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Simple Summary: Human leukocyte antigen class I (HLA-I) molecules can modulate anti-
tumour immune responses from CD8+ T cells and NK cells. However, how deregulated
HLA-I expression impacts clinical outcomes in cancer patients has remained unclear. Using
computational approaches, we investigated the association of HLA-I molecules with patient
survival by analysing gene expression datasets across multiple cancers. We observed a
trend toward poor survival in patients with high HLA-I expression in lower-grade gliomas.
Moreover, the favourable prognostic association of CD56dim NK cells was attenuated in
the context of abundant HLA-I, as suggested by the correlation between NK cell receptors
NKG2A/C/E and HLA-E. Overall, our study provides a computational framework that
offers insights into HLA-I-mediated modulation of cytotoxic NK cell activity using cancer
gene expression datasets, with potential applicability for other diseases.

Abstract: Background: Human leukocyte antigen class I (HLA-I) plays a pivotal role in
shaping anti-tumour immunity by influencing the functionality of T cells and natural
killer (NK) cells within the tumour microenvironment. Methods: Here, we explored the
transcriptional landscape of HLA-I molecules across various solid cancer transcriptomes
from The Cancer Genome Atlas (TCGA) database and assessed the impact of HLA-I expres-
sion on the clinical significance of tumour-infiltrating CD56dim and CD56bright NK cells.
Results: Our analysis revealed that high HLA-I expression correlated with reduced patient
survival in the TCGA lower-grade glioma (LGG) cohort, with this association varying by
histopathological subtype. We then estimated the relative abundance of 23 immune and
stromal cell signatures in LGG transcriptomes using a cellular deconvolution approach,
which revealed that LGG patients with low HLA-I expression and high CD56dim NK cell
abundance had better survival outcomes compared to those with high HLA-I expression
and low CD56dim NK cell abundance. Furthermore, HLA-I expression was positively corre-
lated with various inhibitory NK cell receptors and negatively correlated with activating
NK cell receptors, particularly those within the killer cell lectin-like receptor (KLR) gene
family. High co-expression of HLA-E and NKG2A predicted poor survival outcomes in LGG
patients, whereas low HLA-E and high NKG2C/E abundance predicted more favourable
outcomes, suggesting a potential modulatory role of HLA-I on the tumour-infiltrating
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cytotoxic CD56dim NK cell subset. Conclusions: Overall, our study unveils a potential role
for deregulated HLA-I expression in modulating the clinical impact of glioma-infiltrating
CD56dim NK cells. These findings lay the foundation for future in-depth experimental
studies to investigate the underlying mechanisms.

Keywords: lower-grade glioma; prognosis; NK cells; CD56dim NK; HLA-I; anti-tumour
immunity; transcriptional signature; deconvolution

1. Introduction
Lower-grade gliomas (LGGs) are neoplastic transformations of the supporting glial

cells (i.e., astrocytoma, oligodendroglioma, and oligoastrocytoma) of the central nervous
system (CNS) [1]. They account for 15–20% of all primary brain cancers, with an estimated
global incidence of 0.25 to 0.75 cases per 100,000 individuals annually [2,3]. Immune
cells infiltrate the glioma microenvironment, influencing tumour development and patient
prognosis [4,5]. Previous studies have highlighted a reduced tumour infiltration of T cell
subsets in LGG compared to high-grade gliomas (HGGs) [6–8]. A similar pattern has
also been observed for different tumour-infiltrating myeloid cells such as microglia and
monocyte-derived macrophages [6,9,10]. Though the presence of different T cell subsets
and tumour-associated macrophages (TAMs) in various glioma types has been extensively
studied, the role of NK cell subsets and MHC class I in LGGs remains under-reported.

Human leukocyte antigen class I (HLA-I) molecules are fundamental regulators of
CD8+ T cell- and NK cell-mediated immune surveillance in the tumour microenvironment
(TME) [11,12]. The classical HLA-I molecules, namely HLA-A, -B, and -C, are highly
polymorphic, whilst the non-classical HLA-I molecules HLA-E, -F, and -G are less so [13].
The classical HLA-I molecules, complexed with β2-microglobulin (β2m), present peptide
antigens to CD8+ T cells [11]. In the TME, tumour cells use a range of mechanisms to
downregulate classical HLA-I molecules, primarily to evade recognition and killing by
CD8+ T cells. However, this makes tumours vulnerable to NK cell-mediated killing [14].
NK cells monitor cells for the loss of classical HLA-I expression through inhibitory receptors
that can either prime NK functional potential, e.g., NK “education” or NK “licensing”,
during NK cell development, or restrain the functional responses of mature ‘educated’
NK cells (“missing self”) [15–19]. The non-classical HLA-I molecules, HLA-G and HLA-E,
play critical roles in modulating NK cell responses via LILR receptors (through binding to
HLA-G and HLA-E) and the CD94/NKG2x (i.e., NKG2A, NKG2C, and NKG2E) receptors
(through binding to HLA-E) [14,20–23]. Thus, tumour cells often downregulate classical
HLA-I molecules whilst upregulating the expression of non-classical HLA-I molecules,
especially HLA-E, to evade both T cell and NK cell surveillance [22,24].

Traditionally, NK cells are classified into two functional subtypes, the potently cyto-
toxic but weakly cytokine-producing CD56dim NK cell subset and the strongly cytokine-
producing, less cytotoxic CD56bright NK cell subset [25]. NK cells exert anti-tumour effects
through direct cytolytic killing of tumour cells, as well as by mediating immune responses
via the release of pro-inflammatory cytokines, such as IFN-γ and TNF, which promote tu-
mour cell apoptosis, suppress angiogenesis, and modulate the recruitment and function of
other immune cells in the TME [26–28]. The infiltration and functional relevance of NK cells
in solid tumours, including gliomas, have been reported previously [28–30]. Importantly,
the potential roles of NK cells in brain cancers, particularly in gliomas, have also been
discussed [31–35]. NK cells are thought to contribute to eliminating early-stage cancers
as well as glioblastoma (GBM) stem cells [36,37]. NK cells may also exert neuroprotective
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effects by modulating microglial function, thereby suppressing other inflammatory cells
and clearing toxic aggregates [36,38]. Glioma-infiltrating NK cells exhibit reduced levels
of NKG2D, while glioma tissues downregulate the expression of NKG2D ligands [36,39].
Additionally, GBM cells can curb NK cell-mediated immunosurveillance through elevated
expression of inhibitory molecules such as the class-I HLAs, lectin-like transcript 1 (LLT1),
regeneration and tolerance factor (RTF), and growth/differentiation factor-15 (GDF15) [36].
Despite these insights, the impact of HLA-I expression on tumour-infiltrating NK cells in
LGGs remains largely unexplored. In this study, we employed a computational approach to
investigate the impact of altered tumour HLA-I expression on the transcriptional signatures
of CD56dim and CD56bright NK cells in LGGs. Our results reveal an inverse relationship
between the expression of HLA-I and the transcriptional signature of CD56dim NK cells
in LGGs, where LGG patients with low HLA-I expression and high levels of CD56dim NK
cells have better survival probabilities.

2. Materials and Methods
2.1. Retrieval of LGG Patient Transcriptomes from TCGA and Chinese Glioma Genome Atlas
(CGGA) Databases

We retrieved the patient RNA-seq datasets of 28 solid TCGA tumours and tumour-
adjacent normal tissues along with the patients’ clinical information from the GDC data
portal [40], and the CGGA LGG patient RNA-seq datasets (mRNAseq_693 and mR-
NAseq_325) were obtained from the CGGA data portal (http://www.cgga.org.cn/; ac-
cessed on 23 September 2024) [41]. The TCGA LGG dataset includes patients diagnosed
with lower-grade gliomas, encompassing WHO grade II and III astrocytomas and oligoden-
drogliomas [42], as per classifications prior to the 2021 WHO update [43]. Accordingly, we
selected CGGA patients with primary tumours classified as WHO grade II or III gliomas
to ensure consistency across cohorts. An RNA-seq dataset of healthy brain cortex was
obtained from the GTEx database [44] for use as the normal control tissue. After their
procurement, the RNA-seq datasets were cleaned by removing any duplicated entries,
followed by the TMM (Trimmed mean of M) scale normalisation [45] of the transcript read
counts to reduce any unwanted variabilities in the data.

2.2. Construction of Transcriptional Signatures for CD56bright and CD56dim NK Cells

To simultaneously construct transcriptional signatures for different immune and
stromal cells including the CD56bright and CD56dim NK cells, we first obtained the bulk
RNA-seq datasets from 20 immune and 3 stromal cell subsets from the curated human
bulk transcriptional catalogue (HBCC) [46]. We then adjusted transcript abundances using
cellsig, a multilevel Bayesian noise modelling approach, as outlined previously [46]. Next,
these adjusted transcriptomes were utilised in the CIBERSORTx algorithm [47] to generate
our target transcriptional signature matrix.

2.3. Deconvolution of Bulk RNAseq Datasets to Obtain the Relative Abundance of CD56bright and
CD56dim NK Cell Subsets

Utilising the generated transcriptional signature matrix as the reference, we used
the CIBERSORT cellular deconvolution program [48] via the tidybulk R package [49] to
estimate the relative abundance of the CD56bright and CD56dim NK cell subsets along with
other immune and stromal cell types in the LGG tumour bulk transcriptomes. Default
parameters were applied.

http://www.cgga.org.cn/
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2.4. Estimation of HLA-I Gene Abundance

To estimate the abundance of transcripts encoding HLA-I molecules, we first con-
structed a gene set for the transcripts encoding HLA-A, -B, -C, -E, -F, -G, and β2m.
Next, HLA-I gene set scores were calculated for each LGG RNA-seq sample using the
singscore [50] R package.

2.5. LGG Prognostic Association

To evaluate the clinical significance of the different cell type-specific signatures and
transcript expression, we employed Kaplan–Meier (KM) survival analysis, enumerating
the progression-free survival of patients using the survminer R package [51]. For the KM
estimates, patients were separated into two groups, i.e., high and low, based on a median
split of the analysed variable. The significance of the comparison between KM estimates
was calculated using the Mantel–Cox log-rank test [52]. Each Kaplan–Meier survival curve
includes the global p-value from the log-rank test used to compare the groups. Global
p-values of the composite KM curves were adjusted using the Benjamini–Hochberg (BH)
method (Supplementary Table S1).

2.6. Single-Cell RNA-seq Data Analysis

Single-cell RNA-seq data of two LGG tissues (tumour grade II) were retrieved from the
gene expression omnibus (GEO) GSE182109 dataset [53]. Each dataset was pre-processed
and normalised with SCtransform in Seurat [54] following the parameters outlined in a pre-
vious study [55]. These data were then integrated using the Harmony algorithm [56]. Upon
integration, we searched for neighbouring cells using the shared nearest-neighbour (SNN)
graph approach. Clustering was then performed using the Leiden algorithm in igraph with
a resolution of 0.1 and 0.3 (for the re-clustering of CD45+ cells). SingleR [57] was used for
the automated annotation of the CD45+ cell clusters with the EncodeBlueprint database as
a cell type reference. Also, manual curation for the cluster-specific markers was performed
for the immune cell clusters by searching for the significantly (average log2FoldChange > 1
and adjusted p-value < 0.05) differentially expressed genes (Supplementary Table S2).

2.7. Statistical Analysis

Statistical significance for the comparison between the means of two independent
groups was assessed using the non-parametric Wilcoxon signed-rank test [58] implemented
in R version 4.4.2.

3. Results
3.1. A Pan-Cancer Screen Reveals an Association Between the Differential Expression of HLA-I
Transcripts and Cancer Patient Prognoses

To assess the altered expression of HLA-I molecules in different cancers, we first
analysed the differential expression of the transcripts encoding HLA-I molecules in
28 solid cancers from TCGA. In cancers such as lower-grade gliomas (LGGs), glioblastoma
(GBM), bladder urothelial carcinoma (BLCA), and kidney renal clear cell carcinoma (KIRC),
HLA-I transcripts were significantly upregulated, whereas in uterine carcinosarcoma (UCS)
and lung squamous cell carcinoma (LUSC), HLA-I expression was downregulated in the
tumour tissues (Figure 1A). Cancers such as breast carcinoma (BRCA), adrenocortical
carcinoma (ACC), and lung adenocarcinoma (LUAD) showed variable changes in HLA-I
transcript expression (Figure 1A).
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Figure 1. A pan-cancer screen reveals the landscape of altered expression of HLA-I encoding tran-
scripts. (A) Differential expression of transcripts encoding HLA-I molecules across solid tumours 
compared to tumour-adjacent or normal tissues (Wilcoxon signed-ranked test); (B) risk stratification 
of HLA-I molecules using the Cox proportional hazards model; (C) association of transcripts encod-
ing HLA-I molecules and the abundance of CD8+ T cell subsets (naïve, effector memory, and central 
memory) and NK cell subsets (CD56bright and CD56dim) (Pearson’s correlation coefficient). (*** p-value 

Figure 1. A pan-cancer screen reveals the landscape of altered expression of HLA-I encoding transcripts.
(A) Differential expression of transcripts encoding HLA-I molecules across solid tumours compared
to tumour-adjacent or normal tissues (Wilcoxon signed-ranked test); (B) risk stratification of HLA-I
molecules using the Cox proportional hazards model; (C) association of transcripts encoding HLA-I
molecules and the abundance of CD8+ T cell subsets (naïve, effector memory, and central memory) and
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NK cell subsets (CD56bright and CD56dim) (Pearson’s correlation coefficient). (*** p-value < 0.001,
** p-value < 0.01, and * p-value < 0.05) (ACC: adrenocortical carcinoma; BLCA: bladder urothelial car-
cinoma; BRCA: breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical
adenocarcinoma; CHOL: cholangiocarcinoma; COAD: colon adenocarcinoma; DLBC: lymphoid neo-
plasm diffuse large B-cell lymphoma; ESCA: oesophageal carcinoma; GBM: glioblastoma multiforme;
HNSC: head and neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal
clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LAML: acute myeloid leukaemia;
LGG: brain lower-grade glioma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma;
LUSC: lung squamous cell carcinoma; MESO: mesothelioma; PAAD: pancreatic adenocarcinoma;
PCPG: pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma; READ: rectum ade-
nocarcinoma; SARC: sarcoma; SKCM: skin cutaneous melanoma; STAD: stomach adenocarcinoma;
THCA: thyroid carcinoma; UCEC: uterine corpus endometrial carcinoma).

Next, we sought to identify tumour types where the expression of HLA-I potentially
influences the patient’s survival outcomes. In ACC, BLCA, and KIRC, increased expression
of HLA-E was associated with favourable patient survival (Figure 1B). Strikingly, we
observed a distinct prognostic association in LGG patients, which was different from all
the other cancer types analysed (Figure 1B). In LGGs, increased expression of all HLA-I
transcripts was associated with poor patient prognoses (Figure 1B).

We then examined the putative association between HLA-I transcript expression
and the abundances of tumour-infiltrating CD8+ T cell subsets, as well as CD56dim and
CD56bright NK cell subsets. We observed a positive association between HLA-I transcript
levels and CD8+ effector memory T (TEM), as well as with CD8+ central memory T (TCM)
cell abundances in several cancers (Figure 1C). Our analysis also revealed a strong overall
negative association between the naïve CD8+ T cell signature and HLA-I transcript expres-
sion in several cancer types, including LGGs (Figure 1C). Intriguingly, in the LGG patient
transcriptomes, we observed little to no association between HLA-I transcript expression
and the abundance of CD8+ TEM and TCM subsets (Figure 1C). For the NK cell compartment,
most cancers studied showed a positive correlation between HLA-I transcript expression
and CD56bright NK cell abundance. This was not generally observed for the CD56dim NK
cell subset. In fact, in head and neck squamous cell carcinoma (HNSC), LGGs, KIRC, and
skin cutaneous melanoma (SKCM), an inverse association between the HLA-I transcript
levels and the abundance of the CD56dim NK cell subset was observed (Figure 1C). Notably,
HNSC and LGGs were the only cancers where a positive correlation with CD56bright NK
and a negative correlation with CD56dim NK cells were both observed. Furthermore, The
LGG was unique in showing these association in the absence of a detectable correlation
with the CD8+ T cell compartment. These findings suggest that LGGs may possess a unique
tumour-infiltrating lymphocyte (TIL) signature in which increased expression of HLA-I
is associated with a reduced abundance of tumour-infiltrating CD56dim NK cells and a
poor prognosis.

3.2. Association of HLA-I Transcript Expression with Poor LGG Patient Prognosis Is Dependent
on Tumour Grade

We next asked whether this association between HLA-I transcript expression and
LGG patient survival varied between the different clinical and histological grades of LGGs.
To assess this, we first established the abundance of HLA-I transcripts and observed that
HLA-A-, -B-, -C-, -E-, and β2m-encoding genes had comparatively higher expression than
HLA-F and -G (Figure 2A,B). Additionally, HLA-I transcript abundance was greater in more
advanced grades of gliomas (Figure 2C). Astrocytoma consistently expressed the highest
levels of all HLA-I transcripts, followed by oligoastrocytomas, with oligodendrogliomas
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having the lowest (Figure 2D). We then performed survival analysis, which corroborated
the negative association of all HLA-I transcripts with LGG patient outcomes (Figure 2E).
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Figure 2. HLA-I-encoding transcripts are aberrantly expressed in TCGA LGG tumours. (A). Heatmap of
the expression of HLA-I-encoding transcripts in TCGA-LGG patients stratified by glioma grade. (B) Violin
plots comparing the expression of HLA-I transcripts in tumours versus normal brain tissue; HLA-I transcript
abundance across (C) different clinical grades and (D) glioma molecular subtypes; (E) KM survival curves
illustrating the prognostic implications of the HLA-I expression in LGGs; Prognostic association of HLA-I
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expression across (F) tumour grades and (G) glioma subtypes. (**** p-value < 0.0001, *** p-value < 0.001,
** p-value < 0.01, and * p-value < 0.05, ns: non-significant for Wilcoxon signed-ranked test for panels (B–D)).

We then stratified the data to determine whether the effect of HLA-I expression on
LGG patient survival was evident across different glioma grades. First, we established
that LGG patients with tumours of varying clinical–pathological grades had distinct sur-
vival outcomes; grade 3 gliomas had lower survival probability, and astrocytomas were
observed to be the most aggressive histological glioma subtype (Figure S1). These findings
correlated with the expression patterns of HLA-I transcripts (Figure 2F). Patients with
oligodendroglioma and oligoastrocytoma with low levels of HLA-I expression showed
better survival potential compared to patients with astrocytomas or high levels of HLA-I
(Figure 2G). Overall, these findings reveal that the prognosis of different glioma types and
different grades tightly correlate with the expression levels of HLA-I transcripts.

3.3. Expression of the Transcriptional Signature of CD56dim NK Cells Inversely Correlates with
HLA-I Transcript Expression in LGGs

We hypothesised that the overexpression of HLA-I molecules in LGGs is a tumour
immune-evasion mechanism to evade cytotoxic NK cells. To assess this, we first estimated
the relative abundance of the CD56bright and CD56dim NK cell subset signatures in the LGG
transcriptomes together with the abundances of other major immune cells (Figure 3A). We
observed no difference between the overall abundance of these two subsets (Figure 3B);
however, their abundance inversely correlated with each other (Figure 3C). While the
abundance of CD56bright NK cells was higher in grade 3 astrocytomas, CD56dim NK cells
were more prominent in both grade 2 and grade 3 oligodendrogliomas (Figure S2A,B).

We explored the prognostic implications of the NK cell subset signatures in LGGs
and observed an unfavourable survival association with CD56bright NK cells, as well as a
trend towards longer patient survival with higher CD56dim NK cell abundance (Figure 3D).
Patients with different tumour grades did not have a distinctive survival association with
either NK cell subset. However, favourable survival trends were observed for the CD56dim

NK subset in oligodendroglioma and oligoastrocytoma patients, while CD56bright NK cells
were associated with a poor oligoastrocytoma prognosis (Figure S2C).

In the multivariate analysis, a higher tumour mutation burden (TMB) was observed
to be strongly associated with poor survival in LGG patients, while CD56dim NK cell
abundance was associated with a trend toward improved outcomes. This trend appeared
to be independent of TMB and CD8+ T cell subset abundances (Figure S3).

Next, we investigated the association between HLA-I molecules and the NK subset
abundances in the tumour tissue. Interestingly, we found that CD56dim NK cells were in-
versely associated with all HLA-I molecule transcripts, whereas the CD56bright NK cells pos-
itively correlated with HLA-I transcripts (Figure 4A). The association between CD56bright

NK cells and HLA-I was consistent across both oligodendrogliomas and oligoastrocytomas,
but the correlation between HLA-I and CD56dim NK cell abundance was observed only in
oligodendrogliomas (Figure S2D).

To assess the prognostic implications of these associations in glioma patients, we
performed a combinatorial survival analysis. We observed that patients with low HLA-I
(i.e., β2m, HLA-A, -B, and -E) expression and high levels of the CD56dim NK signature
in the tumour tissue had better survival probability compared to the patients with a low
CD56dim NK cell signature and high HLA-I expression (Figure 4B).
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Figure 3. The transcriptional signature of CD56dim NK cells predicts a favourable LGG prognosis.
(A) Estimated abundance of major immune cell signatures in the LGG TME. (B) Comparison of
CD56bright and CD56dim NK cell abundances in TCGA LGG transcriptomes. (C) Correlation between
CD56bright and CD56dim NK cell estimates (Pearson’s correlation coefficient). (D) KM curves showing
the association of NK subset abundance in LGG patient survival. (ns: non-significant for Wilcoxon
signed-ranked test for panel (B)).

As HLA-I transcript expression levels were strongly correlated with each other
(Figure S4A), we constructed a gene set to estimate their aggregated abundance in pa-
tient samples. Assessing the association between the aggregated HLA-I expression and
the CD56bright and CD56dim NK signatures, we observed a positive correlation with
CD56bright NK cell abundance, while CD56dim NK cell abundance was negatively associated
(Figure 4C). This was most pronounced in oligodendroglioma patients (Figure S4B). LGG
patients with increased overall HLA-I expression had poor survival outcomes (Figure S4C),
and LGG patients with high overall HLA-I expression and low CD56dim NK abundance
had poor survival outcomes compared to patients with low overall HLA-I and increased
CD56dim NK cell abundance (Figure 4D). Notably, this was most pronounced in the oligoas-
trocytoma patient cohort (Figure S4D).
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correlation coefficient). (B) Combined KM curves illustrating the prognostic implications of HLA-I 
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CD4+ T cells can regulate the activation of NK cells [59]; more importantly, the coop-
eration between NK cells and CD4+ T cells could compensate critically where CD8+ T cells 
are dispensable [60–64]. We assessed the prognostic significance of different T cell subsets 
and observed helper T cells to be associated with favourable LGG prognoses (Figure S5A). 
More evidently, the favourable prognostic associations of helper T and CD56dim NK cells 
were observed in a multivariate analysis including HLA-I abundance. This suggests that 
the potential partnership between CD56dim NK cells and CD4+ T cells could be critical es-
pecially when the LGG tumours are evading the CD8+ T cells. 

Figure 4. The abundance of HLA-I-encoding transcripts is negatively associated with the transcrip-
tional signature of CD56dim NK cells. (A) Scatter plots showing the associations between HLA-I
transcript expression and CD56bright and CD56dim NK cell abundances in TCGA LGG tumours
(Pearson’s correlation coefficient). (B) Combined KM curves illustrating the prognostic implications
of HLA-I expression and NK cell abundance in LGGs. (C) Correlation between the combined HLA-I
scores and estimated NK subset abundances (Pearson’s correlation coefficient). (D) Impact of the total
HLA-I transcript load on LGG patient survival in the context of NK cell transcriptional signatures.

CD4+ T cells can regulate the activation of NK cells [59]; more importantly, the cooper-
ation between NK cells and CD4+ T cells could compensate critically where CD8+ T cells
are dispensable [60–64]. We assessed the prognostic significance of different T cell subsets
and observed helper T cells to be associated with favourable LGG prognoses (Figure S5A).
More evidently, the favourable prognostic associations of helper T and CD56dim NK cells
were observed in a multivariate analysis including HLA-I abundance. This suggests that
the potential partnership between CD56dim NK cells and CD4+ T cells could be critical
especially when the LGG tumours are evading the CD8+ T cells.
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Overall, these findings suggest that the expression of HLA-I inversely correlates with
CD56dim NK abundance in LGGs, and CD56dim NK cell abundance is associated with
improved survival probability. These observations support the hypothesis that HLA-I may
inhibit the infiltration or functionality of cytotoxic CD56dim NK cells within the glioma
tumour microenvironment.

3.4. Expression Levels of HLA-I and NK Cell Receptor Transcripts Are Associated with LGG
Patient Prognoses

Since a potential association of HLA-I expression with the abundance of NK subsets
was evident, we next asked whether the expression of activating NK cell receptors and
HLA-I was associated with LGG patient survival. We observed that increased abundance
of KLRC2 (NKG2C), KLRC3 (NKG2E), KLRC4 (NKG2F), KLRF1 (NKp80), KLRK1 (NKG2D),
B3GAT1 (CD57), and SELL (CD62L) was associated with favourable LGG patient survival
(Figure 5A and Figure S6). Interestingly, patients with a high abundance of these receptor-
coding transcripts and high CD56dim NK abundance were predicted to have improved
survival potential (Figure 5A and Figure S6), emphasising the possible role of these activat-
ing receptors in mediating the anti-tumour functions of CD56dim NK cells in this setting [65].
Furthermore, a negative association between these receptors and HLA-I expression was
evident with respect to patient survival, as only the group of patients with high transcript
expression of these activating receptors and low HLA-I expression had favourable survival
outcomes (Figure 5A and Figure S6).

NKG2x receptors can shape the functional status of NK cells by signalling through the
NKG2A (inhibitory) or NKG2C/NKG2E (activating) receptors when they engage HLA-E
presented by tumour cells [66]. To assess whether these signalling molecules are present in
LGG tissues, we evaluated the associations between HLA-E and NKG2A/NKG2C/NKG2E
transcript expression. HLA-E showed a negative correlation with the NKG2C- and NKG2E-
coding transcripts (KLRC2 and KLRC3, respectively) (Figure 5B). It is therefore possible
that inhibitory HLA-E/NKG2A signalling predominates over the activating NKG2C/E
axis in the context of LGG patient survival. Survival analysis also suggested that the pa-
tients with low HLA-E but high NKG2C/NKG2E expression may have improved survival
potential (Figure 5C). Furthermore, LGG patients harbouring high levels of activating
NKG2C/NKG2E/NKG2F receptor transcripts and low inhibitory NKG2A abundance were
projected to have better survival outcomes compared to patients with low activating NKG2x
and high inhibitory NKG2A transcripts (Figure 5D).

We also evaluated the presence of CD56dim NK cells and the NKG2x receptor-coding
genes in single-cell RNAseq data from two LGG patients [53]. Though most of the glioma
and brain stroma cells expressed HLA-I genes, immune cells were also enriched for HLA-I
genes (Figure S7A–C and Figure S8A). The CD56dim NK cell signature was observed in the
CD8+ T-NK cell cluster (i.e., cluster 5) of the immune cells (Figure S7D–F). Furthermore,
cluster 5 exhibited strong enrichment of the CD56dim NK signature compared to other
immune cell types (Figure S7G,H). The NKG2x receptor-coding genes were expressed
by a fraction of the CD8+ T-NK cell cluster cells (Figure S7I and Figure S8B). Overall,
these findings suggest that various NK receptors may have critical roles in dictating the
anti-tumour functionalities of the CD56dim NK subset in LGG tissues.
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Figure 5. HLA-I expression in LGG tumours is negatively correlated with transcripts encoding
activating members of the killer cell lectin-like receptor (KLR). (A) Prognostic significance of selected
KLRs, both individually and in combination with HLA-I transcript loads and NK subset signatures, in
TCGA LGG patients; (B). Correlation heatmap illustrating the association between KLRC1 (NKG2A),
KLRC2 (NKG2C), KLRC3 (NKG2E), KLRC4 (NKG2F), and HLA-E expression in LGG tumour
transcriptomes (Pearson’s correlation coefficient). (C) KM curves showing the combined prognostic
relevance of HLA-E and transcripts encoding KLR family receptors; (D). KM curves demonstrating
the combined prognostic impact of activating and inhibitory NKG2x receptor transcripts. (*** p-value
< 0.001 and * p-value < 0.05 for Pearson’s correlation coefficient scores).

3.5. Expression of HLA-I Transcripts Is Negatively Associated with the CD56dim NK Signature in
the CGGA LGG Tissue Transcriptomes

Our findings from the TCGA-LGG tissue transcriptome revealed that HLA-I expres-
sion may have potential implications for the critical roles of NK cell subsets in clinical
outcomes of LGG patients. To further assess and validate these findings, we next inves-
tigated the effects of HLA-I expression, NK cell subsets, and NK cell receptors on LGG
patient survival using transcriptomic data from the CGGA database. Unlike the TCGA
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cohort, CGGA LGG patients had a higher abundance of the signature for CD56bright NK
cells compared to CD56dim NK cells, but the subset signatures were inversely correlated
as observed for the TCGA dataset (Figure S9A–C). Consistent with our previous observa-
tions, we detected a favourable survival trend in LGG patients with high expression of the
CD56dim NK cell signature (Figure 6A). We did not observe a strong inverse correlation
between the aggregated HLA-I expression and the CD56dim NK subset signature as ob-
served for the TCGA cohort, although the negative association was apparent (Figure 6B).
Our analysis of the CGGA LGG dataset also revealed the negative impact of increased
HLA-I transcript expression on patient survival, as well as the converse effect in patients
with high CD56dim NK but low HLA-I abundance (Figure 6C). A high abundance of the
signature for helper T cells was associated with favourable CGGA LGG patient survival,
and a similar association was also observed for patients with both high levels of helper T
and CD56dim NK cells (Figure S9D). These favourable associations were also evident in a
multivariate analysis with HLA-I abundance in CGGA patients (Figure S9E).

Cancers 2025, 17, x  15 of 23 
 

 

 

Figure 6. The CGGA LGG data also indicate the negative association between HLA-I transcript ex-
pression and CD56dim NK cell abundance. (A) KM curves showing the prognostic association of NK 
subset signatures in CGGA LGG prognoses. (B) Correlation between the NK cell subset signatures 
and the total HLA-I load in CGGA LGG tumours (Pearson’s correlation coefficient). (C) Prognostic 
evaluation of the overall HLA-I transcript load in CGGA LGG patients including its combined effect 
with the NK subset signatures; (D) KM estimates highlighting the prognostic implications of KLRC2 
(NKG2C) and KLRC3 (NKG2E) transcript expression in CGGA LGG patients. 

We observed that the expression of HLA-I was negatively associated with the expres-
sion of NKG2C (KLRC2), NKG2E, CD62L (SELL), and CD57 (B3GAT1), as observed in the 
TCGA dataset (Figures 6D and S9F). Interestingly, the CGGA LGG patients with high 
NKG2C, NKG2E, CD62L, and CD57 transcript levels along with increased abundance of 
the CD56dim NK signature were also predicted to have better survival; In addition, patients 
harbouring high expression of these NK cell receptor-coding genes but low HLA-I expres-
sion showed similar survival outcomes (Figures 6D and S9F). The expression of HLA-E 
was positively associated with NKG2A (KLRC1) but negatively associated with NKG2C 
(KLRC2) and NKG2E (KLRC3) (Figure S9G). Survival analysis also showed that patients 
with abundant NKG2C and NKG2E but low HLA-E had improved LGG survival proba-
bility (Figure S9H). Additionally, CGGA patients with low abundance of NKG2A but high 
NKG2C/NKG2E/NKG2F had a better prognosis than those with high NKG2A and low 
NKG2C/NKG2E/NKG2F levels (Figure S9I). Overall, findings from the CGGA LGG pa-
tient cohort corroborated our results from the TCGA LGG dataset, supporting the nega-
tive impact of HLA-I overexpression on the prognostic implications of glioma-infiltrating 
NK cells. 

4. Discussion 
Altered expression of HLA-I is frequently observed in solid tumours. However, the 

underlying effects of altered HLA-I expression on the abundance and functionality of 

Figure 6. The CGGA LGG data also indicate the negative association between HLA-I transcript
expression and CD56dim NK cell abundance. (A) KM curves showing the prognostic association of
NK subset signatures in CGGA LGG prognoses. (B) Correlation between the NK cell subset signatures
and the total HLA-I load in CGGA LGG tumours (Pearson’s correlation coefficient). (C) Prognostic
evaluation of the overall HLA-I transcript load in CGGA LGG patients including its combined effect
with the NK subset signatures; (D) KM estimates highlighting the prognostic implications of KLRC2
(NKG2C) and KLRC3 (NKG2E) transcript expression in CGGA LGG patients.

We observed that the expression of HLA-I was negatively associated with the expres-
sion of NKG2C (KLRC2), NKG2E, CD62L (SELL), and CD57 (B3GAT1), as observed in the
TCGA dataset (Figure 6D and Figure S9F). Interestingly, the CGGA LGG patients with
high NKG2C, NKG2E, CD62L, and CD57 transcript levels along with increased abundance
of the CD56dim NK signature were also predicted to have better survival; In addition,
patients harbouring high expression of these NK cell receptor-coding genes but low HLA-I
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expression showed similar survival outcomes (Figure 6D and Figure S9F). The expression
of HLA-E was positively associated with NKG2A (KLRC1) but negatively associated with
NKG2C (KLRC2) and NKG2E (KLRC3) (Figure S9G). Survival analysis also showed that
patients with abundant NKG2C and NKG2E but low HLA-E had improved LGG survival
probability (Figure S9H). Additionally, CGGA patients with low abundance of NKG2A but
high NKG2C/NKG2E/NKG2F had a better prognosis than those with high NKG2A and
low NKG2C/NKG2E/NKG2F levels (Figure S9I). Overall, findings from the CGGA LGG
patient cohort corroborated our results from the TCGA LGG dataset, supporting the nega-
tive impact of HLA-I overexpression on the prognostic implications of glioma-infiltrating
NK cells.

4. Discussion
Altered expression of HLA-I is frequently observed in solid tumours. However,

the underlying effects of altered HLA-I expression on the abundance and functionality
of tumour-infiltrating NK cells remain unclear. Previous studies have highlighted the
significance of NK cell functional activity against glioblastoma cells in vitro [37,67–70].
Furthermore, CD56dim CD16+ NK cells have been reported to have vital implications in
temozolomide-treated glioblastoma patients [71]. Other in silico studies have reported the
favourable prognostic association of CD56dim NK [5] and activated NK cell [72] signatures
for TCGA LGG patients. Our analysis further revealed an additional negative association
between the abundance of the cytotoxic CD56dim NK cell signature and the expression
of HLA-I transcripts in LGG tumours. We also observed that increased expression of
HLA-I transcripts was associated with poor LGG patient survival, whereas patients whose
tumours exhibited a higher abundance of the CD56dim NK cell signature had a better
LGG prognosis.

In contrast to this strong negative HLA-I/CD56dim NK cell relationship, we observed
a weak association between HLA-I expression and the infiltration of mature CD8+ T cell
subsets, which may highlight the importance of CD56dim NK cell-mediated anti-tumour
immunity. On the other hand, glioma cells can potentially suppress CD56dim NK cell-
mediated immunosurveillance through increased HLA-I abundance while evading CD8+ T
cells. The relatively limited scope of T cell responses to LGGs compared to higher-grade
glioblastomas has been observed in both glioma patient tumours [6–8,73] and animal mod-
els of gliomas [74,75]. This may be because LGG tumours harbour only a small number
of somatic mutations [76], which limits tumour neo-antigen production and subsequent
presentation to T cells. However, even gliomas exhibiting hypermutation following temo-
zolomide treatment showed only limited CD8+ T-cell infiltration [77,78]. This implies that
only limited HLA-I-mediated tumour neoantigen detection by CD8+ T cells may take place
in LGG, meaning that the overexpression of HLA-I may not provoke a CD8+ T response
in LGG tumours; this leaves HLA-I overexpression open as a potential immune escape
mechanism from NK cell-mediated tumour surveillance. This possibility is supported by
research showing that glioblastomas overexpressing HLA-I have a suppressive impact on
the tumour-infiltrating NK cell response [79,80].

While assessing the prognostic implications of the NK cell receptors in LGGs, the
NKG2x receptors that interact with HLA-E as a ligand displayed strong associations with
LGG patient survival, indicating a potential role for the NKG2x:HLA-E signalling axis
in the LGG TME. Numerous studies have highlighted the negative clinical implications
of aberrant HLA-E expression by various solid cancers, hinting towards the possible
immunosuppression of HLA-I-independent recognition and killing by tumour-infiltrating
NK cells [81–84]. Abundant NK-inhibitory signals via HLA-I/NKG2A receptor binding
can overwhelm activating signalling through NKG2C/NKG2E [85,86]. Furthermore, the
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enhanced activation and infiltration of NK cells in the TME following the NKG2A blockade
has been described previously [87,88]. Taking this evidence into consideration, it can be
speculated that LGG tumours may suppress the activity of beneficial tumour-infiltrating
CD56dim NK cells through the HLA-E/CD94-NKG2A signalling axis. However, this
immunosuppressive mechanism could be countered using NKG2A/C switch receptor-
containing engineered NK cells [89].

5. Conclusions
In this study, we identified a consistent and previously unexplored association between

the expression of HLA-I molecules and CD56dim NK cells in LGG tumours, highlighting
their potential clinical relevance. Our findings suggest that HLA-I molecules may contribute
to immune evasion by suppressing tumour-infiltrating cytotoxic NK cells in the glioma
microenvironment. While these results offer novel insights into the immunobiology of
LGGs, this study is limited by its reliance on transcriptomic data, underscoring the need
for experimental validation. Therefore, targeted in vitro and in vivo experiments such as
flow cytometry [90], multiplex immunohistochemistry [91,92], and NK-tumour functional
co-culture assays [31,93] are critical to gain deeper mechanistic insights into this HLA-I-
mediated regulation of NK cells in gliomas.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers17091570/s1, Figure S1: LGG tumours of varying A.
tumour grades, and B. histologic grades have different patient survival outcomes; Figure S2: Tumour
abundance and clinical implications of NK subsets vary across LGG tumour grades. A. Abundance
of NK subsets across LGG tumour grades. B. Correlation between the NK subset signatures across
LGG grades. C. KM curves stratified by NK subset signatures in patients with LGG tumours of
varying grades. D. LGG grade-specific correlations between HLA-I transcript abundance and NK
subset signatures. (**** p-value < 0.0001, *** p-value < 0.001, ** p-value < 0.01, and * p-value < 0.05,
ns: non-significant for Wilcoxon signed-ranked test and Pearson’s correlation coefficient scores);
Figure S3: Multivariate analysis showing the association of CD56dim NK cells, CD8+ T cell subsets,
and tumour mutation burden with relapse-free survival in LGG patients; Figure S4: A. Heatmap
showing correlations among HLA-I molecules. B. Association of HLA-I gene set scores with NK
subset abundances across LGG grades. C. Prognostic relevance of the HLA-I load in TCGA LGG
patients. D. Combined effect of the HLA-I load and NK subset abundance in grade-specific LGG
cohorts. (*** p-value < 0.001, ** p-value < 0.01, and * p-value < 0.05 for Pearson’s correlation coefficient
scores); Figure S5: A. KM curves illustrating the prognostic role of helper T cells in LGGs, alone and in
combination with CD56dim NK cells. B. Multivariate analysis evaluating the association of CD56dim

NK cells, helper T cells, and HLA-I scores with LGG survival; Figure S6: Clinical relevance of NK
cell receptors KLRC1 (NKG2A), B3GAT1 (CD57), NCR1 (NKp46), NCR2 (NKp44), NCR3 (NKp30),
and SELL (CD62L) in LGG patients, evaluated in combination with the HLA-I load and NK subset
abundances; Figure S7: Analysis of single-cell RNA-seq data from two LGG patients (GSE182109).
A. Uniform manifold approximation and projection (UMAP) plot of cell type aggregates in glioma
tissues. B. Dot plot of marker gene expression for glioma, brain stroma, and immune cells across
clusters. C. Expression of HLA-I-coding genes in the single-cell cluster.; D. Re-Clustering of the
CD45+ immune cells. E. Annotation of immune clusters using singleR. F. Module score showing
CD56dim NK cell signature expression across immune clusters. G. Dot plot showing the expression
of NKG2x receptor genes in immune clusters. Comparison of CD56dim NK subset module scores
in cluster 5 of immune cells against F. the average scores of all immune cells and G. the specific
module scores of other individual immune cell types; Figure S8: A. UMAP plots displaying the
expression of HLA class I genes (including B2M, HLA-A, HLA-B, HLA-C, HLA-E, and HLA-F) across
cell clusters in LGG tissues; B. UMAP visualisation of NK cell receptor gene expression (KLRC1,
KLRC2, KLRC3, KLRC4, and KLRK1), highlighting their enrichment within specific immune cell
clusters; Figure S9: A. Estimated abundance of major immune cell signatures in the CGGA LGG

https://www.mdpi.com/article/10.3390/cancers17091570/s1
https://www.mdpi.com/article/10.3390/cancers17091570/s1


Cancers 2025, 17, 1570 16 of 20

TME. B. Relative abundance of NK subsets in CGGA LGG. C. Correlation between the NK subset
signatures in CGGA LGG tumours. D. KM curve survival analysis of helper T cells in CGGA LGG.
E. Multivariate survival analysis incorporating CD56dim NK cells, helper T cells, and HLA-I scores
in CGGA LGG. F. Prognostic relevance of B3GAT1 (CD57) and SELL (CD62L) in CGGA LGG. G.
Correlation of HLA-E expression with KLRC1 (NKG2A), KLRC2 (NKG2C), KLRC3 (NKG2E), and
KLRC4 (NKG2F) in CGGA LGG; H. combined prognostic implications of activating and inhibitory
NKG2x receptors in CGGA LGG; I. KM curves showing survival outcomes of these associations in
CGGA LGG patients. (*** p-value < 0.001 for Pearson’s correlation coefficient scores).
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