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Abstract: The deletion of the arginine 14 codon (R14del) in the phospholamban (PLN) gene is a
rare cause of arrhythmogenic cardiomyopathy (ACM) and is associated with prevalent ventricular
arrhythmias, heart failure, and sudden cardiac death. The pathophysiological mechanism which
culminates in the ACM phenotype is multifactorial and mainly based on the alteration of the endoplas-
mic reticulum proteostasis, mitochondrial dysfunction and compromised Ca2+ cytosolic homeostasis.
The symptoms of this condition are usually non-specific and consist of arrhythmia-related or heart
failure-related manifestation; however, some peculiar diagnostic clues were detected, such as the
T-wave inversion in the lateral leads, low QRS complexes voltages, mid-wall or epicardial fibrosis
of the inferolateral wall of the left ventricle, and their presence should raise the suspicion of this
condition. The risk stratification for sudden cardiac death is mandatory and several predictors were
identified in recent years. However, the management of affected patients is often challenging due to
the absence of specific prediction tools and therapies. This review aims to provide the current state of
the art of PLN R14del cardiomyopathy, focusing on its pathophysiology, clinical manifestation, risk
stratification for sudden cardiac death, and management.
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1. Introduction

Arrhythmogenic cardiomyopathy (ACM) is a myocardial disease that affects the left ven-
tricle (LV), right ventricle (RV), or both, whose most typical characteristics are the progressive
fibrotic or fibrofatty myocardial replacement that predisposes to ventricular arrhythmias and
can be responsible for global or regional ventricular dysfunction [1]. In the pre-genetic era,
ACM was considered a myocardial disease that exclusively or predominantly involved the RV,
the so-called arrhythmogenic RV dysplasia (ARVD) or cardiomyopathy (ARVC), whose clini-
cal features were RV dysfunction and arrhythmias [2,3]. Therefore, the classical diagnostic
criteria for ACM were focused on RV involvement [4]. Subsequently, autopsy investigation,
cardiac magnetic resonance (CMR) and genotype-phenotype correlation studies showed
that the LV was commonly involved by the fibrotic replacement, changing the paradigm of
the disease [5,6].

The current classification of ACM includes different clinical variants according to
the prevalent ventricular involvement. The classical ARVC phenotype is characterized by
isolated RV involvement. On the other hand, the LV phenotype, defined arrhythmogenic
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left ventricular cardiomyopathy (ALVC), is characterized by predominant LV involvement,
and the biventricular phenotype is defined as a disease involving both the ventricles [7].

The genetic basis of ACM is responsible for the clinical phenotype. The classic ARVC
and the biventricular phenotype are mainly caused by pathogenetic variants involving
desmosomal genes, such as PKP2, JUP, DSC2, DSG2, and DSP [8–10]. On the other hand,
patients with ALVC phenotype carry non-desmosomal gene pathogenic variants, such
as ion channel, sarcomere, cytoskeleton, mitochondrial, and sarcomeric genes [11–13].
Therefore, with the increased knowledge of the ALVC phenotype, specific diagnostic
criteria for the left-side disease variants were proposed (the “Padua Criteria”) [14], based
on the following phenotypic features: electrocardiographic (ECG) abnormalities, such as
low QRS voltages and T-wave inversion in the lateral or inferolateral leads; ventricular
arrhythmias with a QRS morphology which denotes its origin from the LV; normal or mild
hypokinetic LV with no or mild dilation; extensive myocardial fibrosis evidenced by CMR
as late gadolinium enhancement (LGE) with a non-ischemic pattern of distribution.

However, in the absence of RV involvement, the diagnosis of ALVC cannot be formu-
lated based on the phenotype criteria due to the extreme overlap with other inherited or
acquired conditions, such as dilated cardiomyopathy (DCM), myocarditis, or cardiac sar-
coidosis [15]. Thus, in the presence of a phenotype suggestive for ALVC, the demonstration
of a pathogenic or likely-pathogenic variant of an ACM-related gene is required for the
diagnosis [16].

The identification of the genetic variant underlying the ACM phenotype is essential
not only for the diagnosis but also for risk stratification and management. Indeed, several
genetic variants were found to be associated with an increased risk of ventricular arrhyth-
mias and sudden cardiac death (SCD) [17,18]. Among these, the pathogenic PLN R14del
gene variant, commonly identified in patients fulfilling the diagnostic criteria for ALVC, is
generally associated with early-onset arrhythmias and a worse prognosis [19]. Unfortu-
nately, data on the natural history, risk prediction and management of ALVC caused by
this pathogenic variant are scant.

This review aims to provide the current state of the art of PLN (phospholamban) R14del
cardiomyopathy, focusing on its pathophysiology, clinical manifestation, risk stratification
for SCD, and management.

2. Pathophysiology

Physiological cardiac muscle contraction is a finely tuned process mainly regulated by
accurately synchronized Ca2+ fluxes in cardiomyocytes [20,21]. When an action potential
depolarizes the cell, voltage-dependent L-type Ca2+ channels (LTCCs) open to generate an
inward Ca2+ current, which leads to an additional release of Ca2+ from the sarcoplasmic
reticulum (SR) through the activation of ryanodine receptor channels 2 (RYR2). The
intracellular increase of the Ca2+ concentration is responsible for the myofilament activation
and contraction. During diastole, Ca2+ is removed from the cytosol via the sarcolemmal
Na+/Ca2+ exchanger (NCX1), which transfers Ca2+ in the extracellular space, and the SR
Ca2+ ATPase (SERCA2a), which pumps the Ca2+ in the SR lumen [22]. SERCA2a-dependent
diastolic Ca2+ uptake dominates over the extracellular extrusion via the NCX1.

PLN finely regulates SERCA2a activity. PLN is a protein of 52 amino acids, localized
into the SR membrane and involved in cardiomyocyte calcium handling. PLN activity
is modified by its phosphorylation state [23,24]. Its phosphorylation by protein kinase A
(PKA) at Ser-16 and/or by calmodulin-dependent kinase II (CaMKII) at Thr-17 releases its
inhibitory effects on SERCA2a [24].

From a theoretical point of view, the mutation of PLN and its subsequent dysfunction
results in more significant inhibition of SERCA2a by non-phosphorylated PLN, thereby
leading to an impairment of Ca2+ reuptake. Thus, the decrease in SR Ca2+ content is respon-
sible for impaired systolic function, while the diastolic cytosolic overload is responsible for
diastolic dysfunction and arrhythmias.
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However, the pathophysiological mechanisms which culminate in the ALVC pheno-
type are more complex and not fully understood. In recent years, several studies have been
carried out to elucidate the underlying molecular features of the PLN R14del variant.

This variant was identified for the first time in humans with hereditary cardiomy-
opathy by Haghighi et al. [19] and then studied in murine models. To understand the
molecular mechanisms which link the PLN variant to ACM in human induced pluripotent
stem cells (hiPSC-CMs), Feyen et al. [25] used single-cell RNA sequencing. They found
the presence of elevated stress of the endoplasmic reticulum ER with an unfolded protein
response (UPR), a signaling pathway with a critical role in the keeping of proteostasis in the
ER [26], in the PLN R14del mutants compared with controls. These findings suggest that
the PLN R14del variant is responsible for an altered ER proteostasis. This observation is of
clinical interest since for long-term cell function preservation, the balance among protein
production, folding and degradation is required. With the aging of the cells, this ability
progressively reduces, and the aggregation of unfolded proteins is typical of different
age-related diseases, such as Parkinson’s Diseases and Alzheimer’s Disease [27].

The proteostasis involvement was also identified by Eijgenraam et al. [28], which
postulated that this alteration, combined with the aggregation on PLN proteins, are among
the first hallmarks of PLN R14del cardiomyopathy.

Furthermore, Cuello et al. [29] reprogrammed dermal fibroblasts to hiPSC-CMs and
established isogenic controls using CRISP/Cas9. Then, cardiomyocytes were differentiated.
They found that cardiomyocytes that bring the PLN R14del variant showed a Ca2+ load-
dependent irregular beating pattern, lower force and a prolonged Ca2+ transient decay
time than controls. In addition, the ER, ribosomes, and mitochondria exhibited less protein
content when analyzed using proteomic analysis. Finally, large lipid droplets in mitochon-
dria and an ER dilation were observed using electron microscopy. This evidence suggests
that the ER and mitochondrial impairment are a novel disease mechanism underlying the
PLN R14del cardiomyopathy.

In conclusion, the molecular mechanisms underlying the PLN R14del cardiomyopathy
are complex and under investigation (Figure 1). Therefore, a better understanding of its
pathophysiology is required to formulate a tailored therapy.
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Figure 1. Pathophysiology of PLN R14del Cardiomyopathy. ACM, arrhythmogenic cardiomyopathy;
ER, endoplasmic reticulum; PLN, phospholamban; SERCA2a, sarcoplasmic reticulum Ca2+ ATPase.
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3. Clinical Manifestations

PLN R14del cardiomyopathy presents overlapping clinical features between ALVC
and DCM [30]. The identification of specific phenotypic features to distinguish patients
with PLN R14del cardiomyopathy and their relatives from those with other forms of
ACM or DCM has been investigated in different studies. Many signs of the disease can be
identified in the pre-symptomatic phase, in particular repolarization abnormalities, frequent
ventricular premature complexes (VPCs), and CMR LGE, as evidenced in the recently
published iPHORECAST (PHOspholamban RElated CArdiomyopathy intervention Study)
trial [31].

3.1. Signs and Symptoms

The disease onset seems to be age-related, with a slightly higher prevalence in
males [32]. The symptoms are usually non-specific and consist of arrhythmia-related
(e.g., palpitation, syncope) or heart failure-related symptoms (e.g., dyspnoea, exercise
limitation). Symptoms usually appear in the fifth decade of life [30]; however, cases of SCD
have been described in patients younger than 30 years old [30,32,33].

3.2. Electrocardiography

The ECG findings reflect the myocardial fibrosis substrate, as proved by histological
examination studies, and typically consist of low QRS voltages with reduced R-wave
amplitude [19,34]. These abnormalities have not been found in patients without the
mutation [35]. Te Rijdt et al. [36] found a median R-wave amplitude of 5.3 mV, with more
decreased QRS voltages in older mutation carriers. Negative T-waves are also common
in PLN R14del cardiomyopathy. They were identified in the right precordial leads in 11%
of carriers and in V4–V6 in 29% of them (80% of index patients) [36]. Moreover, 15% of
patients experience ventricular tachycardia episodes.

Van de Leur et al. [37] utilized deep neural networks (DNNs) to detect possible typical
ECG abnormalities in PLN R14del cardiomyopathy, useful to identify pre-symptomatic
mutation carriers. The elaborated algorithm was capable not only of confirming known
features of the disease, such as negative T-waves and low QRS voltages, but also to define
their characteristics. Low QRS voltages consisted more properly in R-wave attenuation
with normal S-wave, localized in the right precordial leads V2 and V3, and in the lateral
leads DI, aVL and V6. Moreover, T-waves attenuation/inversion was situated not only
in V2, V3, and V6 but also in DI and aVL. Furthermore, it was also able to find a new
distinctive element on surface ECG, the prolonged PR interval, that suggests a possible
involvement of atrioventricular conduction.

3.3. Cardiac Magnetic Resonance

The most common CMR pattern of disease is the presence of epicardial or mid-
wall fibrosis in the inferolateral LV wall, which usually corresponds with negative T
waves in the LV inferolateral leads [33,38]. Functional and structural impairment of LV is
common, usually represented by mild LV dilation and dysfunction, as confirmed either by
echocardiography or CMR studies [33,38,39].

A recent study showed an extensive LGE in the LV of the affected patients, even in
those with preserved or mildly reduced LV ejection fraction (LVEF) (>45%) and was found
to be independently associated with ventricular arrhythmias [36]. However, LGE was more
significant in older and in those with reduced LVEF. RV was involved by LGE only in 5%
of patients, and it was associated with reduced RV ejection fraction.

4. Risk Stratification for Sudden Cardiac Death

PLN R14del variant carriers can experience early-onset ventricular arrhythmias, rang-
ing from frequent PVCs to ventricular fibrillation and SCD, which in rare cases may be
the first clinical presentation of the cardiomyopathy [30,32,33]. Due to the lack of specific
recommendations for PLN R14del cardiomyopathy, the indication for the implantable
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cardioverter–defibrillator (ICD) implantation for SCD prevention follows the current ACM
and DCM guidelines and consensus documents [7,40].

However, while there is clear evidence that ICD implantation is recommended for sec-
ondary prevention in those patients who experienced sudden cardiac arrest or ventricular
arrhythmias with hemodynamic instability, more difficult is the identification of subjects
at high risk for SCD who require an ICD for primary prevention. In recent years, several
studies investigated the SCD predictors in patients with PLN R14del cardiomyopathy.

Firstly, van Rijsingen et al. [32] identified LVEF < 45%, and sustained and non-
sustained ventricular tachycardia (SVT and NSVT) as independent risk factors for malig-
nant ventricular arrhythmias.

Subsequently, Te Rijdt et al. [36] investigated the extent and localization of myocardial
fibrosis and its association with ECG features and ventricular arrhythmias in PLN R14del
mutation carriers. They found that LGE in the LV, but not attenuated R-waves and inverted
T-waves, was independently associated with ventricular arrhythmias. Of importance, 30%
of patients with preserved LVEF showed a significant LGE in the LV. However, in this
study, the occurrence of ventricular arrhythmias was determined on ambulatory 24 h ECG
Holter or exercise ECG, which were not available for every patient, leading to a possible
selection bias.

Furthermore, the incremental value of the LV mechanical dispersion (LVMD) by
echocardiographic deformation imaging for sustained ventricular arrhythmias prediction
was recently investigated. Taha et al. [40] evaluated 243 PLN R14del mutation carriers,
which were classified into three groups according to the “45/45” rule. Patients with overt
LV dysfunction (LVEF < 45%) had the worst prognosis in terms of ventricular arrhythmic
events and were considered to be at high risk, similar to a previous study [32]. In contrast,
patients with normal LV function (LVEF > 45% and LVMD < 45 ms) showed a low risk of
developing sustained ventricular arrhythmias, and those with mechanical LV dysfunction
(LVEF > 45% and LVMD > 45 ms) exhibited an intermediate risk, falling into a “grey zone”
where a multiparametric assessment for SCD risk prediction is required.

Finally, a multiparametric algorithm to identify patients who may benefit from ICD im-
plantation for primary prevention was developed [41] (https://plnriskcalculator.shinyapps.
io/final_shiny/, accessed on 1 March 2022). The multivariable model, including LVEF,
PVC count in 24 h, number of negative T-waves, and presence of low QRS voltages on ECG,
showed an excellent discriminative ability (C-statistic 0.83 (95% CI 0.78–0.88)). However,
the study suffers from some limitations, such as the endpoint used for the assessment of the
arrhythmic outcome, the lack of an external validation cohort, and the insufficient amount
of data on the presence and extent of LGE. In detail, the use of a combined endpoint,
consisting of SVT, appropriated ICD intervention, and SCD, may overestimate the true
risk of SCD. Indeed, ICD intervention is a poor surrogate of SCD since most ventricular
tachycardia episodes treated by ICD are expected to be self-terminating. Moreover, the lack
of data on LGE may affect the power of the prediction model and can be responsible for
the identification of ECG abnormalities (i.e., low QRS voltages and T-waves inversion) as
SCD predictors, in contrast with the previous study.

In conclusion, two predictors (LVEF < 45% and extensive LGE in the LV) were found
to be strongly associated with major arrhythmic events and, in their presence, an ICD
implantation in primary prevention should be considered. However, in the remaining
patients, risk stratification should be based on a multiparametric approach, including
family and clinical history, ECG, ECG-Holter monitoring, echocardiography and CMR, and
discussed case by case in the context of a multidisciplinary team of experts (Figure 2).

https://plnriskcalculator.shinyapps.io/final_shiny/
https://plnriskcalculator.shinyapps.io/final_shiny/
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magnetic resonance; ECG, electrocardiography; LGE, late gadolinium enhancement; LVEF, left
ventricular ejection fraction; LVMD, left ventricular mechanical dispersion; NSVT, non-sustained
ventricular tachycardia; PVC, premature ventricular contraction; SCD, sudden cardiac death; SVT,
sustained ventricular tachycardia.

5. Medical Treatment

As previously reported, the PLN R14del cardiomyopathy is associated with a high
prevalence of ventricular arrhythmias, heart failure (HF), and SCD. Unfortunately, no spe-
cific treatments for this condition are currently available. For this reason, the primary efforts
should be oriented toward the prevention and treatment of life-threatening arrhythmias
and HF (Figure 3).

The PLN R14del cardiomyopathy phenotype is typically associated with a reduction
(<40%) or a mild reduction (LVEF 40–50%) of the LVEF, while the RV is rarely involved.
Therefore, the treatment of HF in these patients is based on disease-modifying drugs,
such as angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor block-
ers (ARBs), beta-blockers, mineralocorticoids antagonists (MRAs), angiotensin receptor–
neprilysin inhibitor (ARNI), and sodium–glucose cotransporter 2 (SGLT2) inhibitor, and
diuretics for the treatment of congestion, according to the current guidelines [42]. Further-
more, in patients with more severely reduced LVEF, cardiac resynchronization therapy
should be considered. In addition, anticoagulant therapy is recommended if there are
atrial fibrillation, intracavitary thrombosis and venous or systemic thromboembolism [7,43].
Moreover, it may be considered in individuals with LV or RV aneurysms.

Next to its use in the setting of HF, beta-blockers are used for the management of
arrhythmias. In particular, the use of beta-blockers is recommended in patients with ACM
receiving inappropriate ICD interventions due to arrhythmias such as sinus tachycardia,
supraventricular tachycardia, atrial fibrillation, or atrial flutter causing a high ventricular
rate [44–46]. Moreover, in patients with ACM and ventricular arrhythmias, antiarrhythmic
drugs such as amiodarone and sotalol may be used to control symptoms and reduce ICD
shocks [47,48]. Finally, in patients with recurrent sustained monomorphic VT despite
antiarrhythmic drug therapy (or intolerant to such therapy), catheter ablation can be opted
to reduce arrhythmic events and ICD shocks [49].
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As stated before, no evidence-based treatment is available for pre-symptomatic carriers.
The i-PHORECAST trial, aiming to address whether pre-emptive treatment of PLN R14del
mutation carriers with eplerenone can prevent or delay the onset of cardiomyopathy, is still
ongoing [31].
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Figure 3. Medical treatment of PLN R14del cardiomyopathy manifestations. ACE, angiotensin
converting enzyme; ARNI, angiotensin receptor neprilysin inhibitor; CRT, cardiac resynchronization
therapy; HF, heart failure; ICD, implantable cardioverter defibrillator; LVEF, left ventricular ejection
fraction; MRA, mineralocorticoid receptor antagonist; OMT, optimal medical treatment; SCA, sudden
cardiac arrest; SGLT2. sodium-glucose co-transporter-2; VA, ventricular arrhythmia; VT, ventricular
tachycardia.

6. Conclusions

PLN R14del cardiomyopathy is a rare cause of ACM and is associated with prevalent
ventricular arrhythmias, HF, and SCD. In the spectrum of ACM, the identification of this
condition is mandatory to approach a tailored risk stratification and management.

However, several gaps in knowledge still exist in this field (e.g., pathophysiology
is still poorly understood, no tailored therapy available, etc.). A better understating of
the molecular mechanisms responsible for the cardiomyopathy phenotype is required to
develop an aetiological therapy.
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