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Abstract: Dry reforming of ethanol and glycerol using CO2 are promising technologies for H2

production while mitigating CO2 emission. Current studies mainly focused on steam reforming
technology, while dry reforming has been typically less studied. Nevertheless, the urgent problem of
CO2 emissions directly linked to global warming has sparked a renewed interest on the catalysis
community to pursue dry reforming routes. Indeed, dry reforming represents a straightforward route
to utilize CO2 while producing added value products such as syngas or hydrogen. In the absence of
catalysts, the direct decomposition for H2 production is less efficient. In this mini-review, ethanol
and glycerol dry reforming processes have been discussed including their mechanistic aspects and
strategies for catalysts successful design. The effect of support and promoters is addressed for better
elucidating the catalytic mechanism of dry reforming of ethanol and glycerol. Activity and stability
of state-of-the-art catalysts are comprehensively discussed in this review along with challenges and
future opportunities to further develop the dry reforming routes as viable CO2 utilization alternatives.
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1. Introduction

Carbon dioxide is one of the key greenhouse gases causing the observed global warming. Therefore,
more attention has been given to the utilization of renewable energy and CO2 recycling technologies.
It is mainly from the combustion of fossil fuels since the Industrial Revolution age. In 1750, the CO2

concentration in the atmosphere was 277 ppm according to Joos et al. and reached concentrations as
high as 406.7 ppm in July 2017 [1]. However, CO2 emissions have been found to be constant for the
last three years as shown Figure 1a according to the International Energy Agency, proving the effect of
the global effort regarding environmental policies.

Carbon capture and storage is regarded as a main method to limit CO2 release in the atmosphere;
nevertheless, this technology has not demonstrated commercial viability so far. A more challenging
alternative from the chemical and engineering perspective is the carbon capture and recycling (CCR)
approach, where CO2 is converted and recycled back to fuels and added value chemicals.
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Figure 1. CO2 emissions from fossil fuels and industry for (a) the globe (grey shading); (b) global 
emissions by fuel type; (c) territorial CO2 emissions for USA, China, India, and for the EU—
reproduced from Le Quéré et al. [2]. 

CO2 can react with methane following the reaction of dry reforming of methane reaction (DRM) 
forming syngas. Syngas contained a mixture of carbon monoxide and hydrogen, which is a crucial 
raw compound in the chemical industry. Applications of synthesis gas are summarized in Figure 2. 
It can be used as base material for methanol synthesis (Equation (1)) that can later be upgraded to 
higher commercial value chemicals such as dimethyl ether (DME), formaldehyde or acetic acid. When 
introduced into a Fisher–Tropsch unit, syngas can produce fuels or waxes (Equation (2)). Finally, it 
can be rearranged into methane (Equation (3)) or used as a hydrogen source: 

CO + 2H2 ⇌ CH3OH, (1) 

nCO + (2n + 1) H2 ⇌ CnH2n+2 + H2O, (2) 

CO + 3H2 ⇌ CH4 + H2O. (3) 
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CO2 can react with methane following the reaction of dry reforming of methane reaction (DRM)
forming syngas. Syngas contained a mixture of carbon monoxide and hydrogen, which is a crucial
raw compound in the chemical industry. Applications of synthesis gas are summarized in Figure 2.
It can be used as base material for methanol synthesis (Equation (1)) that can later be upgraded to
higher commercial value chemicals such as dimethyl ether (DME), formaldehyde or acetic acid. When
introduced into a Fisher–Tropsch unit, syngas can produce fuels or waxes (Equation (2)). Finally, it can
be rearranged into methane (Equation (3)) or used as a hydrogen source:

CO + 2H2 
 CH3OH, (1)

nCO + (2n + 1) H2 
 CnH2n+2 + H2O, (2)

CO + 3H2 
 CH4 + H2O. (3)
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Bio-ethanol, as a renewable biofuel, has been proposed as a substitute for fossil fuels.
First generation of bio-ethanol was produced from food and was also heavily criticized since it
opened the dilemma “food or fuel”. Currently, the second generation of bio-ethanol is mainly from
lignocellulosic biomass residues and organic municipal solid waste with more complicated methods in
order to avoid the consumption of food as shown in Figure 3. Therefore, bio-ethanol can be regarded
as nearly CO2 neutral. In 2018, the total production of bio-ethanol reached 28,700 million gallons and
83.7% is from USA and Brazil [3].
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Figure 3. The pathway of production of bio-ethanol and glycerol.

Biodiesel, the second most used biofuels after bio-ethanol, also attracted a wide amount of
attention, which is mainly from the transesterification reaction of triglycerides. During the process,
1 kg of glycerol, the main by-product, was produced for 9 kg of biodiesel [4]. It was estimated that
the production of glycerol each year can reach 4.2 million tons up to 2020 globally, while less than
3.5 million tons is needed each year [5]. Therefore, it is necessary to explore new market opportunities
for glycerol.

A number of processes, such as pyrolysis and gasification with and without catalysts, have been
developed to utilize bio-ethanol and glycerol [6–9]. To effectively close the carbon cycle, dry reforming
of bio-ethanol and glycerol to produce syngas or H2, which can be used directly or converted into high
value chemical compounds were proposed [10–13]. Dry reforming normally occurs at relatively high
temperatures (900–1200 K) in the existence of CO2. The process involved several parallel reactions,
including direct cracking, water gas shift reaction (WGSR), and methanation reactions, which may
affect the final products. Therefore, extensive studies have been conducted to understand the dry
reforming pathways of bio-ethanol and glycerol and try to maximize the production of H2 [14,15].
Various catalysts, such as Ni, Rh, and Cu-based, were also proposed to optimize the reaction pathways
to avoid the formation of undesired by-products and hinder the formation of carbon on the catalyst.

2. Dry Reforming of Ethanol

The simulation of dry reforming of ethanol by thermodynamic analysis has been studied to
determine optimum conditions for H2 production [16–18]. Figure 4 showed the variation of gas
composition with temperature. For the studied temperature ranges, H2 and CO increase linearly
with temperature from 823 to 1123 K reflecting the endothermic character of the reforming reaction.
According to Equation (4), an equal amount of H2 and CO can be formed from the ethanol dry reforming.
However, the thermodynamic analysis predicted that ethanol can be completely converted to H2, CO,
CH4, CO2, H2O, and C. In addition, CH3CHO may be formed by a dehydrogenation reaction following
Equation (5). The formed CH3CHO can be further decomposed into CH4 and CO (Equation (6)) or
reformed into H2 and CO (Equation (7)). The CH3CHO can also be dehydrated into C2H4 (Equation (8))
or ether Equation (9). Carbon deposition was predicted to happen especially in the low temperature
window with a slight decrease of solid carbon formation when temperature is increased. Above 1100
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K, ethanol was completely transformed into H2, CO, and C. According to Equation (10), ethylene
polymerization can partially form the carbon. The ethanol can also decompose into CO, H2, CH4,
and acetone directly (Equations (11)–(14)). The formed CO and H2 can be transformed into methane
according to Equations (15) and (16). The DRM is strongly endothermic and can produce hydrogen
and carbon monoxide (Equation (17)). At lower temperatures, WGSR, an exothermic and reversible
reaction, can favor the production of hydrogen and carbon oxide (Equation (18)). The carbon residues
can also be formed following decomposition of methane, Boudouard reaction, and reduction of CO
(Equations (19)–(22)). According to the thermodynamics, a two-step reaction mechanism was then
proposed for the dry reforming of ethanol. Initially, ethanol was directly decomposed into methane
and acetaldehyde intermediates, which can be subsequently reformed to syngas [19,20]. Moreover,
H2O was predicted due to the reversed WGSR. Therefore, it is evident that ethanol reforming by
CO2 forming dominated for the whole temperatures ranges and other side reactions may also occur
such as direct decomposition into methane, H2/CO/C mixtures and C2H4O, methane reforming, and
reverse WGSR:

cC2H5OH + CO2 → 3H2 + 3CO∆Ho
298 = 296.7 KJ mol−1, (4)

C2H5OH→ CH3CHO + H2 ∆Ho
298 = 68.4 KJ mol−1, (5)

CH3CHO→ CH4 + CO ∆Ho
298 = −18.785 KJ mol−1, (6)

CH3CHO + CO2 → 3CO + 2H2 ∆Ho
298 = 228.2 KJ mol−1, (7)

C2H5OH→ H2O + C2H4 ∆Ho
298 = 45.4 KJ mol−1, (8)

C2H5OH→ 1/2H2O + 1/2C2H5OC2H5 ∆Ho
298 = −12.0 KJ mol−1, (9)

C2H4 → polymer→ 2C + 2H2, (10)

C2H5OH→ 3H2 + CO + C ∆Ho
298 = 124.3 KJ mol−1, (11)

C2H5OH→ CH4 + H2 + CO ∆Ho
298 = 49.7 KJ mol−1, (12)

C2H5OH→ 3/2CH4 + 1/2CO2 ∆Ho
298 = −73.9 KJ mol−1, (13)

C2H5OH→ 0.6CH3COCH3 + 1.2H2 + 0.2CO2 ∆Ho
298 = 1.2 KJ mol−1, (14)

2H2 + 2CO→ CH4 + CO2 ∆Ho
298 = −247.0 KJ mol−1, (15)

4H2 + CO2 → CH4 + 2H2O ∆Ho
298 = −146.7 KJ mol−1, (16)

CH4 + CO2 → 2H2 + 2CO ∆Ho
298 = 247.0 KJ mol−1, (17)

H2O + CO→ H2 + CO2 ∆Ho
298 = −41.1 KJ mol−1, (18)

CH4 → C + 2H2 ∆Ho
298 = 74.6 KJ mol−1, (19)

CO→ 1/2C + 1/2CO2 ∆Ho
298 = −86.2 KJ mol−1, (20)

H2 + CO→ C + H2O ∆Ho
298 = −131.3 KJ mol−1, (21)

2H2 + CO2 → C + 2H2O ∆Ho
298 = −90.1 KJ mol−1. (22)
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Thermodynamic analysis showed that the optimal conditions for dry reforming of ethanol are:
reaction temperatures between 1200–1300 K, CO2/ethanol ratios of 1.2–1.3. At these conditions, ~45%
H2, ~50% CO, and complete conversion of ethanol can be realized without remarkable solid carbon
formation [21]. Ethanol conversion increased with the CO2/ethanol ratio increasing, but kept almost
constant at higher CO2/ethanol ratios. A recent experimental study showed that ethanol conversion
stabilized from CO2/ethanol ratio of 1.4 [22]. Moreover, the H2 in syngas also decreased at CO2/ethanol
higher than 1.4, while CO increased. This trend showcases the direct impact of the reversed WGSR
during the dry reforming processes as reported elsewhere [23–25].

In order to avoid the carbon formation and undesired gas components, different catalysts were
synthesized and utilized for the dry reforming of ethanol, such as Ni, Cu, Rh, and Co based catalysts.
The Ni based catalyst is the most studied one. Al supported nano-NiO-SiO2 catalysts with Ni
amount of 5, 7, 10, and 15% have been synthesized and used for the dry reforming of ethanol [26].
Catalysts containing 10% Ni showed the best activity partially due to the clustering of Ni particles at
higher Ni amounts. Less CO and higher CH4 were also observed due to higher rate of WGSR and
direct decomposition of ethanol into CH4 promoted by the catalyst, respectively. The desired condition
for dry reforming of ethanol was found at 1023 K with the ratio of CO2/Ethanol being 1.4. At this
condition, the conversion of CO2 was observed to be 75%, while 100% conversion of ethanol was
nearly obtained. Wei et al. used the Ni/KIT-6 (mesoporous silica) and Ni/SiO2 for the dry reforming of
ethanol [27]. A comparatively better activity and stability was shown for Ni/KIT-6 catalyst; however,
Ni/SiO2 was deactivated quickly. Complete ethanol conversion was obtained at 823 K for Ni/KIT-6
without observing clear deactivation of the catalyst after 40 h tests. Smaller particle size of Ni was
observed for Ni/KIT-6, which can be stabilized by the confinement effect of catalyst channels.

The smaller particle size of Ni markedly hindered the carbon formation. The stronger interaction
of metal-support also inhibited the sintering of active metals. Therefore, the catalyst of Ni/KIT-6 greatly
inhibited the coke deposition and contributed to the superior activity. Catalysts of Ni/Y2O3–ZrO2

using two different preparation methods of polymerization and wet impregnation were proposed for
the dry reforming of ethanol at 600, 700 and 800 ◦C [10]. At 600 ◦C, the highest CH4 was obtained using
a 5%Ni/Y2O3–ZrO2 catalyst, due to the direct cracking of ethanol into CH4 and slow dry reforming
rate of CH4 at 600 ◦C. Increasing temperature to 700 ◦C accelerated the dry reforming rate of CH4,
which was then enhanced further at 800 ◦C. It was showed that stronger interaction between NiO and
oxygen vacancies of support was responsible for its superior reforming ability. The preparation of



Catalysts 2019, 9, 1015 6 of 18

Ni/Y2O3–ZrO2 catalyst by polymerization in one step was proven as an easier and superior way of
loading Ni onto Y2O3–ZrO2 support than by wet impregnation. In order to prevent the deactivation of
Ni catalysts, Ni has also been incorporated into different supports of Al2O3, CeO2, MgO and ZrO2 to
study their activity in the dry reforming of ethanol [28]. Ni-CeO2 catalyst showed the best performance
at 1023 K than at 973 K, suggesting that CO2 conversion can be enhanced at higher temperatures,
while carbon deposition was hindered. It was found that the reducibility of Ni, which was influenced
by the interaction between support and Ni, along with the redox property of CeO2 can promote the
selectivity for H2 and inhibit the unfavored side reactions. The results revealed that specific surface
area of supports can affect the particle size and reducibility of active metals. It can be observed that
interaction between Ni and the supports affected the particle size strongly, reducibility of Ni. Oxygen
vacancy of support also can inhibit the formation of carbon.

To optimize the performance of Ni based catalysts, promoters such as La and Ce were also
incorporated [11,19,29]. The advanced redox properties of Ce resulted in great benefits for a Ce-Ni/Al2O3

tested in the dry reforming of ethanol. Compared with unpromoted ones, Ce-promoted catalyst can
hinder the formation of solid coke due to its oxygen mobility ascribed to CeO2 as a promoter. The
proportion of amorphous carbon as opposed to graphitic carbon was also observed with Ce-Ni/Al2O3.
Upon incorporation of Ce, the interaction between Ni and the supports was strengthened, which can
promote the formation of smaller NiO clusters facilitating the reducibility of Ni. The incorporation of
Ce lowered reduction temperatures by around 315 K. NiO and NiAl2O4 were observed on the surface
of the supports during calcination while CeO2 was observed on the promoted one. The derivative
weight of calcination and H2-temperature program reduction (H2-TPR) of two catalysts was shown in
Figure 5, respectively. As shown in Figure 5a, the first peak, P1 (at 501–509 K), was caused by the direct
decomposition of metal nitrates forming the corresponding metal oxides (Equations (23) and (24)). The
second peak (P2) (591–598 K) was ascribed to NiAl2O4 formation (Equation (25)). The third peaks
(P3) of Ce-promoted catalyst (661 K) was due to the transformation of Ce3+ to Ce4+ during calcination
(Equation (26)). In Figure 5b, two distinct peaks were observed for the H2-TPR analysis of catalysts.
The P1 (557–599 K) was due to the formation of metallic Ni from the reduction of NiO (Equation (27)),
while P2 peak (668–671 K) was due to the transformation of NiAl2O4 to Ni (Equation (28)):

Ni(NO3)2 → NiO + N2O5, (23)

2Ce(NO3)3 → 3N2O5 + Ce2O3, (24)

NiO + Al2O3 → NiAl2O4 , (25)

Ce2O3 + 0.5O2 → 2CeO2, (26)

NiO + H2 → Ni + H2O, (27)

NiAl2O4 + H2 → Ni + Al2O3 + H2O. (28)

Similarly, La has also been incorporated into Ni/Al2O3 [11,20]. La can enhance the dispersion of
nickel particle and hinder the agglomeration of active phases. The best performance of dry reforming of
ethanol was observed at 3% La loading due to the benefits of La2O3 as promoter. The H2-TPR analysis
of three catalysts were shown in Figure 6. Different from Ce promoted Ni/Al2O3, three peaks were
observed for 3%La-10%Ni/Al2O3. The first one, P1, was due to the reduction of NiO to metallic Ni form.
The second peak P2 was due to the reduction of NiO particles strongly absorbed by supports. The third
peak P3 was due to the reduction of spinel NiLa2O4 phase to elementary Ni. For 10%Ni/Al2O3 and
3%La-10%Ni/Al2O3, the temperature for NiO reduction (P1 and P2) decreased to a lower value after
La loading, which may be ascribed to the transferring electrons from La2O3 to NiO particles. As a
result, the enhanced electron density facilitated reduction of NiO. It was also found that dry reforming
of ethanol may occur through direct decomposition of ethanol to methane intermediates. The formed
intermediated were then reformed to a mixture of CO and H2 following DRM. Similar to Ce promoted
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catalyst, amorphous carbon dominated on the surface of used La-Ni/Al2O3 catalyst. This is may be
due to the enhanced basicity of the promoted catalysts and the multiple oxidation states of La, which
can provide a shortcut of coke conversion by redox reactions (Equations (29) and (30)).

LaαOβ + CxH1−x → LaαOβ−x + xCO + (1− x)/2H2, (29)

LaαOβ−x + CO2 → LaαOβ + xCO. (30)
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Co based catalysts promoted by Ce and La have also been proposed for the dry reforming of
ethanol [30–32]. The addition of Ce and La facilitated the reduction of Co3O4 to CoO, which can be
further transformed into Co. The reducibility of active metals in catalysts were analyzed using H2-TPR.
The reduction ability followed the order of 10%Co/Al2O3 < 3%Ce-10%Co/Al2O3 < 3%La-10%Co/Al2O3.
Three peaks were observed. The first peak for all catalysts was due to the reduction of Co3O4 to
CoO, while the second peak was ascribed to the formation of Co from CoO reduction. The third
small shoulder was most likely ascribed to the reduction of pinel CoAl2O4 species strongly absorbed
by support. Consistent with reducibility of catalysts, the dry reforming activity of ethanol followed
the order of 3%La-10%Co/Al2O3 > 10%Co/Al2O3 > 3%Ce-10%Co/Al2O3. The relationship indicated
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that the La and Ce can promote the amount of Co active sites by accelerating the reduction of Co3O4

demonstrating a clear correlation redox properties—catalytic performance.
The dry reforming of ethanol was proposed using Cu-based catalysts [33–36]. A catalyst

of Cu/Ce0.8Zr0.2O2 was prepared using the co-precipitation method. The synergistic interaction
between metal and support along with the redox characteristic of Ce caused a promising activity.
A new preparation method of the ball-milling technique was then proposed by the same group for
dry reforming of ethanol. The catalyst synthesized by the ball-milling technique showed a better
performance than the co-precipitation method, which can be ascribed to the better dispersion of Cu
and optimized interaction between metal and support. Moreover, no encapsulated graphite-type
carbon was found for this catalyst. In a further study, Cu-based catalysts on various supports (CeO2,
ZrO2, CeO2-ZrO2) were synthesized. As revealed, the reducibility of Cu and oxygen vacancies
decreased in the order of CuCeZr > CuCe > Cu/Zr. As expected, the CuCeZr catalyst showed the best
performance due to higher metal dispersion, stronger interaction between metal and support, and
greater concentration oxygen vacancies that are envisaged as reactive sites for molecules’ activation.
To prove the assumption, all catalysts were exposed to H2-TPR analysis as shown in Figure 7. For the
supports, the incorporation of Zr4+ accelerated mobility of O and increased reducible Ce4+ cations.
For Cu-based catalysts, the reduction started at about 100 ◦C with the highest peaks at 142 ◦C, 154 ◦C
and 162 ◦C for CuCe, CuCeZr and CuZr, respectively. This is due to the stronger interaction between
Cu and CeZr supports that can accelerate oxygen mobility. As a result, catalyst reduction temperature
can be reduced.
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Due to the high activity for C–C bond cleavage and low coke formation, Rh has been extensively
used for dry reforming of methane [37]. To validate its applicability on the dry reforming of ethanol
by Rh based catalysts, various Rh based catalysts have been prepared. Figure 8 shows that ethanol
decomposition may occur by two major routes [38]: (1) forming an oxametallacycle intermediate on
Rh(1,1,1), which was directly decomposed to methane and CO; and (2) dehydrogenated intermediates
(C2H4O and acetyl species), which can be further decomposed to CO and CHx species.

Due to the proven redox property of CeO2, Rh/CeO2 has been synthesized for the dry reforming
of ethanol [14,39]. A relatively good activity and stability were observed for this catalyst due to the
interaction between Rh and CeO2 and again the advanced redox features of CeO2, which can accelerate
CO2 activation and prevent carbon deposition. The mechanism was illustrated in Figure 9.

In further research, Rh/Ce-SBA-15 has been synthesized for the dry reforming of ethanol [40].
The proportion of Ce relative to Si affected markedly the H2 production and selectivity. The introduction
of Ce into the 1%Rh/SBA-15 increased reforming activity due to the strengthened mobility of oxygen
species on the surface of catalysts. Rh-based catalysts were also prepared for the dry reforming of
ethanol using MxOy–Al2O3 oxides (M = Zr, Mg, Ni, Ce, La) as supports [41]. As shown in Figure 10, the
production of H2 followed the order: Rh/NiO–Al2O3 >> Rh/Al2O3 ≈Rh/MgO–Al2O3 ≈Rh/CeO2–Al2O3
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> Rh/ZrO2–Al2O3 ≈ Rh/La2O3–Al2O3. The superior performance of Rh/NiO–Al2O3 may be due to the
existence of NiAl2O4 spinel phase, hindering the rhodium deactivation, and the high dispersion of Rh
favored by co-existence of nickel particles.Catalysts 2019, 9, 1015 9 of 20 
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The 316 steel (Fe: 61%; Cr: 16–18.5%; Ni: 10–14%; Mo: 2–3%; C: 0.03%) and carbon steel also
proved the dry reforming activity of ethanol [42–44]. Compared with the conditions without catalyst,
steel can promote the catalytic cracking and catalytic reforming of ethanol forming H2 and CO. In this
process, carbon nanofilament was formed as the desired product. It was proposed that nanoparticles
of magnetite can be formed from the oxidation treatment prior to dry reforming reaction, which can be
reduced into Fe3C during the reforming process. The formed Fe3C is responsible for the formation of
H2, CO, and nanofilament. Hence, a take-home message is to check the potential catalytic activity of
the reactor itself and always run a blank test to rule out contributions beyond our catalytic materials.

In this part, various catalysts used for dry reforming of ethanol have been summarized. The
most used catalyst is Ni based one due to its low cost even though other catalysts of Co, Cu, and Rh
based have also been proposed. The most common problem is the deactivation of catalyst caused
by coke formation. In order to minimize this effect, promoters of Ce and La were introduced, which
showed a promising effect due to the redox properties of Ce and enhanced dispersion of Ni by Ce
and La. Different catalyst supports were also discussed. The effect of support on performance is
attributed to the interaction between support and active metals. Strong interaction between NiO and
oxygen vacancies of catalyst can enhance the catalyst performance. In the ideal conditions, complete
conversion of ethanol can be achieved with a theoretical amount of H2 obtained. Therefore, dry
reforming of ethanol is a promising technology to produce syngas.

3. Dry Reforming of Glycerol

The dry reforming of glycerol is expected to follow a similar pattern to that of ethanol. Theoretically,
3 mol of H2 and 4 mol of CO can be extracted from 1 mol of dry reforming of glycerol according
to Equation (31). However, direct decomposition of glycerol may also occur following the overall
reaction as shown in Equation (32) along with methanation and (reverse) WGSRs. Thermodynamic
analysis has been used to study the effect temperature, pressure, and CO2/glycerol ratios on glycerol
conversion [45,46]. It showed that atmospheric pressure is preferred for the glycerol conversion [47]:

C3H8O3 + CO2 → 3H2 + 4CO + H2O ∆Ho
298 = 292.3 KJ mol−1, (31)

C3H8O3 → 4H2 + 3CO ∆Ho
298 = 251.2 KJ mol−1. (32)

As shown in Figure 11, temperature showed a positive effect on H2 production, which reached a
maximum conversion at CO2/glycerol ratios higher than 1 due to the promoted reverse WGSR at higher
CO2 pressure. At a CO2/glycerol ratio between 0 and 1 over 975 K, more than three moles of H2 can be
obtained, while more syngas (H2 and CO) can be produced at higher temperatures and CO2/glycerol
ratios. The optimum condition for syngas production occurred at 1000 K with CO2/glycerol ratio of 1,
at which 6.4 mol of syngas (H2/CO = 1:1) can be obtained for each mole of glycerol.
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In the absence of catalysts, the glycerol conversion is low. To optimize H2 production and reaction
conditions, various catalysts have been synthesized for the dry reforming of glycerol. Mesoporous
catalysts of Ni/γ-Al2O3 with different amounts of Ni were prepared for the dry reforming of glycerol [12].
With Ni amount increasing from 5 to 15%, the glycerol conversion increased, while it decreased at
higher Ni content. The H2-TPR analysis showed that the higher Ni amount promoted the reducibility
of the Ni catalyst, which can be related to lower dispersion of Ni at higher content of Ni. Other
catalysts, including Rh, Ni, and Co based catalysts (Al2O3-ZrO2-TiO2 support) have been synthesized
for the dry reforming of glycerol [4], with the particle size of Rh, Ni and Co being 3–4, 10–15, 40–50 nm,
respectively. The highest activity was observed for Rh, while the activity of Co was the lowest. Even
though the activity of Ni based catalyst was below that of Rh based catalyst, it can still render 95% of
the thermodynamic CO2 conversion at maximum. The high performance of Ni based catalyst may be
due to its ability of gasifying deposited carbon and metallic nature during the reaction. Comparatively,
Co based catalyst showed an inferior performance to Rh and Ni due to the sintering, carbon deposition
and Co oxidation. To understand the mechanism, all catalysts were exposed to H2-TPR analysis
as shown in Figure 12. Al2O3-ZrO2-TiO2 support showed a broad H2 consumption in the high
temperature region (i.e., 893–953 K), which is likely due to reduction of the Al2O3-ZrO2-TiO2 support.
In addition to this high temperature peak, Rh/Al2O3-ZrO2-TiO2 revealed two more low-temperature
H2 consumption features at 160 and 200 ◦C, which can be attributed to the reduction of Rh3+ to Rh+

and Rh+ to metallic Rh species, respectively. Co/Al2O3-ZrO2-TiO2 also revealed two low temperature
features with relatively lower H2 consumption around 220–300 ◦C which can be ascribed to two-step
reduction of Co3O4 to CoO and CoO to metallic Co. In addition, there exists a reduction feature at
420 ◦C, which can be ascribed to the reduction of CoOx species that are strongly interacting with
the Al2O3-ZrO2-TiO2 support material. Ni/Al2O3-ZrO2-TiO2 exhibited a similar H2 consumption
profile to that of Al2O3-ZrO2-TiO2 support and lacks a low temperature reduction peak (e.g., for
Ni+2

→ Ni0), indicating the presence of predominantly metallic Ni species on fresh samples with a
negligible contribution from NiO and Ni (OH)2. For all catalysts, a negative effect of CO2/glycerol
ratios between 1 and 4 on glycerol conversion was observed mainly due to the reverse WGSR. For CO2

conversion, the catalysts showed an increase in activity for CO2/glycerol ratio increasing from 1 to 2.
However, CO2 conversions decreased at higher ratios. This phenomenon has been observed by other
researchers [13,48].

A similar study on dry reforming of glycerol by La-Ni/Al2O3 showed that glycerol conversion and
H2 generation rate reached a peak at CO2/glycerol ratio of 1.67, at which CH4 reached the minimum.
The existence of CH4 in the presence of glycerol only, along with the declining trend at higher
CO2/glycerol (>1.67), indicated that CH4 may be formed from direct decomposition of glycerol, which
can be then reformed by CO2 to CO and H2. Regarding the H2/CO ratio, the direct decomposition
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of glycerol produced the highest value, but still below 2, which can be used in the Fischer–Tropsch
process in some cases depending on the targeted end products. The declining trend with CO2/glycerol
ratio increasing may be caused by the reverse WGSR. The noble metals (Rh, Ru, Ir, Pd, Pt) were also
supported on MgAl2O4 and compared for dry reforming of glycerol [49]. Similarly, Rh showed highest
activity and stability, which may be ascribed to high active metal areas. The catalytic activity followed
the order: Rh > Ru > Ir > Pd > Pt. Cement clinker-supported Ni catalysts were also synthesized for the
dry reforming of glycerol [50,51]. It was found that direct decomposition of glycerol was responsible
for the H2 production as opposed to a direct interaction between glycerol and CO2 during reforming
reaction. Therefore, even though the cement clinker can facilitate the adsorption of CO2, it did not
favor the production of H2.
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Figure 12. H2-TPR data for fresh Al2O3-ZrO2-TiO2, Rh/Al2O3-ZrO2-TiO2, Ni/Al2O3-ZrO2-TiO2 and
Co/Al2O3-ZrO2-TiO2 samples, reproduced with permission from [4].

To optimize the behavior of Ni based catalyst, La has been incorporated as a promoter for the
dry reforming of glycerol [13,48,52,53]. After evaluating the effect of different content of La loaded, it
was found that the glycerol conversion decreased in the order of 2%La-Ni/Al2O3 > 3%La-Ni/Al2O3

> 4%La-Ni/Al2O3 > 1%La-Al2O3 > Ni/Al2O3 > 5%La-Ni/Al2O3 > Al2O3. The main reason is that Ni
metal can be better dispersed by La. However, when La content was above 2%, the clogging of pores
may occur even though there is reduced particle size of Ni metals. Moreover, compared with the
non-promoted catalyst, the La promoted catalysts showed a better carbon resistance due to its redox
property to remove carbon and less acidity of Ni catalyst decreased by La. The promoters Re and Ag
were also incorporated to optimize the performance of Ni based catalysts [54,55]. Similar to La, Ag can
also improve the dispersion of Ni metals. However, at a high content of 5% Ag in catalyst, some active
metal surface may be covered by Ag, which can decrease the catalyst performance. Differently, the Re
can increase the glycerol conversion by enhancing the surface adsorption of OH group of the glycerol.

Rh based catalysts (Rh/ZrO2 and Rh/CeO2) were also synthesized for dry reforming of glycerol [15].
A declining trend of glycerol conversion and H2/CO ratios with CO2/glycerol increasing were also
observed for the studied catalysts. Rh/ZrO2 deactivated faster than Rh/CeO2, due to the sintering of
Rh metals and coke formation.

The dry reforming of glycerol with and without catalysts were summarized in this part. Without
a catalyst, the production of H2 from glycerol was low. For the various catalysts, including Ni, Rh, and
Co, the highest activity was observed for Rh, while the activity of Co was the lowest. For the noble
metals, the catalytic activity followed the order: Rh > Ru > Ir > Pd > Pt. Therefore, it can be concluded
that Rh based catalysts showed a superior performance, especially on CeO2 support. The La was also
reported to promote the activity of active metals due to its redox property to remove carbon and less
acidity of the Ni catalyst. Even though the conversion of glycerol is lower than ethanol generally, the
glycerol conversion can still reach 90% in the presence of Rh/Al2O3-ZrO2-TiO2. The summarization
showed the promising way of dry reforming of glycerol in the well-designed catalysts for H2.

The dry reforming of ethanol and glycerol were summarized in Table 1.
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Table 1. Summary of dry reforming of ethanol and glycerol using different catalysts.

Active Metals Supports Promoters Sample Comments

Ni

SiO2

Ethanol

Clustering of Ni may occur at high Ni loading [26].

SiO2, KIT-6 Stronger interaction of Ni-support inhibited the sintering of Ni [27].

Y2O3–ZrO2
Stronger interaction between Ni and oxygen vacancies of support

accelerated the activity.

Al2O3, CeO2, MgO and
ZrO2

Ni-CeO2 catalyst showed the best performance. Redox property of CeO2
can promote the selectivity for H2 and inhibit the unfavored side

reactions [10].

Al2O3 Ce Ce-promoted catalyst can inhibit the formation of carbon due to its
oxygen mobility of CeO2 [28].

Al2O3 La La can enhance the dispersion of Ni particle and hinder the sintering of
metal oxides [29].

Co Al2O3 Ce, La La and Ce can increase the number of Co active sites by accelerating the
reduction of Co3O4 [30–32].

Cu CeO2, ZrO2 Ce
CuCeZr catalyst showed the best activity and stability due to higher Cu
dispersion, strong metal support interaction and more oxygen vacancies

[33–36].

Rh
SBA-15 Ce The interaction between Rh and CeO2 and strong redox capacity of CeO2

can accelerate of CO2 activation and prevent carbon deposition [40].

Al2O3, MgO–Al2O3,
ZrO2–Al2O3

Ce, La The superior performance of Rh/NiO–Al2O3 is due to the presence of
NiAl2O4 spinel phase, and high dispersion of Rh [41].

Ir Ce0.75Zr0.25O2

The dispersion, reducibility of Ir, oxygen vacancies of supports and
interaction between Ir andsupport decreased with the calcination
temperature increasing. IrCeZr550 catalyst (calcination at 823 K)

exhibited a satisfactory performance with high activity and stability.
Increasing calcination temperature up to 850 ◦C decreased markedly the
interaction between Ir and support, dispersion and reducibility of Ir, and

the dissociation capacity of the C–C bond [56].

Ni

Al2O3

Glycerol

The glycerol conversion increased for Ni from 5 to 15%, while decreased
at higher Ni, which may be related to lower Ni dispersion at higher

content of Ni [12].

Al2O3 La Glycerol conversion and H2 generation rate reached a peak at
CO2/glycerol ratio of 1.67 [13].
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Table 1. Cont.

Active Metals Supports Promoters Sample Comments

Al2O3 La Ni metal can be better dispersed by La [48].

Al2O3 Ag

The best glycerol conversion (40.7%) and high yield of H2 (32%) were
observed for Ag-Ni/Al2O3. This result can ascribed to the smaller

crystallite size of Ag in Ag-Ni/Al2O3, which was beneficial for metal
dispersion [57].

Al2O3 Re

Approximately 61% and 56% of glycerol conversion and hydrogen yield
were observed for 5% Re-Ni/CaO, respectively. For 15% Ni/CaO, the

conversion of glycerol and H2 yield are lower, being 35 and 30%,
respectively. The addition of Re increases the acidic sites of the catalyst and
promoted the adsorption of OH group of the glycerol onto the surface of

catalyst [54].

Rh, Ni and Co ZrO2-TiO2 Rh showed the highest activity, while the activity of Co was the lowest [4].

Rh, Ru, Ir, Pd, Pt MgO–Al2O3 The catalytic activity followed the order: Rh > Ru > Ir > Pd > Pt [49].

Rh CeO2, and ZrO2
Rh/ZrO2 deactivated faster than Rh/CeO2, due to the sintering of Rh metals

and coke formation [15].
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4. Conclusions and Future Perspectives

This review summarized the recent advance of dry reforming of ethanol and glycerol in the
presence of various catalysts. Temperatures showed a positive effect on conversion, while CO2/(ethanol
or glycerol) ratio showed a different trend. The highest glycerol conversion can be maintained at
CO2/glycerol ratios of 1–2, while, for the case of ethanol reforming, the CO2/ethanol ratios around
1.4 seem to be the optimum. The H2/CO ratio also decreased with CO2/glycerol ratio increasing
due to the reverse WGSR taking place simultaneously. For dry reforming of both compounds, the
intermediate CH4 was regarded as the main primary intermediate from the direct decomposition of
ethanol and glycerol, which can be then reformed into H2 and CO. The active metals, promoters, and
supports were summarized in Figure 13. Ni based catalysts have shown their possible application in
dry reforming of ethanol and glycerol, while deactivation issues due to the formation of carbon on the
surface of catalyst and sintering of active metals hindered its wide application. Various promoters such
as La and Ce have been proven to enhance Ni performance. Briefly, the boosted performance of the
promoted catalysts is ascribed to: (i) Strong metal-support interaction: encapsulation of active metal
nanoparticles by supports, (ii) Mobile oxygen species and creation of oxygen vacancies introduced by
promoters mitigating coke formation.
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The future foresees a great deal of possibilities for CO2 reforming reactions as a direct route to
tackle CO2 emissions. Perhaps the industrial application of dry reforming remains as the biggest
challenge for this technology nowadays. In fact, very few attempts of commercializing dry reforming
plants have been conducted so far with the CALCOR process (a reforming process combined with
CO2 recovery and CO purification) patented by caloric being one of the first successful stories [58].
The development of advanced catalysts with high activity, selectivity, and, more importantly, stability
constitute the principal bottleneck for the implementation of dry reforming reaction unit in realistic
applications. Herein, the directions seem to go through the combination of engineered catalysts with
the addition of promoters, multiple active phases, and sacrificial agents to avoid deactivation with
cleverly designed regeneration strategies. At lab-scale, we have identified the need to conduct rigorous
studies using realistic reforming mixtures (i.e., containing sulphur impurities)—this an effort that the
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academic community should embrace to ensure a solid design of scalable high-performing catalysts.
In any case, there is a lot of room for research in this promising area of catalysis for CO2 valorization,
and this mini-review just intends to be an introductory quick-guide to selected dry reforming reactions
showcasing their potential contribution in the next generation of zero-carbon catalytic processes.
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