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Abstract: It is desirable but challenging to locate solid catalysts at the oil-water interface to stabilize
“Pickering emulsions”, which is one of the promising ways to developefficient green chemical
processes. Herein, water-stable metal organic framework ZIF-8 without any chemical modification
was demonstrated to be an interface-active catalyst for Knoevenagel condensation in a biphasic
system. Pickering emulsion formed under the reaction conditions due to its amphiphilic property,
which was beneficial to the mass transfer and led to high catalytic performance. Moreover, it can be
repeatedly applied for Knoevenagel condensation for at least six successive cycles without losing its
catalytic activity and framework integrity.
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1. Introduction

Using water as a solvent is one of the main ways toward the development of
environmentally-friendly chemical processes. However, the low mass transfer efficiencies, ascribed
to a modest interfacial contact due to the inhomogeneous mixing even under vigorous stirring,
leads to poor catalytic activities in biphasic reaction systems. Although adding surfactants is
a frequently-used way toincrease the liquid-liquid interfacial area, itresults in a negativeenvironmental
impact. Alternatively, using an interfacial solid catalyst to stabilize a “Pickering emulsion” is
an emerging strategy to develop greener chemical processes. “Pickering emulsion” is an emulsion that
is stabilized by interfacial particles. The catalytic efficienciesin biphasic catalytic systems could
be improved greatly by the location ofinterfacial catalysts at the interfaces. Likewise, it could
not only decrease the phase transfer limitations, but alsocouldcatalyze reactions at the interface
of two immiscible solvents. Furthermore, the interfacial solid catalystscan be easily recoveredfrom
thePickering emulsions after the reaction [1]. In line with the aforementioned properties of Pickering
emulsions, a couple of interface-active particles, such as silicas [2–8], zeolites [9], carbon [10] and metal
organic frameworks [11,12], were attempted to be used to stabilizePickering emulsions.

Metal organic frameworks (MOFs) are a new class of highly-ordered porous coordination
polymers that can be assembled from plenty of metal ions/clusters andmulti-topic organic struts. MOFs
are more attractive materials than conventional porous materials in heterogeneous catalysis, due to
their exceptional modular properties, imparting ultrahigh porosity, structural diversity, tunable surface
properties and diverse functionalities [13,14]. Despite progressiveadvances made so far in the synthesis
and catalytic applications of MOFs, the instability in waterhas considerably limited these MOFs’
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applications in Pickering emulsions [15,16]. ZIF-8 is one of the representative examples of water-stable
MOFs, which could be constructed by Zn2+ and 2-methylimidazole in organic or aqueous solvents.
Theefficiency of ZIF-8 has been demonstrated for heterogeneous Knoevenagel condensations [17,18],
cycloadditions [19] and Friedel–Crafts acylation [20] in organic solvents. However, its catalytic
efficiency in aqueous mediumhas not yet been investigated. Herein, as shown in Figure 1, ZIF-8 was
prepared with a narrow size distribution and investigated as an interfacial catalyst to promote the
Knoevenagel condensation. It is demonstrated that ZIF-8 shows a good self-assembly ability at the
oil-water interface and allows oneto formulate an oil-in-water (O/W) Pickering emulsion. Moreover,
the interface-active catalyst can be recovered by centrifugation and reused for at least sixtimes without
obvious loss of its catalytic performance and framework integrity.
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ZIF-8 nanoparticles with narrow size distributions were prepared accordingly. Scanning 
electron microscopy (SEM) was used to characterize theirmorphology. Figure 2A shows 
representative SEM micrographs of ZIF-8. Regular nanoparticles with a narrow size distribution 
(about 100 nm) were observed. X-ray powder diffraction (XRD) was further used to determine 
thecrystal structure of ZIF-8. As shown in Figure 3a, the diffraction pattern for the prepared solid 
has several sharp and intense peaks that can be well indexed to ZIF-8 [21]. Its structural stability in 
water was tested, and the diffraction pattern for recovered ZIF-8 is shown in Figure 3b. No obvious 
change was observed before and after treatment, indicating that it waswater stable, which is a 
prerequisite for potential applications in an aqueous medium. Meanwhile, images of its 
transmission electron microscopies (TEM) further confirmedits water stability. 

 

Figure 1. Schematic presentation of the synthesis of ZIF-8 nanoparticles and catalytic reactions
in the Pickering emulsion. (a) Synthesis and TEM image of ZIF-8 nanoparticles; (b) Formation of
Pickering emulsion stabilized by ZIF-8; (c) Schematic presentation of the Knoevenagel condensation in
Pickering emulsion.

2. Results and Discussion

ZIF-8 nanoparticles with narrow size distributions were prepared accordingly. Scanning electron
microscopy (SEM) was used to characterize theirmorphology. Figure 2A shows representative SEM
micrographs of ZIF-8. Regular nanoparticles with a narrow size distribution (about 100 nm) were
observed. X-ray powder diffraction (XRD) was further used to determine thecrystal structure of ZIF-8.
As shown in Figure 3a, the diffraction pattern for the prepared solid has several sharp and intense
peaks that can be well indexed to ZIF-8 [21]. Its structural stability in water was tested, and the
diffraction pattern for recovered ZIF-8 is shown in Figure 3b. No obvious change was observed before
and after treatment, indicating that it waswater stable, which is a prerequisite for potential applications
in an aqueous medium. Meanwhile, images of its transmission electron microscopies (TEM) further
confirmedits water stability.
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Figure 3. XRD patterns of fresh ZIF-8 (a) and recovered ZIF-8 after treatment in water (b). 

To the best of our knowledge, MOFs including ZIF-8 have been confirmed to be good catalysts 
for the Knoevenagel condensations in organic solvents [17,18]. The stability in aqueous medium of 
ZIF-8 has been proven by the XRD patterns and TEM images as shown in Figures 2 and 3 in our 
experiments. Therefore, the activities of ZIF-8 nanoparticles for the Knoevenagel condensation 
between benzaldehyde and ethyl cyanoacetatein various solvents were firstly investigated, and the 
results are summarized in Table 1. Similar to the results observed in previous reports, ZIF-8 gave 
high or medium yields in polar solvents and poor results in nonpolar solvents. As we know, 
catalytic reaction in water or biphasic systems is a greener route than in organic solvent. To our 
delight, ZIF-8 could also promote the reaction in water in an efficient way. Over an 80% yield was 
obtained in water after 30 min, a little bit lower than that in DMF, but higher than that in THF. 
Then, a water/ZIF-8/ethyl acetate system was used to examine the interfacial property of ZIF-8. 
After adding 2 mLof pure or 2-nitrobenzaldehydedissolved ethyl acetate to 3 mL of water 
containing 0.8 wt % of ZIF-8 (with respect to water), as shown in Figure 4A,B, ZIF-8 is 
predominantlydistributed at the interface between the oil and aqueous phase. After 
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it was an oil-in-water Pickeringemulsion, and the droplets sizes were about 2–10 μm. 
  

Figure 3. XRD patterns of fresh ZIF-8 (a) and recovered ZIF-8 after treatment in water (b).

To the best of our knowledge, MOFs including ZIF-8 have been confirmed to be good catalysts
for the Knoevenagel condensations in organic solvents [17,18]. The stability in aqueous medium of
ZIF-8 has been proven by the XRD patterns and TEM images as shown in Figures 2 and 3 in our
experiments. Therefore, the activities of ZIF-8 nanoparticles for the Knoevenagel condensation between
benzaldehyde and ethyl cyanoacetatein various solvents were firstly investigated, and the results
are summarized in Table 1. Similar to the results observed in previous reports, ZIF-8 gave high or
medium yields in polar solvents and poor results in nonpolar solvents. As we know, catalytic reaction
in water or biphasic systems is a greener route than in organic solvent. To our delight, ZIF-8 could
also promote the reaction in water in an efficient way. Over an 80% yield was obtained in water after
30 min, a little bit lower than that in DMF, but higher than that in THF. Then, a water/ZIF-8/ethyl
acetate system was used to examine the interfacial property of ZIF-8. After adding 2 mLof pure or
2-nitrobenzaldehydedissolved ethyl acetate to 3 mL of water containing 0.8 wt % of ZIF-8 (with respect
to water), as shown in Figure 4A,B, ZIF-8 is predominantlydistributed at the interface between the
oil and aqueous phase. After subsequentvigorous stirring or shaking, the appearances of its mixture
(Figure 4C) and its optical micrograph demonstrated the formation of Pickering emulsion. Optical
micrographs revealed that it was an oil-in-water Pickeringemulsion, and the droplets sizes were about
2–10 µm.
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Table 1. Knoevenagel condensation between benzaldehyde and ethyl cyanoacetatein various solvents
in the presence of ZIF-8.

Catalyst Solvent Time
(min)

Yield
(%) Catalyst Solvent Time

(min)
Yield
(%)
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80 ◦C, 30 min.
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Figure 4. Photographs of the water/ZIF-8/ethyl acetate system (A) and water/ZIF-8/2-nitrobenzaldehyde
and ethyl acetate system (B) without stirring. Appearance (C) and corresponding optical microscopy image
(D) of Pickering emulsions stabilized by ZIF-8.

Having established that ZIF-8 is an efficient catalyst for the Knoevenagel condensation between
benzaldehyde and ethylcyanoacetate in an aqueous or biphasic system, we extended the study to
various aromatic aldehydes with ethyl cyanoacetate or malononitrile. The results are listed in Table 2.
To our delight, most of the aldehyde derivatives could be converted efficiently. Substitution and
size effects were also observed. In our previous works, the effect of substitution on the reactivityof
benzaldehyde catalyzed by UiO-66-NH2was also observed for the Knoevenagel condensation [22,23].
The electron-donating substitutions lowered the catalytic efficiency, but the electron-withdrawing
groups enhanced its catalytic efficiency. ZIF-8 was also active for the Knoevenagel reactions of larger
aromatic aldehydes (1-naphthaldehyde and 9-anthraldehyde) with cyanoacetate or malononitrile,
though the yields were somewhat decreased when the aldehyde substrates become bulkier (comparing
Entries 1, 7 and 8 in Table 2). The decrease of yields may be an indicator of size effects. As shown by
Entries 1, 7 and 8, the yield of 9-anthraldehyde reacting with ethyl cyanoacetate (2 h, 23%) is much
lower than that of 1-naphthaldehyde (1 h, 45%), which is much lower than that of benzaldehyde (1 h,
>99%). The activities vary in the size order of benzaldehyde> 1-naphthaldehyde > 9-anthraldehyde.
This trend holds true forthat of malononitrile. All results above reflect that the probability of the
bulkier substrates forming transition-state complexes was significantly reduced due to the limited
space in the porous catalyst.
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Table 2. ZIF-8-catalyzed Knoevenagel condensations of various substrates in the biphasic system.

Entry Catalyst Substrate Substrate Time (min) T (◦C) Yield (%)

1 Blank
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The recyclability and reusability of solid catalysts arethe most positiveaspectscompared to
homogeneous catalysts for practical applications. Recovery and reuse of ZIF-8 was firstly studied
using Knoevenagel condensation between benzaldehyde and ethyl cyanoacetatein a biphasic system
at 80 ◦C. After the completion of the reaction, the liquidlayer was decanted, and the catalyst was
reused for the next run under the same conditions. Furthermore, phase structures of recovered ZIF-8
were determined by powder X-ray diffraction. It was observed thatthe phase structure of ZIF-8 was
completely destroyed after the reaction (Figure 5b). The following experiments were carried out to find
out the possible destroyers. Previous resultshaveproven that ZIF-8 is a water-stable MOF. Therefore,
the stability of ZIF-8 in the aqueous solution of cyanoacetate and benzaldehyde wasfurther tested,
respectively. As shown in Figure 5c,d, the phase structure of ZIF-8 was maintained in the aqueous
solution of cyanoacetate, but changed in that of benzaldehyde. The same results were observed even
under mild reaction conditions by replacingethyl cyanoacetate with malononitrile at 40 ◦C. The tested
pH value of the aqueous solution of benzaldehyde wasbelow five, indicating that the acid impurity was
the possible destroyer of ZIF-8. Many reports indicated that the stability of ZIF-8 in aqueous medium
is pH dependent. It is stable in a basic system, but instable in acidic medium [24,25]. Therefore,
2-nitro-benzaldehyde with high purity was selected as a new substrate. To our delight, as shown in
Figure 6c, the XRD pattern of the recovered ZIF-8 is same asthat of the fresh solid.

The recycle experiment was carried out using the Knoevenagel condensation between
2-nitrobenzaldehyde and malononitrileat 40 ◦C in a biphasic system as a test reaction. Although
some solid was lost during the centrifugation, as shown in Figure 7, the yields in the consecutive
cycleswerealmost the same asthoseof the first cycle. XRD patterns of ZIF-8 before and afterreaction
(Figure 8) revealedbetter integrity in the framework structure, but the TEM image (Figure 9c)
demonstrated the presence of newly-formed mesoporous cages in the recovered solid. The retainedor
improved specific activity canprobably be attributedto the more exposed active site and better mass
transfer in the hierarchical ZIF-8. A hot filtration experiment was further performed to confirm
theheterogeneous nature of the catalytic reaction (Figure 10). The solid catalyst was removed from hot
solution by filtration 10 min after initiating the catalytic test run. The reaction of the filtrate was then
monitored for another 50 min. No significant further conversions were observed, indicating that most
of the conversions were theresult ofthe heterogeneous catalysis.
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Figure 6. XRD patterns of fresh ZIF-8 (a), recovered ZIF-8from the reaction betweenbenzaldehyde and
malononitrile in water at 40 ◦C (b) and recovered ZIF-8 from the reaction between 2-nitrobenzladehyde
and malononitrile in water at 40 ◦C (c).
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Figure 7. Recycle results of ZIF-8 in the Knoevenagel condensation between 2-nitrobenzaldehyde and
malononitrilein water at 40 ◦C.
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Figure 8. XRD patterns of fresh ZIF-8 (a), recovered ZIF-8 after three cycles (b) and after six cycles (c)
from the reaction between 2-nitrobenzladehyde and malononitrile in water at 40 ◦C.
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Figure 9. TEM images of fresh ZIF-8 (A), recovered after three cycles (B) and after six cycles (C) from
the Knoevenagel condensation between 2-nitrobenzaldehyde and malononitrilein water at 40 ◦C.
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Figure 10. Hot filtration experiments of ZIF-8-catalyzed condensations between (a) 2-nitrobenzaldehyde
and (b) ethyl acetate in a biphasic system.

3. Experimental Section

3.1. Preparation of ZIF-8 Nanoparticles

Synthesis of ZIF-8 nanoparticles: ZIF-8 nanoparticles were prepared according to the method
reported with minor revision [21]. Firstly, 2-methylimidazole (6.6 g, 80 mmol) and Zn(NO3)2·6H2O (3 g,
10 mmol) were dissolved in 100 mL of methanol, respectively. Then, the solution of Zn(NO3)2·6H2O
was quickly poured into the solution of 2-methylimidazole under stirring (1000 rpm) atroom
temperature. After stirringfor 1 h, the precipitate wasisolated by centrifugationat 10,000 rpm for
10 min.The solid was washed three times with methanol and dried under a vacuum.

3.2. Characterization

The crystal structures of materials were analyzed by a Bruker D4 Endeavour Powder X-ray
diffractometer (Cu Kα, λ = 0.15405 nm, 40 kV and 40 mA). The morphology and size of the ZIF-8
were determined by scanning electronic microscopy (SEM, HitachiS4800, Tokyo, Japan, 5.0 kV) and
transmission electron microscopy (TEM, JEM-2100, Tokyo, Japan, 200 kV). The Pickering emulsions
were measured on an Olympus BX51 microscope.
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3.3. Catalytic Activity Measurements

Typically, 25 mg of ZIF-8, 4 mmolof ethyl cyanoacetate or malononitrile and 5 mL of solvents were
added into a 10-mL glass reactor. After stirring for 10 min at the desired temperature under an inert
atmosphere, 3.5 mmol of benzaldehyde or derivatives were added to start the reaction. After the
reaction, the catalyst was separated by centrifugation, successively rinsed withfresh ethyl acetate,
ready for the next cycle. Yields of the reactions were estimated by gas chromatography (GC7900,
Techcom, Shanghai, China) equipped with a flame ionization detector (FID) and an SE-30 capillary
column (30 m × 0.25 mm × 0.25 µm).

4. Conclusions

In summary, ZIF-8 wasdemonstrated to be a water stable and an interface-active catalyst for
Knoevenagel condensation in a biphasic system. It efficiently promoted the Knoevenagel condensations
of various aromatic aldehydes in biphasic systems as an interfacial catalyst. Pickering emulsions
formed during the reaction due to its amphiphilic property, which wasbeneficial to mass transfer and
enhanced its catalytic performance in a biphasicsystem. It exhibited good structural stability during
the Knoevenagel condensation reactions and could be recovered and recycled as a heterogeneous
catalyst for more than sixtimes without obvious loss of activity in the condensation between
2-nitrobenzaldehyde and malononitrile at mild reaction conditions. The enhanced specific activity
in the consecutive runs wasascribed toits newly-formed hierarchical structure observed by TEM
images. Furtherdevelopment of catalytic reactions by using hierarchical ZIF-8is currently under
investigation. The findings mentioned above will open an avenue for using metal-organic frameworks
as an interfacial solid catalyst.
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