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Abstract: CO2 is a compound of high stability which proves useful in some organic syntheses as
a solvent or component decreasing explosivity of gases. It is also a good carbonylating agent for
aliphatic amines although not for aromatic ones, the latter being carbonylated with phosgene or, as in
our previous works, with CO/O2 in the presence of Pd(II) complexes. In this work we have used
the mixture of CO/O2 and CO2 for carbonylation of aniline to N,N’-diphenylurea. After optimization
of the reaction conditions (56% of CO2 in CO2/CO mixture) we studied the activity of three kinds
of pre-catalysts: (a) Pd(II) complexes, (b) Pdblack, and (c) palladium nanoparticles (PdNPs) in
the presence of derivatives of pyridine (XnPy). The highest conversion of aniline (with selectivity
towards N,N-diphenylurea ca. 90%) was observed for PdNPs. The results show that catalytic
cycle involves Pd(0) stabilized by pyridine ligand as active species. Basing on this observation,
we put the hypothesis that application of PdNPs instead of Pd(II) complex can efficiently reduce
the reaction time.
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1. Introduction

Environment-friendly organic synthesis is the main challenge of modern science in order to meet
the objectives of sustainable development. Among many types of functionalization, insertion of a
single carbonyl group into an organic molecule plays a special role due to large-scale demand for
carbonyl compounds [1,2]. Excellent examples of products (both commodities and specialty chemicals)
with carbonyl groups are urea derivatives, widely used in modern chemical industry— they find
application in the production of pesticides (herbicides, fungicides), resin precursors, and fiber dyes [3,4],
as well as antiviral and anticancer agents and other pharmaceuticals [4–8]. Numerous derivatives of
ureas—including isocyanates and carbamates—are employed in syntheses of adhesives, varnishes,
rubbers, paints, and polyurethane foams [9]. Unfortunately, dominating technologies of production of
diphenylureas from aromatic amines are based on the phosgene method [9,10], and the real challenge
in this sector of industry is to replace them by phosgene-free methods. The most common approaches
involve less environmentally harmful carbonylating agents such as CO or alkyl carbonates [1,3,5,11–13],
including carbonylation performed in beneficial nonconventional solvents such as ionic liquids [12,13].
The main limitation of CO-based methods is the high pressure applied.

Over the past few years, our studies have been focused on the carbonylation of aromatic
nitrocompounds and amines by CO in the presence of the PdCl2(XnPy)2/Fe/I2/XnPy catalytic system,
where Py = pyridine, X = Cl or CH3, n = 0–2 [14–17]. We have successfully optimized the reaction
conditions and proposed detailed mechanisms for carbonylation of aniline (AN) to N,N′-diphenylurea
(DPU, equation 1), or to ethyl N-phenylcarbamate (EPC, Equation (2)), by CO/O2.
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N,N′-diphenylurea (DPU, equation 1), or to ethyl N-phenylcarbamate (EPC, Equation (2)), by 

CO/O2. 

 

(1) 
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Processes presented by Equations (1) and (2) involve mixture of CO (a common source of 

carbonyl group) and O2 (oxidizing agent), which is potentially explosive in a wide range of 

concentrations: 16.7–93.5% (under atmospheric pressure and at 18 °C) [18,19]. Therefore, strategies 

of eliminating or replacing hazardous substrates with safer and less expensive compounds are 

actively researched [20], and introduction of carbon dioxide to gaseous components is one of such 

approaches following the promising trends of green chemistry. CO2 is already used as a reagent in 

relatively few industrial processes such as production of urea, salicylic acid, and some carbonates. 

Despite limited number of applications of CO2 in organic synthesis caused mainly by high kinetic 

inertness and thermodynamic stability of CO2 [21–24], every year new approaches involving CO2 

have been investigated [25–28]. For many years, carbonylation of aromatic amines by CO2 was 

poorly represented in the literature, in contrast to carbonylation of ammonia and aliphatic amines by 

CO2 [29–34]. Perhaps, lower nucleophilicity of nitrogen atom in the aromatic ring of aromatic amines 

decreases their reactivity towards CO2 [5]. However, in recent years significant progress has been 

made toward the synthesis of isocyanates, ureas, carbamates, and other compounds using CO2 and 

aromatic amines [35–41]. Despite promising results, many of these methods suffer from some 

limitations such as long reaction times required, harsh reaction conditions, low yields, and other 

difficulties in application of CO2 as a carbonylating agent [42,43]. Therefore, some reports are 

focused on the use of CO2 as an additive for CO, or as a reaction medium (liquid CO2) [5,27,44]. 

Gabriele et al. [44] observed that in carbonylation of amines performed in the presence of CO/air and 

PdI2, the addition of CO2 significantly increased yield of the reaction for aliphatic amines, whereas 

less satisfactory results were obtained for carbonylation of aromatic amines. Surprisingly, good 

performance was observed for both aliphatic and aromatic amines when carbonylation was 

conducted in pure CO2 as a non-polar aprotic solvent. Using an appropriate amount of CO2 resulted 

in nearly three times higher catalytic activity of PdI2 catalyst [44]. Based on the results obtained by 

Gabriele, although in many processes it is very difficult to replace CO by CO2 as carbonylating agent, 

addition of CO2 may increase the yield of the carbonylation of amines by CO. Moreover, carbon 

dioxide is a byproduct formed during industrial production of CO and its complete removal makes 

an additional complication in the production process. Furthermore, CO2 exhibits a much stronger 

suppression effect on the explosion of flammable gases than nitrogen [45], and thus it decreases 

explosiveness of gases employed in the synthesis (CO and O2) leading to enhanced safety of the 

process [46]. Last but not least, presence of CO2 in a traditional liquid phase under mild pressures 

(tens of bar) results in generation of a gas-expanded liquid (GXL) phase. GXL retains the beneficial 

attributes of a conventional solvent (polarity, catalyst/reactant solubility) with some additional 

advantages: higher miscibility of permanent gases (O2, CO, etc.) and enhanced transport rates 

compared to organic solvents at ambient conditions. The enhanced gas solubilities in GXLs may 

result in reaction rates greater than those achieved in neat organic solvent or supercritical carbon 

dioxide (sCO2) [47]. In the case of our process, even if CO2 cannot serve as a carbonylating agent, it is 

(1)
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Processes presented by Equations (1) and (2) involve mixture of CO (a common source of carbonyl
group) and O2 (oxidizing agent), which is potentially explosive in a wide range of concentrations:
16.7–93.5% (under atmospheric pressure and at 18 ◦C) [18,19]. Therefore, strategies of eliminating or
replacing hazardous substrates with safer and less expensive compounds are actively researched [20],
and introduction of carbon dioxide to gaseous components is one of such approaches following
the promising trends of green chemistry. CO2 is already used as a reagent in relatively few industrial
processes such as production of urea, salicylic acid, and some carbonates. Despite limited number of
applications of CO2 in organic synthesis caused mainly by high kinetic inertness and thermodynamic
stability of CO2 [21–24], every year new approaches involving CO2 have been investigated [25–28].
For many years, carbonylation of aromatic amines by CO2 was poorly represented in the literature,
in contrast to carbonylation of ammonia and aliphatic amines by CO2 [29–34]. Perhaps, lower
nucleophilicity of nitrogen atom in the aromatic ring of aromatic amines decreases their reactivity
towards CO2 [5]. However, in recent years significant progress has been made toward the synthesis
of isocyanates, ureas, carbamates, and other compounds using CO2 and aromatic amines [35–41].
Despite promising results, many of these methods suffer from some limitations such as long reaction
times required, harsh reaction conditions, low yields, and other difficulties in application of CO2 as a
carbonylating agent [42,43]. Therefore, some reports are focused on the use of CO2 as an additive for
CO, or as a reaction medium (liquid CO2) [5,27,44]. Gabriele et al. [44] observed that in carbonylation of
amines performed in the presence of CO/air and PdI2, the addition of CO2 significantly increased yield
of the reaction for aliphatic amines, whereas less satisfactory results were obtained for carbonylation of
aromatic amines. Surprisingly, good performance was observed for both aliphatic and aromatic amines
when carbonylation was conducted in pure CO2 as a non-polar aprotic solvent. Using an appropriate
amount of CO2 resulted in nearly three times higher catalytic activity of PdI2 catalyst [44]. Based on
the results obtained by Gabriele, although in many processes it is very difficult to replace CO by CO2

as carbonylating agent, addition of CO2 may increase the yield of the carbonylation of amines by CO.
Moreover, carbon dioxide is a byproduct formed during industrial production of CO and its complete
removal makes an additional complication in the production process. Furthermore, CO2 exhibits a
much stronger suppression effect on the explosion of flammable gases than nitrogen [45], and thus
it decreases explosiveness of gases employed in the synthesis (CO and O2) leading to enhanced
safety of the process [46]. Last but not least, presence of CO2 in a traditional liquid phase under
mild pressures (tens of bar) results in generation of a gas-expanded liquid (GXL) phase. GXL retains
the beneficial attributes of a conventional solvent (polarity, catalyst/reactant solubility) with some
additional advantages: higher miscibility of permanent gases (O2, CO, etc.) and enhanced transport
rates compared to organic solvents at ambient conditions. The enhanced gas solubilities in GXLs
may result in reaction rates greater than those achieved in neat organic solvent or supercritical carbon
dioxide (sCO2) [47]. In the case of our process, even if CO2 cannot serve as a carbonylating agent,
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it is interesting to explore other potential benefits of replacing CO with CO2, i.e., decreasing the amount
of CO used and introducing CO2 without any preconceived notion regarding its exact function.

Inspired by the promising properties of CO2 and results reported by Gabriele et al. for carbonylation
of aniline in the presence of CO2, K2PdI4 as catalyst and without any additives [44], we decided to study
the effect of CO2 as one of the components of CO/O2/CO2 mixture on the carbonylation of aniline (model
aromatic amine) in the presence of our original catalytic system PdCl2(XnPy)2/Fe/I2/XnPy, at shorter
reaction time and under lower total pressure. Also, our goal is to develop our previous catalytic system
based on PdCl2(XnPy)2 complexes into nanocatalysts, characterized by unique catalytic properties.
Based on the results of our recent studies, we turned our attention to derivatives of pyridine as ligands that
optimally stabilize palladium NPs [48–51] i.e., the access to the catalyst surface is not restricted, in contrast
to bulky ligands [52–54]. Choosing 4-methylpyridine (model derivative of pyridine) as stabilizing
ligand allows nanoparticles (NPs) to effectively interact with ligands and the reacting compound(s).
In our previous works, we developed a reduction of aromatic nitrocompounds to aromatic amines
in the presence of palladium nanoparticles stabilized by 4-methylpyridine (PdNPs/4MePy) [55,56].
Obtained results encourage us investigation of the catalytic activity of PdNPs/4-MePy in another
process i.e., oxidative carbonylation of aniline in the presence of mixture CO2/CO/O2. For the first time,
carbonylation of aniline is carried out in the presence of CO2 and palladium nanoparticles stabilized
by 4-methylpyridine.

2. Results and Discussion

Referring to our previous work [56], monodentate N-heterocyclic compounds are potentially
a new family of stabilizing agents that could be a starting point for design new catalytically active
nanoparticles with higher catalytic efficiency. In this work, the catalytic activity of PdNPs is compared
with effectiveness of catalytic system based on Pd(II) complexes in the carbonylation of aniline (AN)
to N,N′-diphenylurea (DPU) by CO2/CO/O2 mixture. Based on our previous results, we proposed
the mechanism of AN carbonylation by CO/O2 in the presence PdCl2(XnPy)2 complexes (where:
Py = pyridine, X = -Cl or -CH3, n = 0–2), with Pd(II) reduced to Pd(0) in situ in the catalytic cycle,
see Scheme 1. Partial precipitation of inactive Pdblack reported by Ragaini [57] is one of the proofs of
the Pd0 presence in the system, further supported by our isolation of palladium black precipitated
during the reaction of PdCl2(PhNH2)2 complex with carbon monoxide [15]. The next step is reoxidation
of Pd(0) to Pd(II) and in this cycle both molecular oxygen and iodine are supposed to be potential
oxidants responsible for recycling Pd(II) from Pd(0), step 1a–1b. Although oxidation of Pd(0) by
oxygen is possible, it is very slow [58]. Alternatively, Pd(0) in 1a may be oxidized during the oxidative
addition of I2 to Pd(0), according to the equation: Pd(0) + I2 → PdI2. Then, HI (instead of water) is
released and this HI is oxidized by molecular oxygen: 4HI + O2→ 2I2 + 2H2O [1]. The intermediate
1b is able to coordinate aniline with subsequent insertion of CO to NH-Pd bond in 1c, creating a new
carbon-nitrogen bond, intermediate 1d reductive elimination gives N,N′-diphenylurea, generating
Pd(0) species [15]. According to the proposed mechanism presented in Scheme 1, Pd(0) stabilized
by pyridine ligands plays a crucial role as an acceptor of oxidizing agent (O2 or I2). In order to
verify the hypothesis on the participation of Pd(0) in the catalytic cycle, we planned experiments
with Pd(0) nanoparticles (PdNPs), and the results (conversion, selectivity, and yield of carbonylation)
were compared with the same parameters for process catalyzed by Pd(II) complexes. Prior to that,
we searched for the optimal conditions to make both processes, catalyzed by PdNPs and Pd(II)
complexes, comparable.
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Scheme 1. Proposed path of the carbonylation of aniline by CO/O2 catalyzed by PdCl2(XnPy)2 complexes.

2.1. Optimization of Reaction Conditions of AN Carbonylation with CO2/CO/O2 Mixture

Conversion of aniline, selectivity towards DPU, and TOF for DPU are presented in Table 1,
indicating a strong correlation between the rate of reaction and the amount of CO2 used. Relatively
high conversion and selectivity are observed when no CO2 is loaded into the system (entry 5, Table 1).
However, even a moderate addition of CO2 is associated with the increasing rate of reaction, and its
optimal amount in the gaseous mixture is ca. 50% (entry 4). High yield of DPU (96%) was also
observed by Gabriele et al. for carbonylation of aniline performed in the presence of CO2 and a
different Pd-based catalytic system. Authors applied a very simple catalyst (K2PdI4), without any
co-catalyst and additives; however, a long reaction time (24–72 h) was required [44]. Figure 1 shows
that conversion of aniline and selectivity towards DPU decrease drastically when more than 50% of
CO2 is introduced. Eventually, no formation of DPU is observed at 100% fraction of CO2 (entry 1,
Table 1). Investigation of the impact of CO/CO2 ratio was complemented by additional experiment in
which carbonylation of aniline under conditions from entry 4 in Table 1 was conducted in the presence
of Ar/CO/O2 instead of CO2/CO/O2 mixture, and no difference in DPU yield between the two cases
was observed. Obtained results suggest that replacing CO with certain amount of CO2 allows for
achieving higher yields of DPU, although, as indicated by the experiment with argon, CO2 itself does
not seem to act as a carbonylating agent. We propose two possible explanations for the beneficial effect
of CO2. First, it is likely that the observed optimal CO/CO2 ratio is a result of the balance between
enhancement of mass transfer by CO2 (as commonly observed in GXLs) and minimal amount of CO
necessary for efficient carbonylation of aniline. In the presence of 88% of CO2 content, the amount of
CO (12%) is lower than required according to stoichiometry, and therefore, unsurprisingly, is associated
with lower conversion and TOF values. On the other hand, the presence of CO2 might prevent (inhibit)
possible side reactions, e.g., oxidation of CO to CO2 (which to some extent may occur in the presence
of palladium catalyst). Unless the necessary amount of CO is provided in the system, no DPU is
produced and such results confirm that CO2 is not a source of carbonyl group in this reaction. However,
we performed further processes in the presence of CO2 as an additional gas due to its economic benefits
(CO2 is a natural waste in CO production).
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Table 1. Parameters obtained for the carbonylation a of aniline with CO/CO2/O2 mixture, catalyzed by
Pd(II) complexes: conversion (CAN), selectivity (SDPU) and turnover frequency (TOFDPU) of the catalyst,
depending on the contents of CO2 in CO2/CO, iodine, and iron.

Entry CO2 in CO/CO2
b

(%)
I2

(mmoL)
Fe

(mmoL)
CAN
(%)

SDPU
c

(%) TOFDPU
d

1 e 100 0.12 2.68 12 0 0
2 e 88 37 57 202
3 e 65 83 83 666
4 e 56 84 87 704
5 e 0 68 93 608
6 56 0 2.68 10 0 0
7 0 0 10 0 0
8 0.01 46 96 434
9 0.04 71 96 657
10 0.12 73 95 669
11 0.39 69 94 617
12 0.04 0.25 75 96 694
13 0.5 78 98 733
14 1.2 74 96 685
15 2.68 72 95 660

16 f 2.68 72 96 667
a Reaction conditions unless stated otherwise: PdCl2(2,4Cl2Py)2 = 0.056 mmoL, AN = 54 mmoL, ethanol = 20 mL,
3.8 MPa CO + CO2, 0.6 MPa O2, (100 ◦C, 60 min, Py = pyridine, AN = aniline, DPU = N,N-diphenylurea. b For CO/O2:
(0.6 MPa O2 and 3.8 MPa CO) the molar ratio CO:O2 = 6:1 ca. For CO/O2/CO2 (0.6 MPa O2, 1.7 MPa CO, 2.1 MPa
CO2) the molar ratio CO:O2 = 3:1 ca. c Selectivity toward DPU expressed as (mmoL DPU) × (mmoL converted
AN)−1 [%]. d TOFDPU (turnover frequency for AN) = [mmoL of AN reacted selectively to DPU] × [mmoL of Pd(II)
complex used]−1

× h−1, e PdCl2Py2 used instead of PdCl2(2,4Cl2Py)2. f 0.6 mL of 2,4-Cl2Py added.
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The substituent effect in the pyridine ring was investigated for the optimized content of CO2 in
CO2/CO mixture (i.e., 56%). On the basis of obtained results, there is no consistent trend in the effect
of derivatives of pyridine in PdCl2 complexes on the rate of reaction (Figure S1 in Supplementary
Material). The slightly higher yield of DPU (comparing to other Pd-based complexes) is noticed for
PdCl2(2,4-Cl2Py)2 complex, and most further studies in this area are performed in the presence of
this complex.

The effect of iodine on the rate of carbonylation was also investigated. As shown in Table 1,
when no iodine is used, the desired reaction does not proceed, regardless of the amount of iron present
in the system (entries 6–7, Table 1). Increasing amount of iodine results in higher conversion, selectivity
and TOF values, with the maximum at 0.04–0.12 mmoL of I2 (entry 9 and 10, Table 1). This observation,
in agreement with previous reports [1,59–62], indicates that iodine might play various crucial roles such
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as: (i) recovery of the catalytic system, perhaps by oxidation of iron powder to iron(II), (ii) generation
of palladium complexes [Pd(CO)3I]−, considered to be the catalytically active species, (iii) reoxidation
of Pd(0) to Pd(II). However, if a large excess of iodine is used, the yield of DPU decreases, and the TOF
value decreases (entry 11, Table 1). This effect may be attributed to undesirable side reactions, such as
formation of insoluble anilinium iodide, which limits the amount of free aniline in the system [60,63].
Moreover, excess of iodide ions may get coordinated to Pd(II), effectively competing with other reagents,
which is commonly referred to as catalyst poisoning [10,60,64].

The effect of iron on the rate of reaction is minor (entries 12–16, Table 1). Although a small
addition of iron to the mixture seems to increase the conversion of aniline and selectivity towards DPU
(see entries 12 and 13, Table 1), it is not a significant change. As more iron is introduced to the system,
conversion of aniline decreases slightly (entry 14, Table 1). These observations indicate that a certain
amount of iron is beneficial and it slightly increases TOF values during DPU formation. In agreement
with our report [15], Fe(0) is oxidized by I2 to Fe(II) and the possible role of Fe(II) is to react with Pdblack

in order to return Pdblack to the catalytic cycle as shown in Scheme 1. In the literature, we can find
reports for [1] and against [65] the suggested role of iron. Lower conversion of aniline, when excess
of iron is used, can be attributed to the reaction between iron and oxygen, which in turn decreases
the amount of necessary oxidizing agent (O2). Both reactions of metallic iron, with iodine and with O2,
occur easily [66]. Our previous research indicates that even traces of iron (from stainless steel reactor
and stirring element) are kinetically significant.

The reaction rate seems to be strongly dependent on the temperature settings selected (see Table 2):
at 80 ◦C the reaction proceeds only to some extent (entry 1). Optimal value for the synthesis of
DPU is 100–120 ◦C (entry 2 and 3) with even higher temperature (140 ◦C) leading to formation of
EPC (entry 4, Table 2, selectivity and TOF values for EPC are placed in parentheses). These results
suggest that, after achieving the activation parameters suitable for the formation of DPU, further
increase of temperature does not enhance the catalyst activity and may even have a slightly negative
impact on the conversion of aniline, possibly due to occurrence of side reactions such as formation
of N-ethylaniline, 2-methylquinoline, polyaniline, and EPC (entry 4, Table 2). Further studies were
conducted at 100 ◦C because one of our aims was to operate at desirable energy-saving conditions,
i.e., at the lowest temperature allowing formation of satisfactory amount of DPU. The temperature
of 100 ◦C was also chosen for other practical reasons—it was the most appropriate temperature for
comparative tests (high conversion and selectivity of Pd(II) complex were observed at this temperature
during our previous studies reported in [15]). Although NPs might be more active at 120 ◦C than at
100 ◦C, the goal of this work was not to achieve the highest possible activity of catalyst but to study
and compare activity of various types of pre-catalysts at the same temperature.

Table 2. Parameters obtained for the carbonylation of aniline by CO/CO2/O2 catalyzed by
PdCl2(2,4-Cl2Py)2: conversion (CAN), selectivity (SDPU) and turnover frequency (TOFDPU), depending
on the temperature a.

Entry T
(◦C)

CAN
(%)

SDPU
b

(%)
TOFDPU

c

1 80 17 98 161
2 100 71 98 671
3 120 86 95 791
4 140 80 71 (20) d 550 (154) e

a Reaction conditions unless stated otherwise: PdCl2(2,4Cl2Py)2 = 0.056 mmoL, I2 = 0.04 mmoL, AN = 54 mmoL,
ethanol = 20 mL, 3.8 MPa CO + CO2, 0.6 MPa O2, 100 ◦C, 60 min, Py = pyridine, AN = aniline,
DPU = N,N-diphenylurea. b Selectivity toward DPU expressed as (mmoL DPU) × (mmoL converted AN)−1

[%]. c TOFDPU (turnover frequency for AN) = [mmoL of AN reacted selectively to DPU] × [mmoL of
PdCl2(2,4ClPy)2]−1

× h−1. d Selectivity toward EPC (ethyl N-phenylcarbamate), e TOFEPC = (mmoL of EPC
formed)(mmoL of PdCl2(2,4-Cl2Py) used)−1h−1.
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2.2. Synthesis of PdNPs

PdNPs stabilized by 4MePy were synthesized in water, following the procedure [43,50]. Before NPs
are used as catalysts they are dried because the presence of excess H2O in the reaction mixture might
diminish the yield of diphenylurea formed during the carbonylation of aniline by CO/O2 (partial
hydrolysis of urea may occur at high temperature) [1]. The TEM images presented in Figure 2 indicate
agglomeration after drying (left panel versus middle panel), therefore, we also decided to synthesize
NPs in ethanol. Right panel in Figure 2 demonstrates that palladium nanoparticles are not stable in
ethanol and bigger aggregates are formed. A more appropriate name for these aggregates would be a
palladium-based nanostructural material (PdNM) rather than nanoparticles.
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Figure 2. (A) TEM image of the PdNPs stabilized by 4-methylpyridine (PdNPs/4MePy) from raw
aqueous solution [51]. Pd: NaBH4 molar ratio = 1:2, concentration of NaBH4 solution = 1%. For synthesis
conditions see Experimental Section. (B) TEM image of the PdNPs stabilized by 4-methylpyridine
(PdNPs/4MePy) dried and re-suspended in distilled-deionized water. (C) TEM image of the PdNM
(palladium-based nanostructural material) stabilized by 4-methylpyridine (PdNM/4MePy) obtained
in ethanol.

2.3. Catalytic Activity of NPs Compared with Other Pd Species

Conversion of aniline, selectivity towards DPU, and TOF for DPU formed in the presence of
PdNPs/4MePy are presented in Table 3. Results obtained for PdNPs are compared with results obtained
for commercially available Pdblack and two Pd(II) complexes: with 4MePy (the ligand that forms
the most stable PdNPs) and with 2,4-Cl2Py (the ligand forming the most catalytically active complex of
Pd(II)). TOF values of PdNPs, Pdblack, and Pd(II) complex, measured after 60 min demonstrate that all
studied substances are effective pre-catalysts for carbonylation of aniline during the standard time of
reaction. The highest yield observed for PdNPs indicates that PdNPs are either catalytically active
species or the most efficient source of other catalytically active species e.g., [Pd(CO)3I]− [10]. Perhaps,
when Pd(II) complex is applied as a pre-catalyst, it takes longer time to generate in situ catalytically
active Pd(0) species from Pd(II), which might explain TOF for Pd(II) complexes being lower than
for PdNPs. Our hypothesis, that active species responsible for catalytic activity are easily formed
from PdNPs, is confirmed by results obtained for initial stages of the process (i.e., reaction carried out
within first 15 min)-significant difference between TOF of PdNPs and TOF of Pd(II) complex is noticed.
It is possible that, when carbonylation is carried out in the presence of PdNPs, catalytically active
Pd(0) species are immediately present in the reaction from the beginning of the process. Differences in
TOF values noticed for Pd(0) in the form of Pdblack (entry 4) and Pd(0) in the form of PdNM (entry 3)
indicate that higher catalytic activity of PdNM might have an origin in the nanostructure of investigated
material (image in the right panel of Figure 2 displays the PdNM formed from PdNPs with diameter ca.
10 nm). The lowest TOF value observed for Pdblack suggests that catalytically active species are not in
the form of a heterogeneous bulk metal, but rather homogeneous complexes (with Pd0), as suggested
in the literature [60]. Such a hypothesis that homogeneous complexes (with Pd0) are the real catalysts
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can explain why TOF for Pd(II) is higher than for Pd(0) –formation of homogeneous Pd(0) species from
bulky Pdblack is more difficult than from Pd(II).

Table 3. Parameters obtained for the carbonylation of aniline by CO/CO2/O2: conversion (CAN),
selectivity (SDPU) and turnover frequency (TOFDPU), depending on the catalyst a.

Entry Catalyst CAN
(%)

SDPU
b

(%)
TOFDPU

c

1 PdNPs/4MePy 92 88 781
2 d PdNPs/4MePy 27 89 926
3 PdNM/4MePy e 80 84 646
4 Pdblack 60 89 515
5 Pdblack

f 72 89 617
6 PdCl2(4MePy)2 83 87 656

7 d PdCl2(2,4Cl2Py)2 16 88 540

Reaction conditions unless stated otherwise: Pd-based catalyst/Fe/I2 = 0.056/0.5/0.12 mmoL, AN = 54 mmoL, 1.5 MPa
CO, 1.9 MPa CO2, 0.6 MPa O2, 20 mL EtOH, 60 min. Py = pyridine, AN = aniline, DPU = N,N-diphenylurea.
b Selectivity toward DPU expressed as (mmoL DPU) × (mmoL converted AN)−1 [%]. c TOFDPU (turnover frequency
for AN) = [mmoL of AN reacted selectively to DPU] × [mmoL of Pd(II) complex used]−1

× h−1. d 15 min.
e PdNM = palladium-based nanostructural material was prepared in ethanol instead of water and raw solution of
PdNM was introduced to the reactor (the volume of the solution was adjusted to obtain 0.056 mmoL of Pd). f 66 µL
of 4MePy added.

3. Materials and Methods

3.1. Materials

Palladium chloride, sodium chloride, and sodium borohydride were used as received.
Pyridine (Py), 2-methylpyridine (2-MePy), 3-methylpyridine (3-MePy), 4-methylpyridine
(4-MePy), 2,6-dimethylpyridine (2,6-Me2Py), 2,4-dimethylpyridine (2,4-Me2Py), 3,5-dimethylpyridine
(3,5-Me2Py), 2-chloropyridine (2-ClPy), 3-chloropyridine (3-ClPy), 2,4-dichloropyridine (2,4-Cl2Py),
aniline, and ethanol were distilled (or fractionally distilled) over drying agent and stored under argon.
2,6-dichloropyridine (2,6-Cl2Py), 3,5-dichloropyridine (3,5-Cl2Py), iron powder, and iodine were used
as received. Ultrapure (Milli-Q, 18.2 MΩ·cm resistivity at 25 ◦C) water was used in all experiments.

3.2. Synthesis of Palladium Nanoparticles

PdNPs were prepared according to the method described elsewhere [48,55]. NaCl (0.188 mmoL;
0.11 g) and PdCl2 (0.084 mmoL; 0.015 g) were dissolved in 6 mL of ultrapure water and stirred
at room temperature to form water soluble PdCl42− species. Then, a freshly prepared solution of
ligand (derivative of pyridine; 0.628 mmoL in 9 mL of water) was added, stirred for 20 min, and reduced
by NaBH4 (1% w/v, 1.1 mL) added in 20 µL portions. The progress of reaction was observed as an
immediate darkening of the mixture from light orange to dark brown (almost black). The resulting
PdNPs were stirred for 30 min. In some experiments, for comparison purposes, nanoparticles were
synthesized in ethanol instead of water. The size of centrifuged NPs as well as centrifuged and dried NPs
was measured by transmission electron microscopy (TEM). The composition of Pd/ligand expressed as
a percentage of the organic ligand and the metal in the centrifuged and dried palladium nanoparticles
stabilized by 4-methylpyridine (PdNPs/4MePy) was determined by thermogravimetry (TG) under
nitrogen atmosphere, with the heating rate = 10 K/min (see Figure S1 in Supplementary Information).

3.3. Techniques

Transmission electron microscopy (TEM) observations were carried out using JEM 1400 JEOL
Co. microscope, at 120 kV acceleration voltage. The samples were obtained by casting aqueous
(or ethanol) solution of palladium nanoparticles onto a carbon coated nickel microgrid (200 mesh)
and air-dried overnight. The thermogravimetric (TG) measurements of PdNPs/4-MePy were performed
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with thermogravimeter Q50-1261 TA Instruments (USA) under nitrogen flow (6 dm3/h), heating
rate = 10 K/min. Weight loss during thermal decomposition of PdNPs/4-MePy was determined in
the temperature range 40–600 ◦C. TG measurements were performed in platinum pan, and the weight
of the sample was around 1–2 mg. Results presented in this paper are the arithmetic mean of three
repetitions, and the difference of results in a series of determinations of the sample was up to 2%.

3.4. Carbonylation of Aniline by CO/CO2/O2 to N,N’-Diphenylurea

The procedure described elsewhere [15] was applied with some modifications. Briefly, the reaction
was carried out in a 200 mL stainless-steel autoclave equipped with magnetic stirrer.
Before the experiment, the autoclave was heated at 120 ◦C for 3 h (evaporation of water in order to
avoid shifting the balance to the left, which may occur in the presence of an excess of water at high
temperature) and cooled down to room temperature. Subsequently, one of the following catalysts:
PdCl2(XnPy)2, PdCl2, Pdblack, or PdNPs (0.056 mmoL), and Fe powder (0–2.7 mmoL) were placed in
the autoclave, the air was evacuated, and the system was filled with purified argon. Then, under a
gentle stream of argon, other reagents and solvents were added: I2 (0–0.39 mmoL), aniline (54 mmoL),
ethanol (20 mL), and optionally Py or XnPy (6.2 mmoL). After getting its cover closed, the autoclave
was directly filled with molecular oxygen (0.6 MPa), a mixture of carbon dioxide and carbon monoxide
(pressure of CO2/CO = 3.4 MPa), then placed in a hot oil bath, and kept at 80–140 ◦C for 15 or 60 min,
depending on the reaction. After 15 or 60 min (depending on the reaction), the autoclave was cooled in
a water bath, and then vented. The solid phase obtained after centrifugation (15,000 rpm for 15 min)
in the form of white needles (with traces of precipitated palladium black) was re-crystallized from
methanol and analyzed by elemental analysis, IR and 1H NMR. N,N-diphenylurea was identified on
the basis of elemental analysis % (exp./calc.): C(73.60/73.57), H (5.75/5.70), N (13,22/13.20); FT-IR (KBr):
3326, 3283(s) νNH; 3000–3100 (s) νC-H aromat; 1648 (s) νC = O; 1595, 1555 (m) νC = Caromat; 1496, 1444 (m)
νN-H; 1313, 1233 (m) νC-N; 755, 697 (s) νC-Haromat cm−1. M.P. = 235–237 ◦C; 1H NMR (300 MHz, DMSO):
δ (ppm): 8.65 (s, 2 H), 7.46 (d, 4 H), 7.28 (t, 4 H), 6.97 (t, 2 H), and obtained values are in agreement with
literature data [67]. Analysis of the liquid phase was performed using gas chromatography (GC-FID,
GC-MS). Calculation of conversion of aniline was based on GC-FID analysis with n-decyl alcohol
as standard.

4. Conclusions

In this work, the effect of CO2 on the rate of carbonylation of aniline to N,N’-diphenylurea was
investigated. Taking into account results obtained for various types of Pd-based pre-catalysts—namely,
PdNPs, PdNM, Pd(0) and Pd(II) complexes—the highest TOF is observed for PdNPs. Thus, we suggest
that PdNPs act as active species or as the most efficient source of other catalytically active Pd(0)
species. High yields observed for Pd(II) complexes support proposed mechanism where Pd(II) is easily
reduced to catalytically active Pd(0) during catalytic cycle. We conclude that introduction of PdNPs to
the reaction mixture instead of Pdblack or Pd(II) results in higher conversion and turnover frequency.
We believe that obtained results may be helpful in elucidating the role of metallic nanoparticles in
other organic processes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/8/877/s1,
Figure S1: TG curve for centrifuged and dried PdNPs/4MePy (obtained in water), Figure S2: Effect of derivatives
of pyridine on the conversion (Conv.), yield and selectivity (Select.) of the catalyst. Reaction conditions: 54 mmol
AN, PdCl2(XnPy)2/Fe/I2 = 0.056/2.68/0.118 mmol, 15 atm CO, 19 atm CO2, 6 atm O2, 20 ml EtOH, 100◦C, 60 min.
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