
catalysts

Article

Combining Exsolution and Infiltration for Redox,
Low Temperature CH4 Conversion to Syngas

Kalliopi Kousi *, Dragos Neagu † and Ian S. Metcalfe

School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne NE1 7RU, UK;
dragos.neagu@ncl.ac.uk or dragos.neagu@strath.ac.uk (D.N.); ian.metcalfe@ncl.ac.uk (I.S.M.)
* Correspondence: kalliopi.kousi@ncl.ac.uk
† Current address: Chemical & Process Engineering, University of Strathclyde, Glasgow, G1 1XL, UK.

Received: 7 April 2020; Accepted: 23 April 2020; Published: 25 April 2020
����������
�������

Abstract: Exsolution of surface and bulk nanoparticles in perovskites has been recently employed in
chemical looping methane partial oxidation because of the emergent materials’ properties such as
oxygen capacity, redox stability, durability, coke resistance and enhanced activity. Here we attempt to
further lower the temperature of methane conversion by complementing exsolution with infiltration.
We prepare an endo/exo-particle system using exsolution and infiltrate it with minimal amount of Rh
(0.1 wt%) in order to functionalize the surface and induce low temperature activity. We achieve a
temperature decrease by almost 220 ◦C and an increase of the activity up to 40%. We also show that
the initial microstructure of the perovskite plays a key role in controlling nanoparticle anchorage and
carbon deposition. Our results demonstrate that microstructure tuning and surface functionalization
are important aspects to consider when designing materials for redox cycling applications.
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1. Introduction

Chemical looping (CL), originally implemented in the steam-iron process, was initially employed
for hydrogen production via the water gas shift reaction [1]. CL has recently received a lot of
attention due to benefits related to inherent product separation that result in more efficient and safer
processes [2–4]. However, material requirements for CL processes have proven to be quite complex
especially when applied for hydrocarbon conversion, e.g., methane. Material design needs to take
into account both bulk transport properties and surface catalytic activity [5–7]. Thus, high oxygen
capacity, high oxygen exchange ability, redox activity and stability are required. At the same time,
surface activity and selectivity towards the conversion of methane to syngas [8], preferably at low
temperatures, are essential.

Exsolution has been recently employed in chemical looping applications, specifically in chemical
looping methane partial oxidation (CLPO), because of the emergent materials’ properties that arise
from this particular synthesis method [9–13], like coke resistance, redox stability and enhanced
activity [14–17]. We have recently proven that by evolving the exsolution concept, we can design
systems that have both particles on the surface (exo-particles) and in the bulk (endo-particles) [18].
In these systems the exo-particles activate methane, the endo-particles act as oxygen reservoirs and the
perovskite matrix mediates oxygen transfer between the two. At the same time the endo-particles strain
the perovskite enhancing oxygen exchange and the perovskite strains the particle enhancing activity.
This method provides solutions to more than one of the abovementioned requirements, demonstrating
high oxygen capacity and exchange abilities, redox stability and durability over 150 cycles, while at the
same time they prove to be highly active, selective and coke free at 600 ◦C when employed for CLPO.
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While the temperature of 600 ◦C is still relatively low compared to other CLPO studies reported
before (typically at 900 ◦C), it would be beneficial to further lower process temperature. This would
help alleviate thermal and redox stress inflicted on the material, improving long term durability,
but could also address a longstanding goal in catalysis for lowering operation temperatures. To lower
this temperature, one would have to enhance surface reactivity and, at the same time, increase the
oxygen transport through the bulk. One way to achieve this is to incorporate noble metals into
eno/exo-particle systems because of their ability to activate methane at very low temperatures and
their capability of increasing the extraction of oxygen from the bulk of oxides [19–21]. Nevertheless,
the extension of the exsolution of noble metals on the surface of perovskite oxides is still limited [22].

Here we combine the concepts of exsolution and infiltration to address the challenges of CLPO
(Figure 1). We prepare a non-noble metal endo/exo-particle system by exsolution, with exsolved Ni
particles on the surface and throughout the bulk, and subsequently infiltrate it with minimal amount of
Rh (0.1 wt%) in order to functionalize the surface and induce low temperature activity. We combine the
stability and control resulting from exsolution with the ease and flexibility of the infiltration method.
Through this combined approach, we succeed in lowering the methane activation temperature by
almost 220 ◦C and in increasing the conversion up to 40%. However, at the same time, we observe that
infiltration changes the surface morphology of the materials, in a manner that appears to pose negative
impact on their long-term durability.
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and corresponding Rietveld analysis of the as-prepared material are shown in Figure 2a. The analysis 
shows good agreement between experimental and calculated data (wR value of 9%) and indicates a 
single-phase perovskite with a Pnma crystal structure (Figure 2b). 

To study the influence of the microstructure on exsolution and activity, we prepared this 
material in three different variations (Figure 3a–c): two powders with similar particle size between 
60–80 μm but with different relative density (dr), of 90% (coarse powder, cP) and 50% (fine powder, 
fP), as well as a pellet with a dr~60% (pP). fP was prepared by ball milling at 400 rpm for 1 h, pressing 
into a pellet, crushing in a mortar and pestle and then sieving in order to obtain a particle size of 60–
80 μm. In order to prepare the cP, the as-prepared material was only crushed and sieved manually 
in order to obtain particles of the order of 60–80 μm. Lastly, in order to create the pP, the 
abovementioned ball milled powder was mixed with 10 wt.% glassy carbon which served as a pore 
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since this would create more surface available to exsolve from. These are of great importance because 

Figure 1. Functionalizing the surface of endo/exo-particle systems to lower methane activation
temperature.

2. Results and Discussion

2.1. Microstructural Design of Perovskite System for Redox Methane Conversion

In order to prepare an exsolved system that contains both surface (exo) and bulk (endo) particles
we chose La0.8Ce0.1Ni0.4Ti0.6O3 based on the design principles reported before [18]. The XRD pattern
and corresponding Rietveld analysis of the as-prepared material are shown in Figure 2a. The analysis
shows good agreement between experimental and calculated data (wR value of 9%) and indicates a
single-phase perovskite with a Pnma crystal structure (Figure 2b).

To study the influence of the microstructure on exsolution and activity, we prepared this material
in three different variations (Figure 3a–c): two powders with similar particle size between 60–80 µm
but with different relative density (dr), of 90% (coarse powder, cP) and 50% (fine powder, fP), as well
as a pellet with a dr~60% (pP). fP was prepared by ball milling at 400 rpm for 1 h, pressing into a pellet,
crushing in a mortar and pestle and then sieving in order to obtain a particle size of 60–80 µm. In order
to prepare the cP, the as-prepared material was only crushed and sieved manually in order to obtain
particles of the order of 60–80 µm. Lastly, in order to create the pP, the abovementioned ball milled
powder was mixed with 10 wt.% glassy carbon which served as a pore former and was then sintered at
1400 ◦C for 4 h. Decreased density would enable stability during cycling by better accommodating
chemical expansion and contraction of the material under redox cycling. In addition, a small grain size
would also promote the formation of exsolved Ni exo-particles since this would create more surface
available to exsolve from. These are of great importance because they are likely to dictate oxygen
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capacity, reactivity and stability against coking and agglomeration. All the above are expected to be
greatly influenced by the microstructure of the materials [14,22].
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Figure 2. Preparing a single-phase perovskite capable of exsolving exo- and endo-particles. (a) Rietveld
refinement (wR 9%) of the room-temperature XRD pattern of the La0.8Ce0.1Ni0.4Ti0.6O3 perovskite
after sintering at 1400 ◦C for 15 h. (b) Crystal structure corresponding to the perovskite obtained by
refinement (space group Pnma, a = 5.54067 Å, b = 5.52939 Å, c = 7.818 Å).

Figure 3d–f show the micrographs of the obtained microstructures. From Figure 3d it apparent
that the fP displays a very rough, porous surface with very small crystallites, as would be expected
following a ball milling process. This is also confirmed by the general broadness of the peaks in the
XRD pattern, as exemplified in the inset of the figure for the 110 peak. The cP displays much smoother
surfaces, with some visibly larger pores within the perovskite grains. Additionally, it displays larger
grains and seemingly a slightly higher degree of crystallinity as compared to the fP, as observed
from the corresponding XRD data. The pP displays a microstructure with similarly smooth surfaces,
even larger pores, more extensively grown grains, and even higher degree of crystallinity.

Catalysts 2020, 10, x FOR PEER REVIEW 3 of 14 

 

they are likely to dictate oxygen capacity, reactivity and stability against coking and agglomeration. 
All the above are expected to be greatly influenced by the microstructure of the materials [14,22]. 

  
(a) (b) 

Figure 2. Preparing a single-phase perovskite capable of exsolving exo- and endo-particles. (a) 
Rietveld refinement (wR 9%) of the room-temperature XRD pattern of the La0.8Ce0.1Ni0.4Ti0.6O3 
perovskite after sintering at 1400 °C for 15 h. (b) Crystal structure corresponding to the perovskite 
obtained by refinement (space group Pnma, a = 5.54067 Å, b = 5.52939 Å, c = 7.818 Å). 

Figure 3d–f show the micrographs of the obtained microstructures. From Figure 3d it apparent 
that the fP displays a very rough, porous surface with very small crystallites, as would be expected 
following a ball milling process. This is also confirmed by the general broadness of the peaks in the 
XRD pattern, as exemplified in the inset of the figure for the 110 peak. The cP displays much smoother 
surfaces, with some visibly larger pores within the perovskite grains. Additionally, it displays larger 
grains and seemingly a slightly higher degree of crystallinity as compared to the fP, as observed from 
the corresponding XRD data. The pP displays a microstructure with similarly smooth surfaces, even 
larger pores, more extensively grown grains, and even higher degree of crystallinity. 

   
(a) (b) (c) 

 
(d) (e) (f) 

Figure 3. Creating perovskites with different microstructures. (a–c) Illustration of the three different 
microstructures. Microstructure (SEM) of the La0.8Ce0.1Ni0.4Ti0.6O3 perovskite after micromanipulation 
to create different microstructures as (d) fine powder (fP) (e) coarse powder (cP) (f) pellet (pP) with 
inserts of the XRD pattern of the main perovskite peak. 

In order to exsolve the exo/endo-particles, we reduced the samples at 1000 °C (10 h) and we label 
them henceforth with an -Ni suffix, indicating the presence of such particles, i.e., fP-Ni, cP-Ni, pP-Ni. 
Figure 4 reveals the microstructure and nanostructure of these materials. It is evident that indeed 

30 45 60 75
2θ (°)

In
te

ns
ity

 (a
u)

 difference
 calculated
 observed

Figure 3. Creating perovskites with different microstructures. (a–c) Illustration of the three different
microstructures. Microstructure (SEM) of the La0.8Ce0.1Ni0.4Ti0.6O3 perovskite after micromanipulation
to create different microstructures as (d) fine powder (fP) (e) coarse powder (cP) (f) pellet (pP) with
inserts of the XRD pattern of the main perovskite peak.
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In order to exsolve the exo/endo-particles, we reduced the samples at 1000 ◦C (10 h) and we
label them henceforth with an -Ni suffix, indicating the presence of such particles, i.e., fP-Ni, cP-Ni,
pP-Ni. Figure 4 reveals the microstructure and nanostructure of these materials. It is evident that
indeed porosity and grain size hugely affect the exsolution process and hence the exsolved particle
characteristics, i.e., size and population. While the cP-Ni shows very high particle density with about
90 particles/µm2 the fP-Ni and pP-Ni seem to be quite similar with about 25 particles/µm2. As far
as particle size is concerned, the fP-Ni and the pP-Ni have bigger particle size as compared to the
cP-Ni, 50 vs. 30 nm respectively (Figure 4c). Evidently, the nanoparticles formed in the pP and the
cP-Ni are characteristic of exsolved materials, having grown on grain surfaces, as opposed to grain
boundaries or at what appears to be interparticle junctions, as seems to be the case for fP-Ni. The above
characteristics are probably a manifestation of surface A-site enrichment as has been demonstrated
before for these structures [23].
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Figure 4. Exsolving from samples with different microstructures. (a) Microstructure (SEM) analysis
of the fine powder (fP), the coarse powder (cP) and the pellet (pP) after reduction at 1000 C for 10 h.
Inserts of XRD patterns of the samples after reduction indicating with • the main perovskite peak at
~32◦, with � the La2TiO5 phase [18] at ~27◦ and with * the Ni metal peak at ~44◦. (b) Nanostructure
(SEM) analysis of the fP, cP and the pP after reduction at 1000 C for 10 h. (c) Particle size analysis and
population for the samples. (d) Temperature programmed reduction (HTPR) and (e) (ζH) calculated
oxygen capacity from experiment in (d).

In order to assess the capacity and reducibility of the materials, we oxidised the exsolved systems
and then subjected them to a temperature programmed reduction (HTPR) (5% H2/He). This reveals
that the total capacity of all three materials is very similar (Figure 4e) and corresponds to about 0.37
molO/molP. On the contrary, the HTPR profiles (Figure 4d) are quite different. Here, the pP-Ni and
cP-Ni seem to have very similar behaviour, displaying at two major peaks, the first one potentially
corresponding to the surface particles which for both samples is at about 375 ◦C and the second one to
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the bulk particles. This second peak is moved to higher temperatures for the pP-Ni, (650 ◦C versus
the 580 ◦C for the cP-Ni) indicating that the bulk particles might be more difficult to access under
testing conditions. Comparing the fP-Ni and the cP-Ni reveals that the ease of reduction is the same,
with bulk and surface particle peaks corresponding to the same temperature, with the fP having a
lot more surface particles, as expected, and less bulk, as indicated by the ratio between those two
corresponding peaks.

2.2. Probing the Effect of Microstructure on the Reactivity of the Exo/endo Particle System

In order to evaluate the effect of the different microstructures on their ability to activate methane
we monitored methane conversion and selectivity as a function of temperature (MTPR) (Figure 5).
All three samples display a CH4 activation profile characteristic of exo/edo-exsolved materials (Figure 5a)
consisting of a sharp and a broad peak, corresponding to the exo- and endo-particles, respectively,
with the perovskite matrix mediating O transfer between them. Activity towards methane conversion
can be correlated directly to the corresponding HTPR profiles. The activity of the pP-Ni is moved to
higher temperatures (about 80 ◦C) just as expected from the previous H2 reduction profile, while the
two powders have exactly the same activation temperature. However, the fine powder seems to have a
lot more coke deposited on the surface, as implied by the high H2/COx ratio. For the coarse powder
and the pellet, that ratio is almost 2/1 for H2/CO, indicating highly active materials with minimal losses
to side reactions (CO2 or C) (Figure 4a).
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Figure 5. Activity of the exsolved perovskites with different microstructures. (a) Methane conversion
to CO, CO2 and H2 observed for all the samples. (b) Microstructure (SEM) analysis of the samples after
experiment described in (a). (c) CO2 produced during oxidation of the samples after MTPR testing in
(a) and (d) the calculated coke for the experiment described in (c).

The microstructure analysis after testing via SEM (Figure 5b) proves that indeed carbon nanotubes
can be spotted all over the surface of the fP-Ni. The high amount of coke could be due to various
reason, such as increased roughness of the surface caused by ball milling or, most likely, due to weaker
particle-substrate interaction in this particular sample. This might be a result of the particles having
grown on grain boundaries, which are usually known to be less stable and hence more susceptible to
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carbon deposition as compared with their counterparts grown on grain surfaces. Indeed, both the pP-Ni
and the cP-Ni show no sign of carbon deposition (Figure 4b) and also display all of the exo-particles
still socketed as initially, before testing.

Temperature programmed oxidation after testing (TPO) verifies that the samples display similar
stability of carbon on the surface, evident by the gasification temperature (Figure 5c), but the amount
is almost negligible for the cP-Ni and the pP-Ni (Figure 5c,d). It is worth noting that even though the
fP-Ni seems to have an abundance of carbonaceous deposits on the surface, it still achieves about a
two-fold decrease in coking as compared to impregnated samples reported in the literature for these
applications [14].

2.3. Functionalization of the Surface Aiming to Access Low Temperature Activity

Using the microstructures that produce the more selective, stable and coke free materials (cP-Ni
and pP-Ni), we decided to use a complementary strategy in order to functionalise the surface of these
exo/endo-particle systems, aiming at low temperature methane conversion. We did so by infiltrating
very small amounts of noble metals because of their ability to increase the effective oxygen capacity
and exchange of supports, and herein, we chose Rh as it is readily reducible and highly effective for
methane conversion [24–29]. After the perovskites had been reduced, 0.1 wt.% of Rh was infiltrated,
and as such, they were already decorated with exsolved particles both on the surface and in the bulk.
We reflect the Rh addition also in the labels of the infiltrated samples, as Rh|cP-Ni and Rh|pP-Ni.

Microstructural analysis using SEM indicates very good dispersion and homogeneous distribution
of both metallic Ni and Rh on the surface of the perovskites (Figure 6a,b). Although Rh and Ni particles
are seemingly distinguishable due to different size on the surface of the oxide, we cannot exclude
the formation of core (Ni)-shell (Rh) particles where a very thin layer of Rh encapsulates Ni particles.
In the corresponding HTPR profiles one extra peak for both infiltrated samples can be observed, as
compared to the non-impregnated ones, at about 300 ◦C, which corresponds to the Rh phase that is
now present on the surface of these materials (Figure 6c). This is not surprising since Rh particles are
smaller than nickel ones, and noble metal oxides are known to reduce much easier than most transition
metal oxides, both factors known to result in much lower reduction temperatures. The other reducible
phases seem to remain unaltered as far as temperature is concerned, however, it is noticeable that both
infiltrated samples display an increase in oxygen capacity as compared to their pristine counterparts
(Figure 6d), and this effect is especially pronounced in the Rh|pP-Ni where the oxygen capacity of the
material increases by about 30%.

In order to probe the effect of the addition of the surface Rh nanoparticles, we carried out MTPR,
where it became obvious that the activity of both powder and pellet is increased. In particular, methane
conversion increased by about 15% for the Rh|cP-Ni and by 40% for the Rh|pP-Ni. Additionally,
20% and 65% respectively of that achieved methane conversion shifted to lower temperatures. This is
in accordance with the literature where Rh addition on the perovskites surface has been shown to
increase the concentration of CHx species and thus accelerate the extraction of oxygen, resulting in an
enhanced O2− conduction through the bulk of the redox catalyst. It may also be a result of oxygen
spillover phenomena where the oxygen extracted from the support can migrate to the noble metal, i.e.,
Rh [30,31]. However, it is notable that the abovementioned increase in the activity of the materials can
be achieved by using such a small amount of noble metals [32]. Both samples are equally selective,
reaching almost a 2:1 H2 to CO ratio (Figure 7a,b). What is quite interesting is that if we compare the
oxygen capacity calculated using HTPR and MTPR, we notice that the Rh infiltrated samples are able
to access all the capacity, as calculated using HTPR experiments, when they are reduced by methane,
while for the non-infiltrated samples, there is about 10% of that total capacity that cannot be accessed
under testing conditions (Figure 7c). The Rh|pP-Ni here seems to have the most dramatic improvement
when infiltrated since the methane activation temperature has been lowered by almost 220 ◦C, reaching
380 ◦C, when initially methane got activated at 600 ◦C (Figure 7b,d).
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Figure 7. Activity of the Rh infiltrated exsolved perovskites. (a) Methane conversion to CO and H2
observed for the coarse powder samples. (b) Methane conversion to CO and H2 observed for the pellet
samples. (c) Capacity of the samples in molO/molp derived from MTPR and HTPR. (d) Comparison of
activation temperature achieved by the samples in (a) and (b). (e). CO2 produced during oxidation of
the samples after MTPR testing and (f) the calculated coke for the experiment described in (e).

TPO experiments after testing indicate that samples generally display a very minimal amount of
carbon deposition and generally of the same kind (Figure 7e,f), as revealed by the profiles of the CO2

curves. By comparison, the pellet samples still have less coke than the powder samples, without the
Rh having any sort of positive effect on the matter, perhaps because of the amount of carbon already
being minimal.

Examination of the microstructure of the materials after the testing and the oxidation experiments
reveals that the materials seem to be intact and that there are no cracks on the samples or sintering
of the grains of the perovskite (Figure 8a,d). A closer look on the nanostructure, however, indicates
that the infiltration had a detrimental effect on the surface of the samples (Figure 8b,e). Some of the
exsolved Ni particles seem to have lost their anchorage to the support, while there is some roughness
and texture on the surface as compared to the surface of the non-infiltrated samples (Figure 8b,e and
Figure 5b). In contrast, the bulk of both materials remains intact (Figure 8c,f) with all particles anchored
and with no signs of coalescence.
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Figure 8. Micro- and nanostructure of the Rh infiltrated exsolved perovskites. (a) Overview of the
microstructure of the infiltrated coarse powder Rh|cP-Ni. (b) Nanostructure of the surface of Rh|cP-Ni.
(c) Nanostructure of the bulk of Rh|cP-Ni. (d) Overview of the microstructure of the infiltrated pellet
Rh|pP-Ni. (e) Nanostructure of the surface of Rh|pP-Ni. (f) Nanostructure of the bulk of Rh|pP-Ni.
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3. Materials and Methods

3.1. Sample Preparation

Perovskite oxide powders (La0.8Ce0.1Ni0.4Ti0.6O3) were prepared using a modified solid-state
synthesis where high purity precursors were used, including La2O3, TiO2, CeO2 and Ni(NO3)2 *
6H2O, in the appropriate stoichiometric ratios. Certain oxides and carbonates were dried at different
temperatures (TiO2 and CeO2—300 ◦C and La2O3—800 ◦C). The mixture was calcined at 1000 ◦C for
12 h to decompose the carbonates and start forming the perovskite phase. The calcined powder was
then pressed into pellets and fired at 1400 ◦C for 15 h to form the perovskite phase. The synthesis
process was described in detail previously [10]. The as-prepared samples were then processed to
produce materials with three different microstructures, coarse powder, fine powder and porous pellet.

For the coarse powder, the as-prepared samples were crushed and sieved manually to a 60–80 µm
size. In order to make the fine powder, the as-prepared powder was ball milled for 1 h under
450 rpm. Lastly, to make the porous pellets, glassy carbon was used as a pore-former. The ball milled
La0.8Ce0.1Ni0.4Ti0.6O3 powder was mixed in with the pore-former in a 90/10 ratio, and then both were
pressed in a pellet form before sintering at 1400 ◦C for 4 h.

To exsolve particles both on the surface and in the bulk, all the above mentioned samples were
reduced in a controlled atmosphere furnace at 1000 ◦C for 10 h, under continuous flow of 5% H2/He
(25 mL min−1) with heating and cooling rates of 5 ◦C min−1.

For the preparation of infiltrated samples, the reduced coarse powder (cP-Ni) and the reduced
pellet (pP-Ni) were used as supports. For the powder, the support was dispersed in a dilute aqueous
solution of Rh nitrate under continuous stirring followed by water evaporation and drying at 90 ◦C
overnight. For the pellet, the support was infiltrated by the diluted Rh nitrate solution dropwise on a
heating plate and then was dried at 90 ◦C overnight.

Oxidation for all the above samples was carried out in air at 600 ◦C for 1 h with heating and
cooling rates of 5 ◦C min−1. This was done after the reduction step for the initial materials (xP-Ni) with
different microstructures and after the overnight drying for the infiltrated samples (Rh|xP-Ni).

3.2. X-ray Diffraction

The phase purity and crystal structure of the prepared perovskites was confirmed using room
temperature XRD with a PANalytical X’Pert Pro Multipurpose X-ray diffractometer operated in
reflection mode.

Rietveld refinement analysis was carried out using GSAS II. The following parameters were gradually
unlocked and refined: background (shifted Chebyshev polynomial, 3–6 terms), peak shape, unit cell
parameters, atomic coordinates, site occupancies, thermal displacement parameters and microstrain.

3.3. Electron Microscopy

High-resolution secondary electron images were obtained using a FEI Helios Nanolab 600 scanning
electron microscope (SEM).

Image Analysis

Particle size distributions were calculated based on pixel contrast from SEM micrographs by using
a custom made routine in Mathematica, based on a procedure described previously [9].

3.4. Reactor Set-up

This reactor set up consists of a quartz tube (with a fixed frit of porosity 3) with an outer diameter
of 9 and internal diameter of 6 mm. The quartz tube is held in a vertical furnace, forming a fixed-bed
reactor. Manual mass flow controllers were used to regulate the flow through the bed and a pressure
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gauge was used to monitor any pressure changes during operation. The temperature was measured in
the catalyst bed using a K-type thermocouple.

Depending on the experiment, CH4, O2, H2, CO and CO2 were continuously monitored (at m/z = 15
(CH4), 32 (O2), 2 (H2), 28 (CO) and 44 (CO2)) using a mass spectrometer (Hiden HAS-301-1291) through
a heated capillary line. Calibration gases, CH4, O2, H2, CO and CO2, all 5% in a balance of He and He
as a zero gas, were periodically fed into the mass spectrometer (Hiden, QGA) to obtain calibration
factors, cracking factors (for CO2 into CO) and the background current. Calibrations with all calibration
gases and the zero gas were performed before and after each experiment. The corrected mass to charge
ratio current for all gases was a calibration factor multiplied by the difference between the recorded
signal and the background signal, minus any cracking signal from other species on that particular mass
to charge ratio channel.

3.4.1. Temperature Programmed Reduction

A known amount of catalyst (approximately 150 mg) was introduced in the reactor and was
purged in situ with He at room temperature (RT). The temperature was increased from RT to 700 ◦C or to
800 ◦C, at a rate of 10 ◦C min−1, under a constant flow of reducing gas mixture of 5% CH4/He or H2/He
(50 mL min−1) at atmospheric pressure, experiments referred to as methane temperature programmed
reduction (MTPR) or hydrogen temperature programmed reduction (HTPR). The signals of CH4, O2,
H2, CO and CO2 were continuously monitored using a mass spectrometer (Hiden HAS-301-1291).
The signals were integrated to calculate the total amount of gases produced and consumed.

3.4.2. Temperature Programmed Oxidation

Temperature programmed oxidation (TPO) was performed to measure the carbon deposition after
methane conversion experiments. At the end of each TPR experiment, a weighted amount of the used
catalyst (~150 mg) was employed in the experiment. The temperature was increased from RT to 700 ◦C
at a rate of 10 ◦C min−1, under a constant flow of oxidizing gas mixture of 5% O2/He (50 mL min−1)
at atmospheric pressure. The signals of O2, CO and CO2 were continuously monitored using an MS
spectrometer (Hiden HAS-301-1291). To calculate the total amount of carbonaceous deposits, the CO2

signals were integrated as there were no traces of CO detected in any of the experiments.

3.5. Calculations

For the calculation of conversion, selectivity, carbon deposition and capacity, the following values
were calculated.

NCO =

∫
M

(yCO)outletndt (1)

NCO2 =

∫
M

(
yCO2

)
outlet

ndt (2)

NC =

∫
O

(
yCO2

)
outlet

ndt (3)

NH2 =

∫
H

(
yH2

)
outlet

ndt (4)

NCH4 =

∫
M

(
yCH4

)
outlet

ndt (5)

where the letter under the integral denotes the reduction step (M for MTPR or H for HTPR) or the
oxidation step (O for TPO). yCO, yCO2 , yH2 , yCH4 are the mole fractions of CO, CO2, H2 and CH4 at the
outlet of the reactor, NCO and NCO2 are the total moles of CO and CO2 produced, respectively, during the
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reduction step, and NH2 and NCH4 are the total moles of unreacted H2 and CH4 (measured at the outlet of
the reactor). n is the total molar flow rate corresponding to each experiment, and m is the mass of sample

Conversion (%) was calculated using the following equation.

XCH4 =
NCO + NCO2 + NC

NCO + NCO2 + NC + NCH4

·100 (6)

Carbon deposition (mgcarbon/gsample) was calculated by the integration of the curve of CO2 after
TPO experiments. CO was completely absent meaning that the oxidation of the carbon lead only to
total combustion products.

c =
MC
m

NC (7)

MC is the molar mass of carbon.
Oxygen capacity (mol O/mol of perovskite) was calculated by

ζM =
(
2NCO2 + NCO

)
·
MP

m
(8)

ζH =
(
2NH2

)
·
MP

m
(9)

where ζM and ζH correspond to the oxygen capacity (expressed as moles of O per moles of perovskite)
calculated from MTPR and HTPR, respectively. MP is the molar mass of the perovskite, m is the sample
weight used in the respective experiments.

Relative density dr was calculated by

dr =
mp

dtπr2hp
104 (10)

where mp is the mass, rp is the radius, hp is the thickness of the sintered pellet, and dt is the theoretical
density that each material would have if the pellet was dense.

dt =
Mp

Naap3 (11)

where Mp is the molar mass of the perovskite, and Na is the Avogadro’s number.

4. Conclusions

In this work we demonstrate the effect of the microstructure upon the exsolution process as well
as on the activity of the exsolved exo/endo-particle systems. We also attempt to further functionalise
the surface of those systems in order to drive methane conversion to lower temperatures. We do this
by combining the exsolution method and infiltration, and we deposit small quantities (0.1 wt%) of Rh
nanoparticles on the surface of the materials. We achieve a considerable increase in the total capacity
of the perovskites and a decrease of the activation temperature.

The materials created here contain a large fraction of Ni nanoparticles embedded in the bulk of the
perovskite matrix, which makes the ideal high-oxygen capacity materials for chemical looping, while at the
same time, Ni nanoparticles are also exsolved on the surface in order to be able to activate CH4. By tuning
in the microstructure of these systems we show that oxygen capacity and not particle size characteristics
mainly governs the activity during a redox process; however, grain boundaries and surface roughness can
have a detrimental effect on the anchorage of the particles and consequently to their durability.

By infiltrating the surface of the materials with Rh, we manage to access low temperature activity, up to
220 ◦C lower than the non-infiltrated sample, while increasing their activity by 40% when referring to pellet
samples. Analysis of the samples using SEM after testing demonstrates, however, that the infiltration of Rh
has negatively affected the surface of the perovskites although the microstructure and bulk remain intact.
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The microstructure tuning and surface functionalization demonstrated here are important aspects
to consider when designing materials for redox cycling applications such as chemical looping methane
partial oxidation, thermochemical solar to fuels conversion or three-way catalysts [33].
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