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Abstract: In this work, we investigated composite materials based on graphene and carbon nanotubes
with a silicon cluster from the standpoint of using them as Li-ion battery (LIB) and Na-ion battery
(NIB) anodes. For our study, we used the density functional theory method, taking into account the
van der Waals interaction. The cavities of the composite were filled with lithium and sodium, and
the energy characteristics of the structure were calculated through SIESTA molecular dynamics. The
calculations showed the negative energy of adsorption for lithium and sodium and the negative value
of the heat of formation of the composites. The introduction of a silicon cluster led to an increase in
the specific capacity by 22.2% for the sodium and 37% for the lithium in comparison with the pure
composite. The calculation of the transmission function showed a decrease in the resistance of the
composite when a silicon cluster was added to the composite. We predict that the application of the
considered composite will increase the efficiency of existing lithium-ion and sodium-ion batteries.

Keywords: graphene; carbon nanotubes; capacity; lithium; sodium; density functional theory; SIESTA

1. Introduction

At the moment, there are a lot of studies on Li-ion batteries (LIBs) with graphene-based
anodes [1–4]. The theoretical capacity of a graphite anode is 372 mAh/g (LiC6). At the same
time, graphene is one of the graphite layers, and its theoretical capacity is 1116 mAh/g [5].
The outstanding properties of graphene in terms of mechanical strength and electrical
conductivity are some of the key factors when choosing this material for application in LIBs.
In this case, the battery’s resistance to high charging and discharging currents will increase,
and the number of charge-discharge cycles will also increase. Furthermore, there will be a
significant increase in the capacity. Aside from Li, Na is a promising candidate for graphene-
based metal-ion batteries. Since Na is located below Li in the first group of the periodic
table, these two chemical elements show similar properties, and they have one valence
electron. The use of graphite as an anode material for Na-ion batteries (NIBs) is impractical.
Since the capacity of the anode is extremely low and amounts to approximately 35 mAh/g,
there are 64 carbon atoms per Na ion (NaC64) [6]. There is an opinion that Na ions cannot
fit between the layers of graphite, which leads to a low capacity. However, potassium ions
have a larger ion radius (1.38 Å) than Na (1.02 Å) and can intercalate into graphite as freely
as Li (0.76 Å). This contradictory phenomenon is explained [7] by the fact that the attractive
interaction between Na ions and graphite layers is very weak, and there is not enough
energy to produce intercalation [8]. In addition, on the basis of the density functional
theory (DFT) while taking into account the van der Waals interaction, it was found that
for the compounds NaC6 or NaC8, the heat of formation was positive, but it was negative
for the compound LiC6 [9]. This proves that the formation of NaC6 or NaC8 compounds
in graphite layers is energetically unfavorable, but they are beneficial for LiC6, as can be
observed in experiments, whereas due to the limited resources of Li in nature [10,11], NIBs
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can act as an inexpensive and effective replacement for LIBs. In some cases, Na exceeds Li in
its electrochemical properties. For example, it was shown that the diffusion energy barriers
for the elements Li and Na on silicene are 0.21 and 0.12 eV, respectively [12]. Additionally,
the energy barriers to diffusion for the Na atom in the zigzag and armchair directions of
single-layer black phosphorene are 0.04 and 0.38 eV, respectively, while the corresponding
energy diffusion barriers for a Li atom in the zigzag and armchair directions are 0.08 and
0.68 eV, respectively [13,14]. In [15], using 2D materials as electrodes, NIBs showed a higher
charge-discharge rate than LIBs. Nevertheless, Li surpasses Na in terms of cell voltage and
power density [16]. Researchers are paying increased attention to silicon-based anodes
in addition to the promising applications of graphene in LIBs and NIBs. The maximum
possible theoretical capacity of Si-Li intermetallic states is 4200 mAh/g (Li4.4Si). However,
this capacity is accompanied by a colossal increase in the volume of the original pure
silicon, which rapidly destroys the silicon anode [17]. The solution to this problem is to
contain the volume of the silicon during lithiation and delithiation (charge and discharge)
in such conductive frames as carbon nanotubes (CNTs) and graphene. In [18], the process
of silicon being kept inside CNTs and twisted graphene sheets was considered by the
molecular dynamics of Lammps [19]. The authors reported an obtained capacity above
1300 mAh/g and the significant stabilizing role of the carbon structures in such systems.
In addition, in [20], the researchers prepared real samples of a carbon–silicon composite
based on single-layer pillared graphene and silicon by the method of one-stage chemical
vapor deposition (CVD) with the intercalation of a mixture of precursor gases (H2, C2H4).
A layer of amorphous silicon was added to the already grown 3D carbon nanostructure by
sputtering and evaporation.

Thus, the synergy of silicon and carbon for LIB and NIB anodes requires a theoretical
study of its parameters, such as stability, energy efficiency, specific capacity and electri-
cal conductivity. This work studies the process of intercalation of Li and Na into the
CNT–graphene–silicon composite and estimates the energy stability and conductivity of
the obtained composites through the density functional theory of the SIESTA method.

2. Materials and Methods

The search for a ground state as well as calculations of the total energy, density
of states and conducting properties were performed by the density functional theory
method using SIESTA 4.1.5 software [21,22], with application of the basis set with double
ζ+ polarization (DZP). The Berland and Hildgaard exchange functional vdW-DF-cx [23]
was used to describe the exchange-correlation energy between the interacting electrons
and take into account the van der Waals interaction. This exchange functional has shown
good accuracy for a wide range of materials [24]. Molecular dynamics SIESTA was started
with temperature control using a Nose thermostat with an initial temperature of 500 K and
a final temperature of 300 K. The total energy was minimized using a modified Broyden
algorithm [25] and Pulay-type corrections. The optimization process was completed when
the force acting on each atom became less than 0.04 eV/Å. The Monkhorst–Pack method
with a 3 × 3 × 1 grid was used to sample k points in the Brillouin zone and plot the
density of the electronic states. To calculate the transmission function, the ab initio method
of nonequilibrium Green’s functions (NEGF) TranSiesta [26] was used. The calculation
of the transport properties took place in three stages, during which the surface Green’s
functions of the unbound semi-infinite left and right electrodes were obtained, and then
the Green’s function of the “device” (the considered structure) was obtained from the
effective Hamiltonian of the scattering region. The electrodes presented the same atomic
supercells as the structure of the “device”. In calculating the transmission function, we
used the SZ basis, since this calculation required a threefold increase in the number of
atoms in the system (left and right electrodes) as well as the scattering region. In our case,
calculating the transport properties took into account the van der Waals interaction, and
the number of atoms reached 1200. All that greatly complicated the calculations even
in the SZP basis, so calculation in the DZP basis with the Monkhorst–Pack 3 × 1 × 3
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grid was even more complicated. Using a smaller basis would undoubtedly affect the
accuracy of the calculations, but it would be possible to evaluate the results qualitatively.
Our self-consistent calculations used a grid cut-off of 350 Ry. The cell length including the
two electrodes was 63.9 Å in the z-direction. We used 121 k-points in the X-direction (i.e.,
perpendicular to the current transfer).

3. Results and Discussion
3.1. Atomistic Models

Figure 1 shows the supercell of a graphene-based composite with a closed vertically
oriented CNT (6,6). The translation vectors of the supercell were 22.14 Å and 21.30 Å, and
the number of atoms was 288. There were six octagons (blue areas) and six pentagons
(red areas) near the place of contact between the graphene and the CNTs. The supercell
was obtained by first cutting a hole in the graphene along the CNT diameter. Then, after
optimization, the CNT and graphene formed chemical bonds at the place of contact. The
graphene sheet contained 156 atoms, and the CNT contained 132 atoms. The heat of the
supercells’ formation was calculated by Equation (1):

EHoF = Etotal − (Egraphene + ECNT) (1)

where Etotal is the total energy of the supercell and Egraphene and ECNT are the total energy
of the graphene (with a hole) and closed CNTs (6,6), respectively.
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Figure 1. Atomic structure of the graphene–CNT (6,6) composite after optimization in SIESTA. Heptagons are shown in
blue colors, while pentagons are shown in red.

The heat of formation of the supercell was negative and amounted to −0.2241 eV/atom.
Closed tubes (6,6) were obtained [27] earlier in the experimental work which proved its
energy stability. In this regard, the choice of CNTs with chirality (6,6) was determined.

Figure 2 shows the charge distribution in the considered supercell. As can be seen in
the regions of defects and curvature of the atomic structure, there was charge redistribution
over the atoms, and this distribution is the most noticeable in the area of contact between
the graphene and the CNTs. The graphene sheet and the first row of CNT atoms (orange)
reported 0.162 electrons to the far layers of the tube. Thus, the graphene sheet and the first
row of CNT atoms lacked 0.162 electrons.
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Figure 2. The charge distribution of the graphene–CNT (6,6) composite after optimization in SIESTA. The lack of charge is
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3.2. MD and Geometry Relaxation

In order to fill the supercells with Li and Na, we used an algorithm to fill the free space
of the supercell with atoms and clusters of various elements at a strictly defined distance,
taking into account the translation vectors. After the MD process, the Li and Na atoms
which did not form a bond with the carbon were removed from the system. At the next
stage, the process of geometric relaxation of the obtained structures with searching for the
minimum of the system’s total energy was held. Figure 3 shows the process of composite
filling with Li (green) and Na (blue) and its equilibrium structures. The amount of Li in the
cell in Figure 3b is 62 atoms, while the amount of Na in Figure 3d is 42 atoms. To reveal the
stability of the structures, we calculated the adsorption energies of Li and Na [28]:

Eads =

(
Etotal − ECNT & graphene − Ex·n

)
n

, (2)

where Etotal is the total energy of the supercell, ECNT & graphene is the total energy of a pure
graphene–CNT composite, Ex is the energy of isolated Li or Na and n is the amount of Li
or Na.
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The results of the adsorption energy of Li were −1.216 eV/atom, while for Na it was
−1.090 eV/atom. As can be seen from the results, the adsorption energy had a negative
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value, which is quite expected for Li since graphene (graphite) layers are widely used
in LIBs. The negative value of the Na adsorption mentions the energy stability of such
composite structures in NIBs, which is difficult to obtain using graphite. Therefore, this
value gives hope for the efficiency of such anodes in real NIBs.

Furthermore, we estimated the specific capacity of the obtained structures using the
formula for calculating the Faraday capacity [7]:

Ct(mAh g − 1 ) =
nF

3.6M
(3)

where n is the number of transferred electrons, F is the Faraday constant (96,485 C/mol)
and M is the molecular mass of the active material. This was 484.4 mAh/g for the structure
with Li, and it was 325.3 mAh/g for the Na structure. For the composites with Li and Na,
the obtained capacities were higher than the capacities of graphite. Moreover, the result
was 30% higher for the structure with Li and even substantially higher for the structure
with Na.

In order to increase the specific capacity, we used a silicon cluster Si16 placed in the
cavity of the composite. As follows from [29,30], the Si16 clusters were the most stable, and
therefore they were used in this work. After optimization of the graphene–CNT composite
with the silicon cluster, the heat of formation of the structure was calculated and amounted
to −0.0972 eV/atom. Figure 4 shows a composite with a silicon cluster filled with Li and
Na.
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The adsorption energy for these structures was already −1.68 eV/atom for Li and
−1.33 eV/atom for Na. The specific capacity also increased; it was 658.3 mAh/g for Li and
397.7 mAh/g for Na. Figure 4b,d shows that Li and Na penetrated into the structure of
the silicon cluster and changed its original shape, thereby acquiring additional capacity.
The negative value of the adsorption energy also had a positive effect on the characteristics
of the composite, and this energy was lower than that of the composite without a silicon
cluster.

3.3. Electronic and Transport Properties

In addition to high capacity and energy stability, the LIB and NIB anode must also
have good electrical conductivity; otherwise, it is impossible to pass large charge-discharge
currents through such an anode. In order to identify the nature of the transport properties,
we built DOS and transmission function graphs. We used the Eig2DOS program supplied
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with SIESTA for building this. The expanding sigma in Eig2DOS was set to 0.2, since with
the basic settings, individual peaks were blurred and averaged. Figure 5 shows the DOS
graphs for all cases considered.
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The Fermi level in Figure 5 was shifted to zero. The graph in Figure 5a shows that the
graphene–CNT composite had a band gap at the Fermi level. In this case, the structure had
semiconducting properties. This behavior can be explained by going back to Figure 2 with
the charge distribution. As mentioned above, the graphene sheet gave up 0.162 electrons
to the CNT, and since the current flowed along the graphene sheet, the absence of 0.162
electrons affected the energy levels of the structure and caused an increase in resistance
relative to an ideal graphene sheet. Figure 5d shows the DOS for the composite doped with
a silicon cluster. In this case, the gap became less noticeable, and additional levels appeared
in the vicinity of the Fermi level. The curves in Figure 5b,c,e,f describe the DOS for Li and
Na with and without silicon. Here, the cells had additional levels near the Fermi level and
showed the absence of a band gap even despite the semiconducting properties of a pure
composite. The presence of a silicon cluster also affected the DOS distribution. For example,
in Figure 5b, for lithium at the Fermi level, the DOS was 35 states/eV, but in the presence
of silicon, it was already 52 states/eV (Figure 5e). The situation was similar with sodium.
On the one hand, in the absence of silicon at the Fermi level, the DOS was 22 states/eV,
with bandgap regions in the valence region at energies of −0.5 eV, −0.37 eV and −0.23 eV.
With the addition of silicon (Figure 5f), the band gaps at these energies disappeared, but at
the Fermi level, the DOS decreased and was 20 states/eV. For a correct assessment of the
obtained composites’ conductivity, the transmission functions were calculated (Figure 6).
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with Na; (d) composite filled with Si; (e) composite filled with Si–Li; and (f) composite filled with Si–Na.

In Figure 6a,d, the positive effect of the silicon cluster on the graphene–CNT com-
posite is noticeable. The cluster shifted the Fermi level of the pure composite toward the
conduction band. It can be seen from the inset in Figure 6d that the energy gap remained
practically unchanged. In electron transport, the levels near the Fermi level play a key
role; the shift of this level to the region of the presence of conduction channels significantly
reduces the resistance of the composite. In the presence of Li and Na, the picture is similar
to the DOS; the abundance of conduction channels and the absence of energy gaps at the
Fermi level lead to a decrease in resistance. It is already clearly seen here that the silicon
cluster significantly changed the transmission function of the composite with lithium and
sodium. Moreover, for lithium, it led to the appearance of conductivity dips near the Fermi
level (Figure 6e), while for sodium, on the contrary, it led to an increase in conductivity
(Figure 6f). A quantitative estimate of the resistance together with the main parameters of
the considered composites is shown in Table 1 below.

Table 1. Basic parameters.

Structure Number of Atoms Fermi Energy (eV) Resistance (kOhm) Capacity (mAh/g)

Clean composite 288 −4.869 5134.0 -
Composite and Li 350 −3.639 6.878 480.4
Composite and Na 330 −3.321 7.551 325.4
Composite and Si 304 −4.908 17.2 -

Composite and Si–Li 400 −3.859 8.245 658.3
Composite and Si–Na 362 −3.596 6.817 397.7

4. Conclusions

In this work, the objects of study were the composite materials based on graphene
and CNTs with the silicon cluster. On the basis of the DFT method with the exchange
function of Berland and Hildgaard vdW-DF-cx in the SIESTA program, the energy stability
of the composite, both pure and decorated with silicon, was calculated. The stability
assessment of the composite showed negative values for the heat of formation at the
level of −0.2241 eV/atom for the bonding of graphene and CNTs and −0.0972 eV/atom
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with the addition of a silicon cluster. The calculated adsorption energies of Li and Na
showed an equilibrium state with energies of −1.216 eV/atom for Li, −1.090 eV/atom
for Na without adding a silicon cluster to the composite and −1.68 eV/atom for Li and
−1.33 eV/atom for Na with the addition of a silicon cluster in the composite. Decorating a
graphene–CNT composite with a silicon cluster had a positive effect on the specific capacity
of the supercells. For a cell with Li, silicon increased the specific capacity by 37%, and
for Na, it was increased by 22.2%. Additionally, a silicon cluster significantly reduced the
resistance of a pure graphene–CNT composite by two orders of magnitude. It is especially
important to note the supercells with Na and their specific capacity. In comparison with
the specific capacity of graphite, the obtained structures demonstrated a tenfold increase in
the specific capacity and could already compete with Li. Since the considered composite
models were already being synthesized, this work could help researchers to improve the
existing LIB and NIB anodes and raise their characteristics to a new level.
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