Comparative Study of ZnO Thin Films Doped with Transition Metals (Cu and Co) for Methylene Blue Photodegradation under Visible Irradiation

William Vallejo,*, Alvaro Cantillo, Briggitte Salazar, Carlos Diaz-Uribe, Wilkendry Ramos, Eduard Romero and Mikel Hurtado

1 Photochemistry and Photobiology Research Group, College of Basic Sciences, Universidad del Atlántico, Puerto Colombia 81007, Colombia; acantilloguzman@mail.uniatlantico.edu.co (A.C.); bssalazar@mail.uniatlantico.edu.co (B.S.); carlosdiaz@mail.uniatlantico.edu.co (C.D.-U.); wramos@mail.uniatlantico.edu.co (W.R.)

2 Department of Chemistry, College of Science, Universidad Nacional de Colombia, Bogotá 111321, Colombia; erromerom@unal.edu.co

3 Electronic Engineering College, Cluster NBIC, Universidad Central, Bogotá 111021, Colombia; mhurtadom1@ucentral.edu.co or mikel.hurtado@uniminuto.edu

4 Civil Engineering College, Universidad Minuto de Dios, Bogotá 110111, Colombia;

* Correspondence: williamvallejo@mail.uniatlantico.edu.co; Tel.: +57-53599484

Received: 14 March 2020; Accepted: 6 May 2020; Published: 11 May 2020

Abstract: We synthesized and characterized both Co-doped ZnO (ZnO:Co) and Cu-doped ZnO (ZnO:Cu) thin films. The catalysts' synthesis was carried out by the sol–gel method while the doctor blade technique was used for thin film deposition. The physicochemical characterization of the catalysts was carried out by Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction, and diffuse reflectance measurements. The photocatalytic activity was studied under visible irradiation in aqueous solution, and kinetic parameters were determined by pseudo-first-order fitting. The Raman spectra results evinced the doping process and suggested the formation of heterojunctions for both dopants. The structural diffraction patterns indicated that the catalysts were polycrystalline and demonstrated the presence of a ZnO wurtzite crystalline phase. The SEM analysis showed that the morphological properties changed significantly, the micro-aggregates disappeared, and agglomeration was reduced after modification of ZnO. The ZnO optical bandgap (3.22 eV) reduced after the doping process, these being ZnO:Co (2.39 eV) and ZnO:Cu (3.01 eV). Finally, the kinetic results of methylene blue photodegradation reached 62.6% for ZnO:Co thin films and 42.5% for ZnO:Cu thin films.

Keywords: thin films; ZnO; doping; heterogeneous photocatalysis

1. Introduction

Synthetic dyes are commonly used by various industries, especially textile ones. These physically and chemically stable compounds are harmful to the environment. Synthetic dyes are recalcitrant compounds that exhibit high solubility in water and accumulate in both wastewater and industrial effluents [1,2]. Currently, water pollution is one of the major challenges of the modern world, and the recovery of wastewater by conventional methods is not suitable for emergent pollutants [3,4]. Heterogeneous photocatalysis can be satisfactorily applied for the decontamination of natural samples through the photocatalytic degradation of toxic pollutants from complex matrices, such as river water and wastewater [5]. All renewable technologies have become a promising alternative for both energy generation and wastewater treatments. Solar photocatalysis is a suitable option to degrade recalcitrant
pollutants from water [6,7]. Different catalysts have been reported to exhibit photocatalytic activity (e.g., TiO$_2$ [8], Fe$_2$O$_3$ [9], ZnO [10], CuO [11], CdS [12], WO$_3$, and SnO$_2$ [13]). ZnO has been used as a photocatalyst, but its high bandgap value (~3.3 eV) is one of its major drawbacks. ZnO is not photocatalytically active at longer wavelengths of the electromagnetic spectrum. As a consequence, using solar irradiation as the main energy source to develop practical applications is a challenge for ZnO [14]. Some alternative strategies to extend ZnO photoresponse in the visible light region are: (a) ZnO doping [15–18], (b) co-doping [19,20], (c) coupling with lower band gap semiconductors [21,22], (d) surface plasmon resonance [23–26], (e) quantum dots [27], and (f) sensitization with natural and synthetic dyes [28–31]. With the doping process, optical and catalytic properties can be tuned by doping [32], and the ZnO bandgap generates intragap electronic states inside the semiconductor [33].

Some transition metals (e.g., Co$^{2+}$, Ag$^+$, Cu$^{2+}$, Mn$^{2+}$) have been used to enhance the properties of ZnO [34–37]. Among these, copper is an economical option. Because the ionic size of Cu$^2+$ is close to Zn$^{2+}$, Cu$^{2+}$ ions can replace Zn$^{2+}$ ions to modify the absorption spectrum [38]. Kuriakose et al. reported that Cu-doped ZnO nanostructures photodegraded organic dyes. Their analysis associated the enhanced photocatalytic activity to the combined effects of: (i) the separation of charge carriers and (ii) the optimal Cu doping load [39]. Another transition element is cobalt, as the ionic size of the Co$^{2+}$ ion is close to that of Zn$^{2+}$. Co$^{2+}$ ions can replace Zn$^{2+}$ and generate minimal distortion in the crystalline lattice [35,40]. Yongchun et al. reported the synthesis of cobalt-doped ZnO nanorods and reported an improvement in the performance of alizarin red photocatalytic degradation [41]. In addition, Kuriakose et al. synthesized Co-doped ZnO nanodisks and nanorods, and reported photocatalytic activity improvement as the by-effect of the doping process due to: (i) the charge separation efficiency and (ii) the surface area [42]. Poornaprakash et al. reported 66.5% efficiency in photocatalytic degradation of Rhodamine B under artificial solar light illumination on Co-doped ZnO nanorods [43]. The incorporation of these kinds of metals inside the ZnO structure can modify optical properties by extending the photodegradation ability towards the largest wavelength of the electromagnetic spectrum [44,45]. In this work, we report a facile wet chemical method for the synthesis of Cu and Co-doped ZnO thin films with highly enhanced photocatalytic activity. The metal doping process leads to highly efficient visible light photocatalytic degradation of methylene blue.

2. Results and Discussion

2.1. Structural Study

Figure 1 shows the XRD pattern for the catalysts synthesized in this study. The hexagonal wurtzite phase (JCPDS No. 36–1451) is identified as a crystalline structure for ZnO thin films, with the signals of the diffraction pattern corresponding to those reported by other authors [46]. The doping process did not affect the main signals in the diffraction patterns, as the XRD patterns for ZnO:Cu and ZnO:Co showed signals of a wurtzite ZnO structure. However, the XRD patterns showed a change in the intensity of the signals, suggesting that metal ions could substitute Zn$^{2+}$ ions after the doping process. Lima et al. suggested that the change in the intensities could be associated with changes in both (i) grain size due to network defects and (ii) oxygen vacancies [47,48].

We used the Debye–Scherrer equation to calculate the crystalline domain size of the catalysts, using the full width at half maximum (FWHM) for the highest peak (101), with θ being the Scherrer diffraction angle [49]. Although there is no clear tendency between the intensity of the signal and metal doping load (see Figure 1b,c), all samples reduced the grain size of catalysis after the doping process (see Table 1). This could be explained by the incorporation of Co$^{2+}$ and Cu$^{2+}$ ions as dopants into the ZnO after the doping process [48,49]. Finally, the structural results suggest that ZnO films incorporated metallic ions. This observation was verified by Raman spectroscopy and diffuse reflectance, as described in the next sections.
Figure 1. (a) X-ray diffraction patterns for the catalysts synthesized in this study. (b) Comparison of the highest peak (101) for ZnO:Cu. (c) Comparison of the highest peak (101) for ZnO:Co.

Table 1. Crystallographic results for the X-ray characterization of both undoped ZnO and metal-doped ZnO thin films.

<table>
<thead>
<tr>
<th>Thin Film</th>
<th>FWHM * (101)</th>
<th>Intensity (101) Peak</th>
<th>Grain Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO</td>
<td>0.2396</td>
<td>8949</td>
<td>34.9</td>
</tr>
<tr>
<td>ZnO:Co 1%</td>
<td>0.2615</td>
<td>14,997</td>
<td>32.0</td>
</tr>
<tr>
<td>ZnO:Co 3%</td>
<td>0.2552</td>
<td>11,836</td>
<td>32.3</td>
</tr>
<tr>
<td>ZnO:Co 5%</td>
<td>0.2583</td>
<td>12,495</td>
<td>32.4</td>
</tr>
<tr>
<td>ZnO:Cu 1%</td>
<td>0.2601</td>
<td>11,649</td>
<td>32.1</td>
</tr>
<tr>
<td>ZnO:Cu 3%</td>
<td>0.2803</td>
<td>9202</td>
<td>29.8</td>
</tr>
<tr>
<td>ZnO:Cu 5%</td>
<td>0.3075</td>
<td>5300</td>
<td>27.2</td>
</tr>
</tbody>
</table>

* FWHM: full width at half maximum.
2.2. Raman Study

The Raman spectra of the catalysts are shown in Figure 2. All the peaks correspond with wurtzite-ZnO (C\textsubscript{6\textit{v}}): (i) 97.4 cm-1 (vibrational mode E\textsubscript{2\textit{L}}), (ii) 340 cm-1 (E\textsubscript{2\textit{H}}–E\textsubscript{2\textit{L}}), and (iii) 437.0 cm-1 and 581 cm-1 (A\textsubscript{1} vibrational mode) [50,51]. Figure 2a shows the Raman spectra for Cu-doped ZnO thin films. Signals E\textsubscript{2\textit{L}} (~99 cm-1) and E\textsubscript{2\textit{H}} (~437 cm-1) widen and decrease after the doping process—a behavior that can be explained by the incorporation of Cu2+ into the ZnO lattice. Additionally, this behavior has been associated with reduction of ZnO crystallinity by the formation of nanocomposites [52]. For greater Cu loads, Figure 2a shows two new signals, the first one located at 298 cm-1 and a second weak one at 614 cm-1. These two signals can be attributed to modes A\textsubscript{1\textit{g}} and B\textsubscript{2\textit{g}} for CuO, respectively, and this result suggests the formation of a ZnO–CuO heterojunction during the synthesis process. The hydrodynamic stability of the suspension is affected by the concentration of reagents; so for obtaining greater Cu loads, the CuO generation is feasible. This result is in line with previous reports [39].

![Figure 2](image-url)

Figure 2. Raman spectra for: (a) ZnO:Cu and (b) ZnO:Co thin films. Inside the figures are the Raman vibration modes, where (*) corresponds to defects inside the ZnO structure.

Figure 2b shows the Raman spectrum for ZnO:Co; the intensity of A\textsubscript{1\textit{LO}}, E\textsubscript{2\textit{L}}, and E\textsubscript{2\textit{H}} modes decrease for these films. The ZnO:Co thin films (doping load 5%) show four new signals at 490 cm-1, 526 cm-1, 626 cm-1, and 725 cm-1. These signals could be attributed to the possible presence of Co\textsubscript{3}O\textsubscript{4}, and these results confirm both the doping process and the formation of a heterojunction of ZnO–Co\textsubscript{3}O\textsubscript{4} [53,54].

2.3. Morphological Study

Figure 3 shows SEM images for the catalysts. Figure 3a shows that the ZnO films formed microaggregates (~220 nm) composed of quasi-spherical ZnO nanoparticles (around 40 nm in diameter), and this is a typical result for this material sensitized by the sol–gel method. Figure 3b,c shows that the morphological properties changed significantly after the doping process. Regarding the ZnO:Cu thin films, Figure 3b shows the formation of nanorods. Meanwhile, Figure 3c shows the formation of nanosized elongated particles of various shapes (~100 nm) from the ZnO:Co thin films. Likewise, Figure 3c shows that the agglomeration on the catalyst surface reduced and the microaggregates...
disappeared. Different nanostructures have been reported for ZnO (e.g., nanorods, nanotubes, nanobelts, nanospings, nanospirals, nanorings) [55]. It is known that ZnO’s morphological properties rely on synthesis conditions, and in our case, it is clear that the metal ions used during synthesis reduced the agglomeration and changed the thin films’ morphology [56].

![Figure 3. SEM images: (a) ZnO, (b) ZnO:Cu 5% and (c) ZnO:Co 5% thin films.](image)

2.4. Optical Study

The diffuse reflectance spectra for the catalysts are shown in Figure 4. We used the Kubelka–Munk (KM) remission function for determining the bandgap energy value of the catalysts [57]. The use of the KM remission function makes it possible to obtain an analog to Tauc plots [58,59]:

\[
(F(R_\infty)hv)^{\frac{1}{2}} = A(hv - E_g)
\]

(1)

![Figure 4. Reflectance diffuse spectra for both catalysts.](image)

Figure 5 shows plots for \((F(R_\infty)hv)^{\frac{1}{2}}\) versus \((hv)\) and Table 2 lists the optical properties of the catalysts. Figure 5 shows that ZnO had a bandgap value \((E_g)\) of 3.22 eV, a value that corresponds with that reported by Srikant et al. (3.1 eV and 3.2 eV) [60,61]. For doped ZnO catalysts, the \(E_g\) value was lower, and this behavior is associated with the reduction of the Fermi level of ZnO by the generation of intragap states. For ZnO:Cu, the modification of the bandgap can be attributed to the induction of 3d states of Cu located inside the bandgap of ZnO [37]. Additionally, the visible light absorption observed for doped ZnO can be attributed to intragap transitions between Cu 3d and...
Zn 4s states. Furthermore, the ZnO:Co 5% catalyst has a lower bandgap value compared to other catalysts. This reduction is attributed to s-d and p-d exchange interactions between ZnO and Co\(^{2+}\) ions [62]. The 3d levels of Co\(^{2+}\) are located within the bandgap of ZnO, which can create new bands at larger wavelengths [63]. Some photoluminescence studies of the transition metal doping ZnO nanoparticles suggest that this important reduction in \(E_g\) value is due to oxygen deficiency [64]. Finally, the formation of nanoheterojunctions in the catalyst surface leads to an enhanced separation of charge carriers, increasing photocatalytic efficiency in addition to the doping process. The generation of these heterostructures has been reported for photocatalytic applications [65].

Figure 5. Kubelka–Munk (KM) fitting for the catalysts synthesized in this study.

Table 2. Band gap and results of pseudo-first-order model fitting.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>(k_{ap} \times 10^{-3}) (min(^{-1}))</th>
<th>Degradation (%)</th>
<th>Band Gap (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO</td>
<td>0.2</td>
<td>2.7</td>
<td>3.22</td>
</tr>
<tr>
<td>ZnO:Co 1%</td>
<td>2.6</td>
<td>30.4</td>
<td>3.17</td>
</tr>
<tr>
<td>ZnO:Co 3%</td>
<td>4.2</td>
<td>45.7</td>
<td>2.83</td>
</tr>
<tr>
<td>ZnO:Co 5%</td>
<td>7.2</td>
<td>62.6</td>
<td>2.39</td>
</tr>
<tr>
<td>ZnO:Cu 1%</td>
<td>3.4</td>
<td>36.2</td>
<td>3.12</td>
</tr>
<tr>
<td>ZnO:Cu 3%</td>
<td>3.4</td>
<td>37.7</td>
<td>3.07</td>
</tr>
<tr>
<td>ZnO:Cu 5%</td>
<td>4.0</td>
<td>42.5</td>
<td>3.01</td>
</tr>
</tbody>
</table>

2.5. Photocatalytic Study

Figure 6 shows the decrease of MB as a function of time for all tests performed under visible irradiation. The MB concentration did not change after 140 min under visible irradiation, verifying the stability of MB dye. Furthermore, ZnO films did not show photocatalytic activity under visible irradiation (<3%). This result is in accordance with the ZnO bandgap energy value, and this photocatalyst is active only under UV irradiation. The ZnO:Co 5% catalyst reported the highest photocatalytic activity. This result can be explained by the lower bandgap value of the ZnO:Co 5% catalyst compared to other catalysts. The ZnO:Cu catalysts showed less photocatalytic activity than the Co-doped ZnO films. Compared to the Co-doped ZnO films, the bandgap values of this catalyst did not change; however, the best photodegradation result for ZnO:Cu was 42.5%, a value greater than that obtained for the ZnO thin films. The combined effect of the doping process and the heterojunction can explain this behavior. The photodegradation kinetics of MB on catalysts were studied by using the pseudo-first-order model [66]:

\[
v_{[\text{MB}]} = [\text{MB}]_0 e^{-k_{ap}t}
\] \hspace{1cm} (2)
Oxygen species (ROS) can be generated (e.g., conduction band of ZnO. After electrons are located at the conduction band of ZnO, charged pairs; (ii) CuO and Co$_3$O$_4$ intraband transitions as dopants allow the doped ZnO thin films to absorb visible light, generating charged pairs; (iii) CuO and Co$_3$O$_4$ heterojunctions, generating charge pairs. In this case, the electron can be transferred to the conduction band of ZnO. After electrons are located at the conduction band of ZnO, different reactive oxygen species (ROS) can be generated (e.g., O_2^-; OH), starting the MB photodegradation. Scheme 1 shows the general scheme of energetic levels for doped ZnO thin films and the ROS generation.

Figure 6. Methylene blue (MB) concentration vs. time of visible irradiation on the synthesized catalysts.

Time (t) is expressed in minutes and k_{app} is the apparent reaction rate constant (min$^{-1}$). Table 2 lists the kinetic parameters for the studied catalysts. Among all the catalysts, the ZnO thin films ($k_{app} = 0.2 \times 10^{-4}$ min$^{-1}$) showed the lowest k_{app} value, while the best results were obtained for ZnO:Co 5% ($k_{app} = 7.2 \times 10^{-3}$ min$^{-1}$) and ZnO:Cu 5% ($k_{app} = 4 \times 10^{-3}$ min$^{-1}$). In the best case, the kinetic rate constant was 36 times higher than the ZnO thin films. A combined effect could be present: (i) Cu doping in ZnO and (ii) the formation of a nanoheterojunction (ZnO–CuO). This synergic effect could be a reason for the increase in photocatalytic yields. The heterostructure generation for the methyl orange photodegradation under visible light irradiation has been reported before [67]. Table 3 lists other reports for the use of doped ZnO with different metals as catalysts. Our results indicate that the catalysts produced in this study are suitable options for solar photocatalytic applications.

Table 3. k_{app} values for different catalysts (ZnO doped with different metals) under visible irradiation.

<table>
<thead>
<tr>
<th>Catalysts/Reference</th>
<th>Pollutant/Molar Concentration</th>
<th>Degradation (%)/Time Test</th>
<th>$k_{app} \times 10^{-3}$ (min$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnS/ZnO [67]</td>
<td>Rhodamine B/5 ppm</td>
<td>99%/175 min</td>
<td>21.2</td>
</tr>
<tr>
<td>Carbon-ZnO [68]</td>
<td>Methy1 Orange/5 ppm</td>
<td>82%/125 min</td>
<td>13.9</td>
</tr>
<tr>
<td>ZnO:Co [41]</td>
<td>2,4-dinitrophenol/25 ppm</td>
<td>92%/140 min</td>
<td>18.3</td>
</tr>
<tr>
<td>ZnO:Cu [39]</td>
<td>Alizarin Red/20 ppm</td>
<td>93%/60 min</td>
<td>—</td>
</tr>
<tr>
<td>ZnO:Cu [69]</td>
<td>Methy1 Orange/5 ppm</td>
<td>80%/30 min</td>
<td>23</td>
</tr>
<tr>
<td>ZnO:Co/this work</td>
<td>Methy1ene Blue/10 ppm</td>
<td>65%/140 min</td>
<td>4.1</td>
</tr>
<tr>
<td>ZnO:Cu/this work</td>
<td>Methy1ene Blue/10 ppm</td>
<td>63%/140 min</td>
<td>7.2</td>
</tr>
<tr>
<td>ZnO:Cu/this work</td>
<td>Methy1ene Blue/10 ppm</td>
<td>43%/140 min</td>
<td>4.0</td>
</tr>
</tbody>
</table>

The ZnO films did not show photocatalytic activity under visible irradiation. However, two different processes can contribute to photocatalytic degradation under visible irradiation: (i) the intraband transitions as dopants allow the doped ZnO thin films to absorb visible light, generating charge pairs; (ii) CuO and Co$_3$O$_4$ can absorb visible light after the formation of ZnO–CuO and ZnO–Co$_3$O$_4$ heterojunctions, generating charge pairs. In this case, the electron can be transferred to the conduction band of ZnO. After electrons are located at the conduction band of ZnO, different reactive oxygen species (ROS) can be generated (e.g., O_2^-; OH), starting the MB photodegradation. Scheme 1 shows the general scheme of energetic levels for doped ZnO thin films and the ROS generation.
was measured through a Veeco Dektak 150 profilometer. The physical chemistry properties of the films were performed at 1.0%, 3.0%, and 5.0%. The thin films were deposited using the doctor blade method, (Co(CH₃COO)₂·4H₂O) (JT Baker) for the cobalt doping processes. The synthesis of doped ZnO powder was performed at 1.0%, 3.0%, and 5.0%. The thin films were heated for 30 min at 90 °C to evaporate the solvent, and finally, the sintering process was performed at 500 °C for 2 h [73,74]. Using this procedure, we obtained thin films (6 µm thickness). The film thickness was measured through a Veeco Dektak 150 profilometer. The physical chemistry properties of the films were studied by X-ray diffraction, diffuse reflectance spectrophotometry, and Raman spectroscopy assay. X-ray diffraction patterns were obtained using a Shimadzu 6000 diffractometer using Cu Kα radiation (λ = 0.15406 nm) as an X-ray source with a diffraction angle in the 2θ range (20–80°). Diffuse reflectance spectra were obtained with a Lambda 4 Perkin–Elmer spectrophotometer equipped with an integration sphere. The compositional properties of the materials were studied by Raman spectroscopy in a DXR device equipped with a 780 nm laser. The morphological properties were studied by scanning electron microscopy, under an excitation energy of 5 and 1 kV. The metallic content of the films was determined by plasma emission spectroscopy using the SM 3120 B technique, EPA 3015A modified for solids (see Supporting Information).

3. Materials and Methods

3.1. Synthesis and Characterization

The ZnO synthesis was carried out according to a previous report [69]: Twenty five mL of ammonium hydroxide (NH₄OH) (25–35% w/v) reactive grade (Merck) was placed in a 250 mL glass beaker, then 0.500 M (Zn(CH₃COO)₂·2H₂O) (Merck) was added dropwise at a rate of 1.7 mL min⁻¹ for 1 h, at a temperature of 85 °C under constant agitation at 300 rpm. After that, the suspension stood for three days at room temperature then the solid was filtered and dried for 5 h at 100 °C [72,73].

For the ZnO doping process, we used a similar procedure as previously described. While adding Zn²⁺ ions, we also added salts of the doping metals (CuSO₄·5H₂O) (Merck) for copper doping and (Co(CH₃COO)₂·4H₂O) (JT Baker) for the cobalt doping processes. The synthesis of doped ZnO powder was performed at 1.0%, 3.0%, and 5.0%. The thin films were deposited using the doctor blade method, and the suspension was placed in a glass measuring 2 cm high and 2 cm wide. The thin films were heated for 30 min at 90 °C to evaporate the solvent, and finally, the sintering process was performed at 500 °C for 2 h [73,74]. Using this procedure, we obtained thin films (6 µm thickness). The film thickness was measured through a Veeco Dektak 150 profilometer. The physical chemistry properties of the films were studied by X-ray diffraction, diffuse reflectance spectrophotometry, and Raman spectroscopy assay. X-ray diffraction patterns were obtained using a Shimadzu 6000 diffractometer using Cu Kα radiation (λ = 0.15406 nm) as an X-ray source with a diffraction angle in the 2θ range (20–80°). Diffuse reflectance spectra were obtained with a Lambda 4 Perkin–Elmer spectrophotometer equipped with an integration sphere. The compositional properties of the materials were studied by Raman spectroscopy in a DXR device equipped with a 780 nm laser. The morphological properties were studied by scanning electron microscopy, under an excitation energy of 5 and 1 kV. The metallic content of the films was determined by plasma emission spectroscopy using the SM 3120 B technique, EPA 3015A modified for solids (see Supporting Information).

3.2. Photocatalytic Test

Methylene blue (MB) was chosen as the pollutant model in this study. The experiments were carried out in a batch reactor using an LED tape as a source of visible radiation (cold white light 17 watts), and the incident photon flow per unit volume I₀ was 5.8 × 10⁻⁷ Einstein·L⁻¹·s⁻¹. Before irradiation,
the MB solution was kept in the dark for 90 min at 250 rpm to reach adsorption–desorption equilibrium on the catalysts’ surface. Photodegradation was carried out using 50 ± 0.025 mL of an MB solution (10 mg·L−1) saturated with oxygen at pH 7.0. The concentration of dye was determined through the spectrophotometric method (Thermo Scientific–Genesys 10S) using 665 nm as a fixed wavelength, with a calibration curve (correlation coefficient R = 0.997) for the use of the Lambert–Beer equation.

4. Conclusions

We synthesized and characterized ZnO thin films doped with Co and Cu. Raman results corroborated the doping process, which suggested the generation of a heterostructure. For the doped ZnO catalysts, the results show a reduction in the E_G values (from 3.22 to 2.42 eV for the best catalyst). This behavior is associated with a reduction of the Fermi level of ZnO by the presence of intragap states. The photocatalytic test indicated that doped catalysts had greater photocatalytic activity than unmodified catalysts, which could be attributed to (i) the generation of intraband states for the insertion of Co and Cu into ZnO, and (ii) the generation of ZnO–CuO and ZnO–Co$_3$O$_4$ heterojunctions. Furthermore, the rate of the photodegradation process (ZnO:Co 5%) was 36 times greater than the rate for unmodified ZnO, and the k_{app} values for the catalysts synthesized in this study had a suitable photocatalytic activity compared to other reports.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/5/528/s1.

Funding: This research was funded by Universidad del Atlántico.

Acknowledgments: W.V., C.D.-U., B.S., and A.C. would like to thank Universidad del Atlántico.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

2. Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. *Chemosphere* 2018, 209, 201–219. [CrossRef]

63. Qiu, X.; Li, G.; Sun, X.; Li, L.; Fu, X. Doping effects of Co 2+ ions on ZnO nanorods and their photocatalytic properties. Nanotechnology 2008, 19, 215703. [CrossRef] [PubMed]
69. Vallejo, W.; Cantillo, A.; Dias-Uribe, C. Methylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Films. Int. J. Photoenergy 2020, 2020, 112. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).