing [6]. This review investigates the progress and present status of various treatments,
particularly surgery and perioperative therapy as well as addresses liquid biopsy, a new
testing modality, and its potential use in multidisciplinary EC treatment.
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2. Multidisciplinary Treatment for Resectable EC
2.1. Surgery

The first successful thoracic EC surgery was conducted by Torek [7]. Three-field lymph
node dissection (3FD), including cervical and superior mediastinal dissection, has been
recognized as an option for thoracic EC treatment since the 1980s [8]. The development
of minimally invasive surgery was initiated after Cuschieri reported the world’s first
thoracoscopic esophagectomy [9]. Takeuchi released the results of JCOG1409, a phase
3 trial that compared thoracoscopic esophagectomy with open esophagectomy for thoracic
EC [10]. The data indicated noninferiority in overall survival (OS) (hazard ratio [HR]:
0.64, 98.8% confidence interval [CI]: 0.34–1.21, one-sided p = 0.000726). Robot-assisted
esophagectomy has swiftly grown in popularity globally since Bodner described the first
case of esophagectomy with da Vinci [11]. Chao demonstrated the effectiveness of robot-
assisted esophagectomy in the REVATE trial, and further results are likely in the future [12].
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2.2. Perioperative Treatment

INT113 and OEO2 trials first exhibited the efficacy of NAC [13–15]. The JCOG9204
and the JCOG9907 trials in Japan established preoperative CF (cisplatin +5-fluorouracil
[5-FU]) therapy plus surgery as the standard treatment for esophageal squamous cell carci-
noma (ESCC) [16,17]. NAC for esophageal adenocarcinoma (EAC) and esophagogastric
junction carcinoma has been extensively established in Western countries. Preoperative
ECF (epirubicin + cisplatin + 5-FU) therapy became the standard treatment for EAC in the
United States (US) and Europe after the MAGIC trial [18]. ECF was subsequently replaced
with FLOT (docetaxel + oxaliplatin + 5-FU/leucovorin) based on the FLOT-4 trial [19].

NACRT was developed concurrently with NAC in Western societies. The CROSS
trial was the first randomized controlled trial of NACRT for EC. This trial revealed that
the NACRT group outperformed the surgery-alone group in terms of the pathological
complete response (pCR) rate and OS, and the CROSS regimen (carboplatin + paclitaxel +
41.4 Gy) was determined as the optimal therapy for NACRT [20].

POET [21], Neo-AEGIS [22], and ESOPEC [23] are trials that compared NAC with
NACRT. In particular, the ESOPEC trial, which compared the FLOT and the CROSS regimen,
revealed that the FLOT group demonstrated a better 3-year OS than the CROSS group,
indicating that NAC may be more beneficial than NACRT [23]. These were all trials on
EAC, whereas the JCOG1109 trial in Japan compared CF, DCF (docetaxel + cisplatin +
5-FU), and CF + radiotherapy (CF + RT) as NAC for ESCC, revealing 5-year survival rates
of 51.9%, 65.1%, and 60.2%, respectively [24]. The result indicated that neoadjuvant DCF
has overtaken CF as the standard treatment in Japan. The JCOG1109 and ESOPEC results
are considered a significant step toward conventional therapy in the US and Europe, where
NACRT is predominantly used. These may cause a paradigm shift in the future, with
chemotherapy administered first and RT reserved for recurrence and other situations.

The CheckMate-577 trial investigated the efficacy and safety of nivolumab as an
adjuvant therapy in individuals who underwent an esophagectomy after NACRT [25]. The
nivolumab group demonstrated better disease-free survival in this trial; thus, adjuvant
nivolumab became the norm in Western countries. The JCOG2206 study in Japan is being
conducted to evaluate the add-on efficacy of nivolumab and S-1 in patients with ESCC who
underwent esophagectomy following NAC but did not achieve pCR [26]. Furthermore,
several other trials on perioperative treatment are currently ongoing globally, namely
JCOG1804E, which explores the effect of nivolumab on neoadjuvant CF, DCF, and FLOT,
with many more pivotal studies anticipated to appear [27–29].

3. Liquid Biopsy
Several perioperative treatments have been developed for resectable EC, and their

efficacy has been identified via upper gastrointestinal endoscopy or computed tomography
(CT). However, the accuracy and precision of these conventional modalities are unsatisfac-
tory, particularly in diagnosing minimal residual disease (MRD). Kermani revealed that
endoscopic observation after preoperative chemoradiotherapy for EC exhibited positive
and negative predictive values for pCR of 64.2% and 75%, respectively, and concluded
that this approach was insufficient for evaluating treatment efficacy [4]. Van Rossum’s
systematic review indicated that the sensitivity and specificity of endoscopic biopsies after
NACRT were 34.5% (95% CI: 26.0–44.1%) and 91.0% (95% CI: 85.6–94.5%), respectively,
making the use of endoscopy to predict pCR questionable [30]. Similar studies have been
conducted with CT with 33–55% sensitivity and 50–71% specificity for assessing tumor
response after NACRT [31,32]. Furthermore, Alfieri utilized CT to evaluate changes in
tumor volume, with sensitivity and specificity of 56% and 93%, respectively, indicating
its limited role [5]. The need for a new technology to replace the predominantly used



Cancers 2025, 17, 196 4 of 15

endoscopy and CT has been developed, and liquid biopsy has drawn attention. Liquid
biopsy is a technique to collect and evaluate tumor-related substances from body fluids,
including blood and urine [33]. It is less invasive than traditional tissue biopsy and is
repeated several times, enabling tumor status evaluation over time.

The history of liquid biopsy began in 1869 when Ashworth discovered circulating
tumor cells (CTC) in the blood of corpses [34]. Mandel and Metais discovered cell-free
DNA (cfDNA) in blood in 1948, and Stroun revealed circulating tumor DNA (ctDNA)
in 1989 [35,36]. Alix-Panabières and Pantel coined the phrase “liquid biopsy” in 2010 to
describe the methodology for CTC [37]. However, the term has appeared to refer to all
tumor-derived compounds in the body fluid, including ctDNA, microRNA (miRNA), and
CTC. In recent years, analyzing these components in patients with EC has enabled a more
accurate treatment efficacy evaluation and prognosis and recurrence prediction.

3.1. Circulating Tumor DNA

cfDNA is DNA released into body fluids due to cell apoptosis or necrosis, whereas
ctDNA is DNA derived from tumor cells [33]. ctDNA is primarily fragmented DNA with
<200 base pairs and a short half-life of 1–2 h, which is assumed to represent the tumor status
in real time. ctDNA is frequently determined in <0.1% of cfDNA, and several analytical
procedures have been established [38].

The most predominant methods for detecting ctDNA are digital polymerase chain
reaction (dPCR) and next-generation sequencing (NGS). PCR is a process for denaturing
target DNA, adding primers, and amplifying it. However, the amplified DNA is measured
while in a plateau state; thus, variations in reaction speed cause differences in the results.
Hence, the DNA sample in dPCR is divided into hundreds of wells, with the reaction
taking place in each well. The presence of amplification in each well is assessed following
the response. Wells with amplification are counted as positive, whereas those without
amplification are counted as negative, indicating the absence of target DNA [39]. dPCR
technologies involve droplet dPCR (ddPCR) and beads, emulsion, amplification, and mag-
netics (BEAMing). ddPCR splits DNA samples with oil droplets rather than microfluidic
plates or chips, and it detects genomic products as little as 0.01% [33,40]. BEAMing is a
technology that combines dPCR with flow cytometry [41]. This approach detects ctDNA
with a similar sensitivity to ddPCR [33,41].

NGS simultaneously sequences thousands or millions of DNA and RNA molecules [42].
The first step is generating a DNA library by randomly adding adapter sequences to the
DNA fragments. DNA linkers are hybridized with adapters to amplify each DNA frag-
ment [43]. Several approaches have been established for NGS assays. Cancer personalized
profiling by deep sequencing (CAPP-Seq) detects and quantifies genetic mutations by hy-
bridizing a biotinylated oligonucleotide, “a selector”, to a target gene [44]. Tagged-amplicon
deep sequencing (Tam-Seq) is a type of amplicon analysis that involves PCR-amplified
target genes [45]. In this approach, the target gene is amplified with a single-plex reaction,
the adapter and barcode sequences are then added to the amplicon, and PCR is repeated
before sequencing [45]. Targeted sequencing, including CAPP-seq and Tam-seq, is rel-
atively affordable and requires a short turnaround time (TAT). However, they require
identifying the area of interest. The cost of NGS has decreased in recent years; thus, more
thorough analyses, such as whole-exome sequencing and whole-genome sequencing, are
becoming popular.

Several studies have been conducted in EC because ctDNA is relatively simple to
isolate. Our group investigated postoperative ctDNA from ESCC with panel sequencing
and revealed that ctDNA was related to the pathological response to NAC [46]. Patients
who failed NAC demonstrated a greater ctDNA positivity rate than those who responded
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well. Furthermore, the postoperative ctDNA-positive group exhibited worse recurrence-
free survival (RFS) than the negative group (1-year RFS rate: 0% vs. 90%, HR: 16.9, 95%
CI: 1.92–149.4, p = 0.0008) [46]. This was consistent with EAC, where Ococks evaluated
postoperative ctDNA and revealed that 90% of ctDNA-positive patients relapsed postoper-
atively [47]. Cancer-specific survival was substantially worse in the ctDNA-positive group
than in the negative group [47]. Azad investigated ctDNA with CAPP-seq in patients
with EC treated with CRT and revealed that the ctDNA-positive group demonstrated a
worse prognosis [48]. He also reported a median ctDNA fraction of 0.07%, concluding that
ctDNA analysis requires a very sensitive testing technology [48]. Chen conducted CRT with
toripalimab, an anti-PD-1 antibody, on patients with ESCC and assessed ctDNA during and
after the treatment [49]. The results indicated that the ctDNA-negative group exhibited a
significantly higher clinical complete response (CR) rate. Additionally, the ctDNA-positive
group demonstrated a worse prognosis than the ctDNA-negative group [49].

Several studies have demonstrated that ctDNA helps identify treatment efficacy and
prognosis in EC, but numerous issues have been raised, including the possibility of false neg-
atives in cases with low tumor burden and false positives because of clonal hematopoiesis
of indeterminate potential (CHIP) [50,51]. A meta-analysis reported that the sensitivity and
specificity of ctDNA for diagnosing EC were 71.0% and 98.6%, respectively [52]. However,
regarding ctDNA in the case of low tumor burden, Iwaya reported that the positive rate
of ctDNA was 14.3% in stage I ESCC, while it was 85.2% in stage II or higher [53]. Multi-
ple studies have addressed these concerns with a tumor-informed approach, employing
validation to match ctDNA in the blood with DNA from the tumor tissue. This method
will generate more sensitive results because it utilizes liquid biopsy to target the muta-
tions that are already found in tissue DNA. Signatera, which is the first assay to adopt
the tumor-informed approach, has already been used for various cancers. In particular,
Reinert’s study of postoperative ctDNA in colorectal cancer indicated that the sensitivity
and specificity for recurrence were 88% and 98%, respectively, indicating remarkably high
values [54]. Furthermore, Kasi claimed that ctDNA is modified by methylation signals in
the blood and emphasized the use of a tumor-informed approach [55]. The tumor-informed
approach has the disadvantage of longer TAT compared with blood analysis alone, but it
may be highly effective, and more evidence is expected in the future [42].

3.2. CTC

CTC is a cancer cell that enters the bloodstream after passing through the basement
membrane from the epithelium [56]. CTCs are hypothesized to contribute to cancer metas-
tasis [57]. CTCs in the blood indicate that the cancer has advanced. They are present in
very small numbers, ranging from a few to tens per milliliter of blood; thus, it is crucial
in analysis to isolate CTCs from other blood cells [58]. Immunomagnetic and physical
techniques are two primary approaches for detecting CTCs.

The immunomagnetic technique is predominantly used to isolate CTCs. This technique
takes advantage of the immunological properties of CTCs and blood cells. CellSearch [59],
MagSweeper [60], AdnaTest [61], and CTC-chip [62] are well-known systems, with
CellSearch being the only Food and Drug Administration-approved device for CTC anal-
ysis. CellSearch detects CTCs by capturing a marker known as epithelial cell adhesion
molecule (EpCAM), which is found in epithelial cells, utilizing an antigen–antibody reac-
tion with magnetic beads covered in antibodies [59]. AdnaTest aims to enhance sensitivity
using antibodies against epithelial cell markers other than EpCAM [61], whereas CTC-chip
utilizes microposts instead of magnetic beads [62]. These immunomagnetic techniques
have helped predict the prognosis of some malignancies. However, cancer cells that lose
EpCAM expression due to epithelial–mesenchymal transition (EMT) through invasion into
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the blood are difficult to identify as CTCs [63]. Systems with an antibody against CD45, a
leukocyte surface antigen, have been developed in recent years to isolate CTCs indirectly
(negative selection) to address this issue [64].

Physical approaches take advantage of CTCs being bigger, denser, and more rigid
than blood cells [58]. In particular, isolation by size of epithelial tumor cells (ISET) [65] and
ScreenCell [66] collect CTCs with membrane filters. Ficoll and OncoQuick utilize density
gradient centrifugation to isolate CTCs from blood cells [67]. These approaches are simpler
than the immunomagnetic techniques, and they isolate CTCs after EMT without relying on
cell surface markers. However, comparatively small CTCs cannot be recovered. Recently,
systems that combine immunomagnetic and physical techniques, such as CTC-ichip, have
been invented [68]. The tumor biology of CTCs can be investigated by developing CTC-
derived cell lines in this procedure, as we can collect live cells [69,70].

Several studies have been published on CTCs in EC, and CTC has been demonstrated
to help assess treatment efficacy and prognosis. Tanaka examined CTCs before and after
chemotherapy and chemoradiotherapy in 38 patients with primary or recurrent advanced
EC [71]. Patients with fewer CTCs demonstrated a greater rate of complete and par-
tial responses than those with unchanged or increasing CTCs posttreatment [71]. The
group exhibiting <2 CTCs before and after treatment showed a better OS than those with
>2 CTCs [71]. Additionally, Li compared pretreatment CTCs in 129 patients with EC to
those in 75 controls, setting 2 CTCs in peripheral blood of 3.2 mL as the threshold [72]. The
diagnostic ability of the CTC for EC included 70.54% sensitivity and 96.74% specificity [72].
The group with >3 CTCs demonstrated a substantially worse prognosis than those with
<3 CTCs [72]. Similar studies have demonstrated the value of CTC and it is anticipated to
be a technique of liquid biopsy applied to various purposes, such as identifying prognostic
factors and elucidating the cancer state.

The challenges of isolation are still major limitations of CTC. Cells that have undergone
EMT cannot be detected in positive selection [63]. Unwanted cells can be included in
negative selection because the analyzed cells are the remaining cells after removing cells
expressing CD45, and it is difficult to determine whether they are tumor-derived cells or
not [73]. It has also been pointed out that negative selection may remove a large number of
CD45-positive blood cells, and this may result in rare CTCs being captured and lost in the
massive flow of the blood cells [73]. Also, the physical approach can lose 20–50% to CTCs
because CTCs are often similar in size to WBCs [73,74]. These limitations are issues that
need to be addressed, and more research is required in the future.

3.3. miRNA

Liquid biopsy has mainly focused on ctDNA and CTC, which exist in trace levels in body
fluids and have unstable traits [75]. Hence, the sensitivity is uncertain when the tumor burden
is minimal. Recently, miRNAs have appeared as a promising biomarker [76]. MiRNAs are
non-coding RNAs with 18–25 base pairs with a hairpin structure [77]. They may affect cell
proliferation, differentiation, and apoptosis by controlling mRNA translation. The miRNA
is initially transcribed from the miRNA gene by RNA polymerase II in the cell nucleus
(pri-miRNA), which is then cleaved by enzymes, namely Drosha and Pasha, to generate
a precursor pre-miRNA with a stem-loop structure of approximately 70 nucleotides [78,79].
Exportin 5 transports pre-miRNAs into the cytoplasm, where enzymes, such as RNAse III
and Dicer, convert them into miRNAs [80,81]. The generated miRNA is either integrated into
exosomes or microvesicles as an RNA-induced silencing complex or released extracellularly
after binding to Argonaute protein 2 or high-density lipoprotein [82–85]. These structures
protect miRNAs from nuclease and protease degradation and keep their stability in body
fluids [77]. MiRNAs have been investigated using microarrays or quantitative PCR (qPCR),
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and dPCR and NGS have gained popularity in recent years [86–89]. MiRNA analysis requires
reverse transcriptase to produce complementary DNA (cDNA), unlike ctDNA. However, a
method without reverse transcriptase has just been developed [90].

Some studies have focused on miRNAs in the field of EC, but not as many as those
on ctDNA and CTC. Our group investigated urine miRNAs in 10 patients with advanced
ESCC, 20 with superficial ESCC, and 20 healthy individuals [91]. Consequently, 18 of
the 1205 analyzed miRNAs revealed alterations that are consistent with tumor volume
changes. Additionally, 3 of the 18 miRNAs (hsa-miR-4323, hsa-miR-6824-3p, and hsa-miR-
6831-5p) were related to recurrence [91]. Li assessed miRNAs in 36 patients with ESCC and
36 healthy individuals and revealed that six miRNA types (miR-1972, miR-4274, miR-4701-
3p, miR-6126, miR-1268a, and miR-4505) were altered based on the tumor status [92]. They
subsequently developed a qPCR panel using these six miRNAs and validated its diagnostic
capacity. Three cohorts (N = 342, 207, 226) were validated, with sensitivity and specificity
of 92.00% and 89.17%, 90.32% and 91.04%, 91.07% and 88.07%, respectively. Additionally, a
scoring system was established according to the presence of the six types of miRNAs, and a
cut-off value was identified to compare progression-free survival (PFS) and OS. Among all
three cohorts, the group with more miRNA alterations (higher score) demonstrated poorer
PFS and OS [92]. This indicates that miRNAs help in stratifying EC cases.

While several studies show miRNA can be utilized as a target for liquid biopsy, there
are some limitations. To begin, miRNAs are abundant in various body fluids such as blood,
urine, and saliva, complicating the isolation of tumor-derived miRNAs [76]. Secondly, there
is no standardized methodology for isolating and analyzing miRNAs in body fluids [76,93].
Therefore, a reliable approach for selectively evaluating tumor-derived miRNAs is needed.

4. Future Perspective
Liquid biopsy can be used in EC to evaluate treatment efficacy, prognosis, and recur-

rence. Novel concepts for treating EC have evolved in recent years, including esophageal
preservation, adjuvant immune checkpoint inhibitor (ICI) therapy, and conversion surgery.
The combination of liquid biopsy with these concepts will cause a more effective EC
treatment (Figure 2).
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4.1. Organ Preservation Approach

The response rate for the preoperative therapy of EC has dramatically improved.
More cases are achieving pCR with preoperative treatment alone because of chemotherapy
advancements. JCOG1109 revealed that the pCR rates for CF, DCF, and CF + RT were
2.0%, 19.8%, and 38.5%, respectively [24]. The pCR rates in the JCOG1804E trial, which
is a feasibility study that assessed the efficacy and safety of nivolumab in addition to
standard NAC regimens, were extremely high at 33.3% for DCF + nivolumab and 41.7% for
FLOT + nivolumab [28,29]. However, the morbidity and mortality rates for esophagectomy
remain high despite advances in surgical methods. An international multicenter study
of 24 high-volume institutions in 14 countries revealed a 59% total morbidity rate, with a
30-day mortality rate of 2.4% [94]. Hence, determining pCR preoperatively and preserving
the esophagus will remarkably benefit the patient.

Two primary esophageal preservation strategies exist, including definitive CRT (dCRT)
for advanced cancer and active surveillance after NACRT. The JCOG0909 trial is a single-
arm, non-randomized study of dCRT efficacy and safety (cisplatin of 75 mg/m2 and 5-FU
of 1000 mg/m2 + 50.4 Gy) in 94 patients with cStage II/III ESCC [95]. Patients were
assessed for response after dCRT, and those with a CR or partial response received up to
two additional CF therapy courses. They proceeded to salvage surgery if the response
indicated stable disease or progressive disease. The study revealed a 3-year survival rate of
74.2% (90% CI: 65.9–80.8) and an esophagectomy-free survival (EFS) rate of 63.6% (95% CI:
52.9–72.4). After dCRT, 21 patients underwent salvage esophagectomy, including two with
pCR [95]. A randomized controlled trial (NEEDS trial) is currently ongoing in Europe,
comparing surgery after dCRT (platin-taxane or platin-fluoropyrimidine + 50 or 50.4 Gy) to
the CROSS regimen [96].

The CROC study is a trial that used dCRT (cisplatin of 75 mg/m2 and 5-FU of
1000 mg/m2 +50.4 Gy) in patients with ESCC who have significantly responded to preoper-
ative DCF therapy instead of surgery [97]. After DCF, 58.4% of the patients demonstrated a
remarkable response, and 89.8% achieved CR with dCRT. The 1-year PFS for the remarkable
response and dCRT groups was 89.8% (95% CI: 77.2–95.6). The 3-year survival rate for all
patients was 74.1% (95% CI: 62.2–82.8), and the EFS was 45.3% (95% CI: 34.4–55.6) [97]. This
indicates that chemoselection, which stratifies individuals expected to be treated completely
with dCRT based on their chemotherapy response, is promising.

The SANO trial is a study of active surveillance after NACRT [98]. In this trial,
patients who achieved clinical CR (cCR) with the CROSS regimen were randomly assigned
to active surveillance or surgery. Some results were released in 2023, revealing that active
surveillance was not inferior to surgery in terms of survival (HR: 0.88, 95% upper limit:
1.40, p = 0.004) [99]. Furthermore, 48% of the patients under active surveillance exhibited
locoregional recurrence, with 17% having distant metastases [99]. A similar trial, called
ESOSTRATE, is ongoing in France aside from the SANO trial [100].

All of the above-listed esophageal preservation studies used conventional methods
to evaluate the efficacy of perioperative therapy. They contribute to some degree of strat-
ification, but they remain unsatisfactory. In particular, esophagectomy was performed
on patients who did not react to chemotherapy after dCRT, including two with pCR, in
the JCOG 0909 trial [95]. Furthermore, only 35% of patients on active surveillance in the
SANO trial maintained cCR, raising questions about the value of these assessments [99].
Hence, liquid biopsy in these investigations may generate a more precise efficacy estimate.
Liquid biopsy demonstrated a risk of being less sensitive when the tumor burden is low,
but endoscopic imaging that incorporates artificial intelligence along with liquid biopsy
has been proposed to compensate for this limitation [101,102].
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4.2. Individualized Adjuvant ICI Therapy

The CheckMate 577 trial evaluated the efficacy and safety of nivolumab as an ad-
juvant therapy in patients with EC or esophagogastric junction cancer who previously
underwent NACRT and surgery without pCR [25]. The study indicated that nivolumab
improved prognosis, making adjuvant nivolumab an acceptable therapy option. However,
the indication for adjuvant nivolumab is debatable, as no studies have demonstrated the
efficacy of postoperative nivolumab in individuals who underwent surgery following NAC.
Further, the side effects of nivolumab cannot be ignored. Nivolumab exhibited a severe
adverse event rate of 8% (compared to 3% for the placebo) and a treatment discontinuation
rate of 9% [25]. This adverse event profile is notable because immune-related adverse
events from ICIs, such as nivolumab, can be permanent, unlike other medications [103].
Furthermore, the high cost of nivolumab raises problems in health economics in many
countries with universal health insurance [104]. Therefore, the indication for adjuvant
nivolumab should be carefully considered. Postoperative MRD can be assessed, which
may provide a rationale for intensive postoperative therapy in MRD-positive cases if liquid
biopsy can be performed in such circumstances.

4.3. Selecting the Appropriate Candidates for Conversion Surgery

Conversion surgery is a surgical treatment performed on patients who were initially
deemed unresectable due to oncologic or technical reasons but are now resectable after
primary therapy with downstaging [105]. Conversion surgery is becoming predominant
as multidisciplinary treatment progresses, and numerous studies have established its
efficacy. Makino conducted a systematic review of conversion surgery for cT4 EC and
revealed that conversion esophagectomy improved the prognosis [106]. Additionally, Tsuji
studied conversion surgery for advanced EC with distant metastases and revealed that it
was associated with a longer prognosis in patients with a pathologic response (HR: 0.493,
95% CI: 0.283–0.859, p = 0.012) [107]. This study emphasizes the importance of predicting
the responder before undergoing conversion surgery. However, no explicit standards
exist for conversion surgery timing. In practice, surgeons make subjective decisions on
whether R0 resection is oncologically and technically possible based on imaging results
from endoscopy, CT, and PET. Hence, the tumor volume throughout the body can be
accurately assessed and a more objective decision can be made if liquid biopsy is used as a
supplement to conventional methods to determine the timing of conversion surgery.

5. Conclusions
Advances in multidisciplinary treatment have led to dramatic changes in the manage-

ment of EC. Liquid biopsy research is advancing for various agents, including ctDNA, CTC,
and miRNA, and is expected to become more widespread with the introduction of new
technologies, including NGS. The integration of liquid biopsy with conventional modalities
such as endoscopy and CT scan during the treatment process allows for a more accurate
assessment of tumor volume, leading to the development of new concepts such as organ
preservation, adjuvant ICI therapy, and conversion surgery. Their potential to improve
treatment decisions will further advance the management of EC.
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