
catalysts

Article

Catalytic Activity of Mixed Al2O3-ZrO2 Oxides for
Glucose Conversion into 5-Hydroxymethylfurfural

Benjamín Torres-Olea, Sandra Mérida-Morales, Cristina García-Sancho * ,
Juan Antonio Cecilia and Pedro Maireles-Torres

Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC),
Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain;
benjamin@uma.es (B.T.-O.); sandra_merida@uma.es (S.M.-M.); jacecilia@uma.es (J.A.C.);
maireles@uma.es (P.M.-T.)
* Correspondence: cristinags@uma.es; Tel.: +34-951-953-298

Received: 20 July 2020; Accepted: 31 July 2020; Published: 4 August 2020
����������
�������

Abstract: In the present work, a series of catalysts based on aluminum and zirconium oxides
was studied for the transformation of glucose into 5-hydroxymethylfurfural. These catalysts were
characterized by using experimental techniques, such as X-ray diffraction, N2 adsorption–desorption
at −196 ◦C, X-ray photoelectron spectroscopy, temperature-programmed desorption of NH3 and CO2,
and scanning transmission electron microscopy. The catalytic behavior in glucose dehydration
was evaluated in a water-methyl isobutyl ketone biphasic system, in the presence of CaCl2,
in order to minimize losses due to unwanted secondary reactions. High glucose conversion
and 5-hydroxymethylfurfural (HMF) yield values were obtained in the presence of an Al(Zr)Ox

catalyst with an Al:Zr molar ratio of 7:3, reaching 97% and 47%, respectively, at 150 ◦C after 120 min.
Under tested conditions, this catalyst retained most of its catalytic activity for four reuses.

Keywords: glucose; 5-hydroxymethylfurfural; lignocellulosic biomass; heterogeneous catalysts;
aluminum oxide; zirconium oxide

1. Introduction

Fossil fuel depletion and ever increasing environmental concerns have prompted scientists’
efforts to look for alternative renewable sources for their use as raw material to produce chemicals
and fuels [1–3]. In recent years, valorization of biomass wastes has received great attention as an
opportunity to reduce our dependency of fossil fuels and replace them with carbon neutral bioresources,
because it is a renewable and promising long-term resource [4]. Lignocellulose is the most abundant
and more readily accessible biomass source worldwide, in which cellulose polymers are packed
within hemicellulose foil and connected to each other by lignin [5]. Its composition varies among
different types of biomass, in such a way that cellulose is frequently around 50%, lignin about 20%,
and hemicellulose shows more variability [6]. Therefore, cellulose is usually the most abundant
compound in lignocellulosic biomass, which is a crystalline polysaccharide composed of glucose units
linked through beta-1,4-d-glycosidic bonds [6].

5-hydroxymethylfurfural (HMF) is a platform molecule, which can be obtained through
dehydration of hexoses in the presence of acid catalysts, and it can be employed as precursor
for polymer synthesis [7], biofuels [8–10] and other bulk chemicals, as levulinic and formic acids
among others [11]. In the literature, fructose, coming from glucose isomerization, has been efficiently
dehydrated to HMF. Thus, Shimizu et al. [12] attained HMF yield values of 100% by using an
ion-exchange resin, Amberlyst-15, as an acid catalyst. Despite high yields have been obtained from
fructose, high costs of its enzymatic production process [13] are hindering the scale-up production of
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HMF to sustain biofuel [9,14] and polymer industries [15]. In this context, glucose appears abundantly
in nature and can also be chemically transformed to HMF. As aforementioned, cellulose is formed by
glucose units, which can be obtained by hydrolysis. Thus, competitive methods of glucose dehydration
to HMF are being actively evaluated, since the use of glucose as starting material is more interesting
because it is cheap, widely available and can be obtained from cellulose fraction of lignocellulosic
biomass [5].

Unlike fructose, the transformation of glucose into HMF displays some important drawbacks, since
this takes place through consecutive reactions (isomerization and subsequent dehydration), in such a
way that it is required the development of economical, efficient and environmentally friendly catalytic
processes. Most of them employed water as the solvent, as cellulose hydrolysis is accomplished in
water, but HMF is unstable in acidic aqueous conditions, since it undergoes side-reactions, such as
auto-condensation and resinification, considerably reducing its yield [16,17]. To mitigate such negative
effects, organic–water biphasic systems have been reported in the literature, being the most common
the use of co-solvents, such as 2-butanol [18,19], tetrahydrofuran [20], cyclopentyl methyl ether [21],
and methyl isobutyl ketone (MIBK) [18,22–25]. Thus, most of the HMF is extracted to the organic
phase according to the partition coefficient, minimizing the formation of by-products, which takes
place mainly in aqueous solution. On the other hand, the addition of alkaline earth salts in the reaction
medium has demonstrated to increase glucose conversion and HMF yield, as a consequence of changing
partition coefficient [26] and/or promoting favorable reaction pathways through the formation of
complexes [22,27]. Thus, the presence of these cations can shift the anomeric equilibrium of glucose
towards the predominant α-anomer [28]. In particular, Palagi et al. [27] discovered that calcium cation
interacts with C6 hydroxyl and hemiketal oxygens and estimated a complex formation constant with
the α-form of 1.5 L·mol−1. In addition, Garcia Sancho et al. studied the effect of calcium chloride on
glucose dehydration to HMF, demonstrating by 1H NMR spectroscopy that this cation favored the
formation of α-anomer and considerably enhanced the HMF production [22].

In order to convert glucose to HMF in a satisfactory way, solid acid catalysts must be employed,
which should be able to catalyze the glucose isomerization to fructose and its subsequent dehydration to
HMF [13,29]. Glucose isomerization requires Lewis acid or basic sites, while fructose dehydration takes
place in the presence of Brönsted acid sites [30–32]. Regarding the glucose isomerization to fructose,
which is the limiting step for large scale HMF production, basic catalysts such as hydrotalcites [33–35],
cation-exchanged zeolites [33] and alkylamines [36,37] were studied, showing very high selectivity, but
a low glucose conversion for isomerization reaction, thus providing low fructose yields. More recently,
Lewis acid catalysts have also been utilized with interesting results by using a zirconosilicate [38] or a
tin beta-zeolite [39]. However, it is more economically attractive to carry out the HMF production in
one-pot process, being necessary a catalyst with both Brönsted and Lewis acid sites able to accomplish
directly both steps. Hence, metal oxides have also been studied, such as metal oxides and modified
metal oxides of chromium [30,40], niobium [41], titanium [42], zirconium [42,43], aluminum [22,44] or
tantalum [19], metal phosphates [20,32], doped silicas [25], and zeolites [45], among others. Concretely,
zirconium oxide has been studied as solid acid catalyst for HMF production by itself [46], supported [47]
and mixed with other oxides such as TiO2 [48], Nb2O5 [49], SnO2 [50], and MoO3 [51]. Thus, Zhang et
al. [46] evaluated the influence of calcination temperature for ZrO2, attaining total glucose conversion
with a selectivity of HMF about 40%. Moreover, ZrO2 has been frequently deposited over ordered
mesoporous structures to increase surface area and improve reactant and product diffusion [52–54].
Likewise, aluminum oxides have been employed to dope mesoporous solids, increasing their acidity
for its use as both catalyst and support. Its different phases (boehmite, gibbsite and corundum) [55],
together with possibilities of bulk and surface modifications, combined with its high availability and
low cost, make aluminum oxides attractive as catalyst in the chemical industry. Moreover, γ-Al2O3

provided, after addition of CaCl2, relevant catalytic results in a biphasic water:MIBK system, attaining
glucose conversion and HMF yield of 96% and 52%, respectively, at 175 ◦C after 15 min [22].
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Therefore, mixed aluminum-zirconium oxides, with suitable textural and acidic properties,
could be a suitable alternative for the acid-catalyzed dehydration of glucose into HMF. In this work,
a series of mixed Al-Zr oxides, with different Al:Zr molar ratio, was prepared and tested for the
dehydration of glucose, by using a water: MIBK reaction medium. Their physicochemical properties
were determined by different techniques in order to establish the corresponding structure–catalytic
performance relationships. In addition, it would be relevant to know if mixed AlZrOx oxides were
more active than the pertinent pure oxides and demonstrate possible interaction between both
elements in mixed metal oxides. The influence of different reaction parameters, such as reaction time
and temperature, catalyst and glucose loadings, the effect of CaCl2 and the reuse of catalysts were
also evaluated.

2. Results and Discussion

2.1. Catalyst Characterization

Powder X-ray diffraction (XRD) was used to identify crystalline phases present in these catalysts,
and it revealed that they were mostly amorphous, or with low crystallinity (Figure 1), mainly when
zirconium content increased. In the case of Al catalyst, diffraction peaks at 2θ (◦)= 14.5, 28.2, 38.3,
48.9, and 64.0 demonstrated the existence of a boehmite phase (AlOOH) (PDF 00-005-0190). However,
zirconium-containing catalysts only exhibited a broad band around 30◦, which could be associated to
very low crystalline zirconia, but it could not be ascribed to monoclinic, tetragonal, or cubic zirconia.
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Figure 1. Powder X-ray diffraction (XRD) patterns of Al, Zr, and AlxZry catalysts. 

Textural properties were deduced from N2 adsorption–desorption isotherms (Figure 2A) at –196 
°C. The Al catalyst exhibits a Type IV isotherm, which is typical of mesoporous materials, with a 
hysteresis loop of Type H2(a) associated with complex pore structures [56]. However, the 
adsorption–desorption isotherms tend to be Type I after the incorporation of zirconium to catalysts, 
which is characteristic of microporous solids. The loss of the hysteresis loop for the Zr-rich catalysts 
would confirm the increase in microporosity. The textural properties are summarized in Table 1.  

Figure 1. Powder X-ray diffraction (XRD) patterns of Al, Zr, and AlxZry catalysts.

Textural properties were deduced from N2 adsorption–desorption isotherms (Figure 2A) at –196 ◦C.
The Al catalyst exhibits a Type IV isotherm, which is typical of mesoporous materials, with a hysteresis
loop of Type H2(a) associated with complex pore structures [56]. However, the adsorption–desorption
isotherms tend to be Type I after the incorporation of zirconium to catalysts, which is characteristic of
microporous solids. The loss of the hysteresis loop for the Zr-rich catalysts would confirm the increase
in microporosity. The textural properties are summarized in Table 1.
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Figure 2. (A) N2 adsorption–desorption isotherms at −196 °C and (B) pore size distributions of Al, Zr, 
and AlxZry catalysts. 

 

 

Figure 2. (A) N2 adsorption–desorption isotherms at −196 ◦C and (B) pore size distributions of Al, Zr,
and AlxZry catalysts.

Table 1. Textural and acid-base properties of catalysts.

Catalyst SBET
(m2
·g−1)

Smicro
(m2
·g−1)

Vp
(cm3·g−1)

Vmicro
(cm3

·g−1)
µmol

NH3·gcat−1
µmol

NH3·m−2
µmol

CO2 gcat−1
µmol CO2

m−2

Al 325 5 0.30 0.00 279 0.86 70 0.21

Al7Zr3 321 84 0.26 0.04 188 0.59 46 0.14

Al5Zr5 274 227 0.15 0.11 270 0.98 67 0.24

Al3Zr7 263 248 0.10 0.08 185 0.70 40 0.15

Zr 168 135 0.09 0.06 82 0.49 27 0.16

Both surface area and pore volume gradually decreased from 325 to 168 m2
·g−1 and 0.30 to

0.09 cm3
·g−1, respectively, when the Zr content of catalysts increased, being the smallest values found
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for the Zr catalyst. However, the presence of zirconium generated a higher amount of micropores,
in such a way that both microporous surface area and micropore volume rose, being maximum for
the Al5Zr5 catalyst. Regarding pore size distribution (Figure 2B), it can be noted that all catalysts
exhibited micro- and mesopores. A heterogeneous pore size distribution was found for the Al catalyst,
with pore sizes between 1 and 12 nm. This fact was also observed for the Al7Zr3 catalyst. However,
the incorporation of a higher amount of zirconium led to the formation of pores smaller than 1 nm.
Therefore, it could be affirmed that the presence of zirconium affected to microporosity of these
catalysts, generating smaller pores than those obtained for Al-rich catalysts.

On the other hand, STEM images evidenced the formation of aggregates and EDX analysis showed
that both aluminum and zirconium species were homogenously dispersed in the catalyst structure
(Figure 3).

On the other hand, binding energies (BE) for different elements were compiled in Table 2. In the
case of C 1s core level spectra, two contributions can be observed about 284.7–284.9 and 288.4–289.0 eV,
which correspond to adventitious carbon and carbonate species, respectively (Figure 4A) [57]. It should
be noted that the atomic concentration of C associated to carbonates was very similar in all cases
(1.3–2.5%). Likewise, two contributions were found in the O 1s core level spectra, about 529.8–530.1
and 531.6–531.9 eV (Figure 4B). The former corresponds to oxide ions and the latter can be attributed to
both hydroxyl groups and oxygen in carbonates. [58–61] Considering that the C atomic concentration
for carbonates almost remained unchanged, the decrease of this contribution at 531.7 eV after Zr
incorporation could be due to hydroxyl species also decreased. Thus, the Al catalyst showed a higher
amount of hydroxyl groups due to the presence of boehmite (AlOOH), as was inferred from XRD,
but the band associated to oxide species gained considerable importance over the hydroxyl one with
increasing amounts of zirconium (Table 2). Regarding Al 2p3/2 core level spectra, the Al catalyst only
showed a contribution at 73.7 eV (Figure 4C), similar to data previously reported for boehmite in
bibliography (73.9 eV) [59], which is in agreement with XRD data confirming the presence of boehmite.
This contribution was also found for mixed AlxZry catalysts, although it was shifted to higher BE
values in the case of Al5Zr5. In this latter case, a value of 74.1 eV was found, similar to that previously
attributed by Kloprogge et al. [59] to Al in pseudoboehmite, in which the amount of hydroxyl groups
was slightly higher than in boehmite. However, similar BE values have been found for aluminum
oxides, being complicated to distinguish between oxides, hydroxides and oxohydroxides by XPS.
Therefore, it could be thought that this band corresponds to Al in boehmite in the case of Al catalyst,
since this phase was confirmed by XRD. However, in the case of mixed metal oxides, with no crystalline
phases detected by XRD, both oxides and oxohydroxides could be responsible of this band. This slight
increase in BE for Al 2p in the case of Al5Zr5 could also be due to aluminum was strongly interacting
with zirconium, as observed Reddy et al. [62]. With respect to the Zr 3d core level, a contribution about
181.6–182.1 eV was found (Figure 4D), which is in agreement with data reported in the literature for
ZrO2 [48,60].

Table 2. Atomic ratios and binding energies found in XPS analysis for Al, Zr, and AlxZry catalysts.

Catalyst
Binding Energy (eV) (Atomic Concentration (%)) Atomic Ratio by XPS Nominal Atomic Ratio

C 1s O 1s Al 2p Zr 3d5/2 Al/Zr O/(Al + Zr) Al/Zr

Al
284.9 288.5 530.1 531.7 73.7 - - 2.03 -
(3.8) (1.3) (30.3) (33.3) (31.3)

Al7Zr3
284.7 288.4 530.0 531.7 73.7 181.6

3.78 2.04 2.33(5.5) (1.5) (37.4) (24.9) (24.2) (6.4)

Al5Zr5
284.8 288.7 529.8 531.8 74.1 181.7

1.68 1.94 1.0(9.3) (1.8) (33.5) (25.2) (19.0) (11.3)

Al3Zr7
284.7 289.0 530.0 531.9 73.8 182.1

0.32 2.11 0.43(15.6) (1.7) (42.3) (13.8) (6.5) (20.1)

Zr
284.8 288.7 529.8 531.6 - 182.0 - 2.12 -
(17.8) (2.5) (41.6) (12.6) (25.5)
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Figure 4. XPS spectra for Al, Zr, and AlxZry catalysts in the (A) C 1s, (B) O 1s, (C) Al 2p, and (D) Zr 
3d5/2 regions. 
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NMR spectrum of Al catalyst showed a more intense peak about 9 ppm, which has been previously 
observed for boehmite in the literature, being attributed to octahedrally coordinated aluminum sites 
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3d5/2 regions.

On the other hand, the existence of distorted or incomplete coordination spheres, especially on
the surface, can affect catalytic activity. Therefore, 27Al NMR was used to determine the aluminum
coordination in Al and AlxZry catalysts (Figure 5). Thus, three bands were observed at 9.1, 35.0, and
69.0 ppm, corresponding to octahedral, pentahedral and tetrahedral aluminum species, respectively [63],
which were deconvoluted and their pertinent contributions were indicated in Figure 5. The NMR
spectrum of Al catalyst showed a more intense peak about 9 ppm, which has been previously observed
for boehmite in the literature, being attributed to octahedrally coordinated aluminum sites [55,64].
This fact agrees with results obtained by XRD and XPS. However, a small fraction (2%) of AlO4
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sites was also detected, associated to the disordered nature of boehmite framework sites [64]. It is
noteworthy that typical octahedral and tetrahedral chemical shifts move upfield with the increasing
amount of zirconium. In the case of Al3Zr7 catalyst, octahedral and tetrahedral aluminum peaks were
found at 5.3 and 63.7 ppm, respectively, which might be due to the presence of zirconium modified
the aluminum environment, or aluminum shielding caused by nearby zirconium atoms. In addition,
the peak attributed to tetrahedral aluminum is more intense for mixed metal oxides, especially for
Al5Zr5 catalyst, reaching a value of 23.3%. It has been previously reported that γ-Al2O3 could be
formed after thermal treatment at 300 ◦C, giving rise to an increase in the tetrahedral Al signal [65].
Considering that Al5Zr5 catalyst showed both the highest amount of tetrahedral Al species and a
higher BE value for Al 2p, as determined by XPS, it would be likely that this catalyst possesses a higher
proportion of aluminum oxide phase than the rest of catalysts. This catalyst also showed a small
contribution of penta-coordinated Al sites, which had been previously identified in γ-Al2O3, but with
a relatively low intensity [65,66]. On the other hand, this peak associated to pentahedral, or distorted
tetrahedral/octahedral sites, at 30–40 ppm, is only observed after Zr incorporation, being even more
intense than the other contributions for Al3Zr7 catalyst (45.8%).
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Considering the key role of acid sites in the dehydration of glucose into HMF, the acid properties
were evaluated by temperature-programmed desorption (TPD) of NH3 (Table 1). The Al and Al5Zr5

catalysts showed the highest total acidity values, although the density of acid sites (expressed per
surface unit) was higher for the sample with Zr. However, the rest of catalysts was less acidic,
mainly the Zr catalyst. Likewise, the basic properties of catalysts are important, inasmuch basic sites
could catalyze the isomerization of glucose to fructose. The data obtained from CO2-TPD (Table 1)
reveal that these two catalysts (Al and Al5Zr5) also exhibited the highest basicity, but their differences
with the rest of catalyst were lower than those observed for acid sites. Similarly, the Zr catalyst showed
the lowest total basicity, thus becoming the catalyst with the lowest concentration of both acid and
basic sites.

2.2. Catalytic Results

Glucose dehydration into HMF is a complex process, which can give rise to different unwanted
products, such as levulinic acid, formic acid, and humins [29,67], among others, due to the high
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reactivity of HMF. In order to minimize the formation of by-products, an organic co-solvent (MIBK) has
been employed to facilitate the extraction of HMF from the aqueous phase [22,25,26,68–70]. This solvent,
MIBK, has been classified by the CHEM21 as a recommended solvent, because it does not present severe
safety problems, it is not dangerous to health or environmental harmful [71]. Likewise, the addition of
inorganic salts has also demonstrated to enhance HMF yield [25,26,70]. In particular, calcium cations
have showed an excellent performance [22,72], since their interaction with glucose molecules shifted
the anomeric equilibrium toward the glucose α-anomer, in such a way that glucose dehydration took
place more readily, improving HMF yield. In a previous work, García Sancho et al. [22] found the
optimal amount of calcium chloride was 0.65 g per gram of water, which was also employed in the
catalytic tests of the present work to enhance HMF yield.

Firstly, all catalysts were evaluated in the dehydration of glucose at 175 ◦C (Figure 6), attaining
high conversion values. However, the catalysts with higher Al/Zr ratio provided faster glucose
conversion rates, which may be due to their higher acidity (Table 1). Thus, full glucose conversion was
reached after 60 min with Al, Al7Zr3, and Al5Zr5 catalysts, whereas a longer reaction time (180 min) is
required for Al3Zr7 and Zr catalysts (Figure 6A). Moreover, the Al5Zr5 catalyst exhibited the highest
glucose conversion rate probably due to this material possesses the greatest density of acid sites,
which accelerated the transformation of glucose molecules. It should be noted that the presence of
the aluminum oxide phase was suggested for this catalyst from XPS and 27Al MAS-NMR analyses,
which could explain its higher conversion rate. Regarding HMF yield (Figure 6B), the greatest values
were achieved between 30–60 min in all cases, attaining a maximum value of 47% with the Al3Zr7

catalyst, after 60 min at 175 ◦C. Moreover, after reaching the maximum HMF yield, side reactions
gained importance, causing the degradation of HMF. This fact can be corroborated by mass balance,
which continuously decreased along the reaction, due to side reactions gave rise to by-products, such
as soluble and insoluble polymers, which are not detected by HPLC analysis (Figure 6C). This fact was
more pronounced for Al5Zr5 catalyst, mainly at short reaction times; therefore, aluminum oxide seems
to be more active, but secondary reactions are also favored, as previously reported in the literature [22].
This catalyst had also shown slightly higher microporosity that would facilitate the blocking of active
sites. It is noteworthy the absence of levulinic and formic acids, which are common HMF rehydration
products [11,29]. The least active catalysts, Zr and Al3Zr7, showed better carbon balance, mainly at
shorter reaction times, probably due to their slower glucose conversion rates. It should be noted that
the Al3Zr7 catalyst possesses a lower surface Al/Zr molar ratio, as determined by XPS, than nominal
value, as well as the highest percentage of pentacoordinated aluminum species (45.8%), as deduced by
27Al MAS-NMR. Although its conversion rate was slower, it was able to provide the highest HMF yield
after 60 min at 175 ◦C. Thus, this catalytic performance could be related to its lower surface Al content,
existing more available Zr sites, and/or the higher concentration of pentacoordinated Al species.

It has been shown that the Al7Zr3 and Al5Zr5 catalysts were the most active catalysts with the
fastest conversion rates and HMF yields. However, the possible presence of alumina rather than
boehmite for Al5Zr5 catalyst could have accelerated the formation of humins, decreasing faster the
carbon balance, as previously indicated. Likewise, the Al3Zr7 catalyst showed the highest HMF
selectivity and, in spite of its lower glucose conversion, the greatest HMF yield (46.5%). Although high
conversion values were obtained in all cases, HMF yield did not exceed 50% due to secondary reactions.
To decrease these unwanted processes, Al7Zr3 and Al3Zr7 catalysts were tested at lower reaction
temperature, 150 ◦C, favoring those pathways more kinetically viable at that temperature (Figure 7).
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As expected, the catalytic activity was lower at 150 ◦C for both catalysts and longer reaction times
than those observed at 175 ◦C were required to attain a high glucose conversion (Figure 7A). In the
case of Al7Zr3, total conversion was achieved after 180 min at 150 ◦C, whereas Al3Zr7 only obtained
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a glucose conversion of 78.4% under similar experimental conditions. With regard to HMF yield
(Figure 7B), similar values than those obtained at 175 ◦C were found for longer reaction times. Indeed,
the HMF yield was slightly higher (48.6%) in the case of Al7Zr3, after 120 min at 150 ◦C, than the
maximum value obtained at 175 ◦C (44.6%) in spite of the glucose conversion at 150 ◦C was lower.
This maximum HMF yield obtained after 120 min in the presence of Al7Zr3 started to decrease from
180 min, although the HMF degradation occurred much slower than at higher reaction temperature.
This fact corroborates that secondary reactions are unfavored at lower reaction temperature. In the
case of Al3Zr7, the maximum HMF yield obtained at 150 ◦C (37.5%) was lower than that achieved
at 175 ◦C, needing longer reaction times to attain the maximum HMF yield, since its value was still
growing after 180 min at 150 ◦C (Figure 7B). Therefore, the Al7Zr3 catalyst, with mostly octahedral
aluminum species, would be more active than Al3Zr7, which displayed a high proportion of penta-
and tetra-coordinated aluminum species. On the other hand, the mass balances (Figure 7C) were better
than those obtained at 175 ◦C, mainly for the least active Al3Zr7, even at longer reaction times. This fact
would demonstrate again that the side reactions were unfavored at 150 ◦C.

The positive effect of adding CaCl2 on the catalytic performance was also corroborated (Figure 8),
since both glucose conversion and HMF yield significantly increased. Thus, the interaction of calcium
cations with glucose molecules shifts the anomeric equilibrium towards the α-anomer, more prone
to be dehydrated to HMF, as previously demonstrated [22]. The presence of CaCl2 promoted both
glucose isomerization and fructose dehydration, since the concentration of fructose was higher when
reaction was carried out in the absence of calcium chloride. Consequently, HMF yield decreased
under 10%, demonstrating that the presence of CaCl2 considerably enhances the HMF production.
Indeed, García-Sancho et al. indicated that Ca2+ could also interact with fructose molecules [22]. In any
case, the combined use of CaCl2 and Al7Zr3 provided better catalytic results than if salt, or catalyst,
was only utilized.
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The influence of glucose:catalyst weight ratio was also evaluated by modifying both the amount
of glucose and catalyst. In the former case, the catalyst loading was constant (0.05 g) and the glucose
amount was modified between 0.05 and 0.30 g (Figure 9A). In the latter case, glucose loading was
maintained constant (0.15 g) and the amount of catalyst was varied between 0.025 and 0.150 g
(Figure 9B). The highest glucose conversion and HMF yield were found for a glucose:catalyst weight
ratio of 3:1, when the glucose concentration was modified (Figure 9A). However, the amount of Al7Zr3

catalyst was not enough to carry out the glucose transformation into HMF for higher glucose:catalyst
weight ratio (6:1). On the other hand, the glucose conversion was barely affected when the glucose
concentration was decreased to obtain a glucose:catalyst weight ratio of 1:1, but the HMF yield was
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lowered. This fact was probably due to secondary reactions, subsequently decreasing the HMF
yield. Likewise, the highest HMF yield was found for a glucose:catalyst weight ratio of 3:1 when the
quantity of catalyst was varied (Figure 9B). However, differences with other ratios (6:1 and 1:1) were
negligible, which would indicate that secondary reactions are more favorable in excess of glucose, and
consequently of HMF produced, than in the presence of a higher amount of catalyst.
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Considering these catalytic data, a glucose:catalyst weight ratio of 3:1 was employed to study
the reuse of Al7Zr3 to facilitate its handling between cycles. In the recyclability study, each catalytic
run was carried out for 60 min at 150 ◦C, in the presence of Al7Zr3 and CaCl2 (Figure 10). After each
run, both water and MIBK were extracted, whereas the catalyst was maintained at the bottom of the
reactor, subsequently dried at 70 ◦C, and employed in the next catalytic run without any pretreatment.
The Al7Zr3 catalyst roughly maintained its activity for four cycles, in spite of glucose conversion
slightly decreased, with HMF yields between 28% and 37%. However, both conversion and HMF yield
got worse from the fifth cycle, which could be due to losses of catalyst by manipulation between cycles,
or its deactivation as a consequence of the formation of organic deposits, which would block acid sites.
After recovering the Al7Zr3 catalyst after the sixth cycle, it was observed that the solid had become
deliquescent, which complicated severely its characterization. It must be taken into account that
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different products from polymerized glucose, fructose, furan compounds, or other organic substances,
including MIBK, water, and calcium chloride, could be partially covering the used catalyst.
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Nevertheless, it was analyzed by Differential Thermal Analysis and Thermogravimetry (DTA–TG)
up to 300 ◦C, which was the calcination temperature of catalysts, since higher temperatures could
lead to phase transformations of mixed metal oxides, rendering even more difficult the interpretation
of thermogravimetric data (Figure 11). The TG curve exhibits a continuous weight loss of 27.5%,
extending from room temperature until 300 ◦C, which is associated to a broad and intense endothermic
peak centered at 62 ◦C and another smaller one at 134 ◦C. Furthermore, heat flow indicated that the
low temperature effect corresponds to an evaporation enthalpy of 2330 J·g−1, which is typical of water.
Moreover, it is well known that calcium chloride is deliquescent, and water could be associated to this
salt. On the other hand, the second peak presented a vaporization heat of 553 J·g−1 which is intermediate
between vaporization enthalpy values of MIBK and HMF (366 and 718 J g−1, respectively), having the
former a boiling point of 116 ◦C. Thereby, weight losses could be explained by the dehydration of
deliquescent CaCl2, and the vaporization of MIBK and HMF adsorbed on the catalyst surface.

Therefore, it has been demonstrated that mixed AlZr oxides displayed a higher catalytic activity,
in the dehydration of glucose to HMF, than the corresponding pure metal oxides, and even other
mixed metal oxides reported in the literature. Thus, a 47% HMF yield was attained at 150 ◦C after 2 h,
or after shorter reaction time (1 h), but at higher temperature (175 ◦C). Zhang et al. [46] studied the
catalytic performance in glucose dehydration of zirconia calcined at different temperatures, finding
that the most acidic zirconia (an amorphous phase), obtained after calcination at 300 ◦C, only achieved
an HMF yield of 35% in a dimethyl sulfoxide–water biphasic system at 170 ◦C, but 4 h of reaction
were required. Likewise, Stošić et al. [73] synthesized crystalline zirconium oxide supported over
mesostructured amorphous niobium oxide, aiming to benefit from interactions between and the
support to generate active sites for the dehydration. In this case, only an HMF yield of 26% was
achieved after 6 h from 1 wt.% fructose solutions at 130 ◦C, but using more concentrated solutions,
and the catalyst was deactivated due to carbonaceous deposits covering active sites. In contrast,
Atanda et al. [48] tested glucose dehydration by using zirconium-titanium oxides catalysts in water at
160 ◦C for 5 h. They obtained a 23.6% yield for Ti:Zr 1:1 catalyst, which enhanced up to 71% in the
presence of THF (tetrahydrofuran), as co-solvent, and NaCl, but an additional Brönsted co-catalyst,
Amberlyst−70, was employed. On the other hand, Córdova-Pérez et al. [74] prepared a series of
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Al-Ti-W oxides, achieving approximately a 70% HMF yield in a biphasic system H2O:THF in the
presence of NaCl, at 175 ◦C for 3 h, under 3 MPa of Argon. Thus, these mixed Al and Zr oxides were
able to provide relevant values of HMF yields under less drastic conditions than others previously
reported in the literature.Catalysts 2020, 10, x FOR PEER REVIEW 15 of 22 
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Figure 11. Differential Thermal Analysis and Thermogravimetry (DTA–TG) analysis of Al7Zr3 

catalyst recovered after 6th catalytic run of reuse. 

Therefore, it has been demonstrated that mixed AlZr oxides displayed a higher catalytic 
activity, in the dehydration of glucose to HMF, than the corresponding pure metal oxides, and even 
other mixed metal oxides reported in the literature. Thus, a 47% HMF yield was attained at 150 °C 
after 2 h, or after shorter reaction time (1 h), but at higher temperature (175 °C). Zhang et al. [46] 
studied the catalytic performance in glucose dehydration of zirconia calcined at different 
temperatures, finding that the most acidic zirconia (an amorphous phase), obtained after calcination 
at 300 °C, only achieved an HMF yield of 35% in a dimethyl sulfoxide–water biphasic system at 170 
°C, but 4 h of reaction were required. Likewise, Stošić et al. [73] synthesized crystalline zirconium 
oxide supported over mesostructured amorphous niobium oxide, aiming to benefit from 
interactions between and the support to generate active sites for the dehydration. In this case, only 
an HMF yield of 26% was achieved after 6 h from 1 wt.% fructose solutions at 130 °C, but using more 
concentrated solutions, and the catalyst was deactivated due to carbonaceous deposits covering 
active sites. In contrast, Atanda et al. [48] tested glucose dehydration by using zirconium-titanium 
oxides catalysts in water at 160 °C for 5 h. They obtained a 23.6% yield for Ti:Zr 1:1 catalyst, which 
enhanced up to 71% in the presence of THF (tetrahydrofuran), as co-solvent, and NaCl, but an 
additional Brönsted co-catalyst, Amberlyst−70, was employed. On the other hand, Córdova-Pérez et 
al. [74] prepared a series of Al-Ti-W oxides, achieving approximately a 70% HMF yield in a biphasic 
system H2O:THF in the presence of NaCl, at 175 °C for 3 h, under 3 MPa of Argon. Thus, these mixed 
Al and Zr oxides were able to provide relevant values of HMF yields under less drastic conditions 
than others previously reported in the literature. 

Finally, Al7Zr3 and Al3Zr7 have been tested for HMF production from cellulose at 175 °C for 2 h 
by using a cellulose:catalyst weight ratio of 3:1 and CaCl2 to check if these materials were able to 
carry out both hydrolysis and dehydration reactions. Under these experimental conditions, HMF 
was detected with HMF yield values (expressed as mass of obtained HMF/mass of cellulose × 100) 
equal to 3.5 and 4.5 wt.% for Al7Zr3 and Al3Zr7, respectively. Although these values were low and 
reaction conditions should be optimized by using cellulose as feedstock, they demonstrated that 
these catalysts were able to catalyze both hydrolysis of cellulose and dehydration of pertinent 
monomers into HMF. However, degradation of cellulose requires temperatures above 200 °C, as it 
has been pointed out in the literature [75]. 

Figure 11. Differential Thermal Analysis and Thermogravimetry (DTA–TG) analysis of Al7Zr3 catalyst
recovered after 6th catalytic run of reuse.

Finally, Al7Zr3 and Al3Zr7 have been tested for HMF production from cellulose at 175 ◦C for
2 h by using a cellulose:catalyst weight ratio of 3:1 and CaCl2 to check if these materials were able to
carry out both hydrolysis and dehydration reactions. Under these experimental conditions, HMF was
detected with HMF yield values (expressed as mass of obtained HMF/mass of cellulose × 100) equal to
3.5 and 4.5 wt.% for Al7Zr3 and Al3Zr7, respectively. Although these values were low and reaction
conditions should be optimized by using cellulose as feedstock, they demonstrated that these catalysts
were able to catalyze both hydrolysis of cellulose and dehydration of pertinent monomers into HMF.
However, degradation of cellulose requires temperatures above 200 ◦C, as it has been pointed out in
the literature [75].

3. Materials and Methods

3.1. Reagents

Aluminum nitrate nonahydrate 99% (Sigma-Aldrich, St. Louis, MO, USA), zirconyl chloride
octahydrate 98% (Sigma-Aldrich, St. Louis, MO, USA), D-(+)-Glucose 99% (Sigma-Aldrich, St. Louis,
MO, USA), calcium chloride (Sigma-Aldrich, St. Louis, MO, USA), methyl isobutyl ketone 100% (VWR
Chemicals, Radnor, PA, USA), methanol 99.9% (Panreac, Castellar del Vallès, Spain), ammonia 28%
(VWR Chemicals, Radnor, PA, USA), and deionized water were used.

3.2. Catalyst Synthesis

A series of mixed Al-Zr oxides with different Al:Zr molar ratio (10:0, 7:3, 5:5, 3:7, and 0:10) was
prepared by coprecipitation, following the method proposed by He et al. [76]. First, the corresponding
quantities of aluminum and zirconium precursors (total metal amount of 30 mmol) were dissolved
in 200 mL of deionized water under constant stirring. The precipitation of metal hydroxides was
achieved by slow addition of ammonia until pH = 9. The resulting gel was stirred for other 5 h for
complete homogenization. The precipitate was collected by filtration and thoroughly washed with
deionized water until neutral pH. All samples were dried at 80 ◦C for 16 h, then calcined at 300 ◦C for
4 h with a heating rate of 5 ◦C·min−1. The catalysts based on pure aluminum and zirconium oxides
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were denominated as Al and Zr, respectively, and mixed metal oxides were denoted as AlxZry, where x
and y indicated mol of aluminum and zirconium, respectively.

3.3. Characterization of Catalysts

Powder diffraction patterns were obtained on a Philips EMPYREAN automated diffractometer
using Cu Kα1,2 (1,5406 Å) and a PIXcel detector (Royston, UK). Divergence and antidivergence slits
were fixed at 1/2◦. Soller slits for incident and refracted rays were employed at 0.04 rads. Measures
were taken from 5 to 80◦ (2θ) for approximately 30 min with a step size of 0.0167◦. The X-ray tube
voltage employed was 45 kV and current of 40 mA. The sample was rotated continuously to increase
particle statistics.

Magic angle spinning-nuclear magnetic resonance (MAS-NMR) spectra of 27Al were recorded with
an AVANCEIII HD 600 (Bruker AXS, Rheinstetten, Germany) using Hpdec technique. Samples were
rotated with a speed of 20 kHz in 2.5 mm triple resonance DVT probes. 5000 scans were carried out for
each sample with 1 s delay. Chemical shifts were referenced to Al(NO3)3. For the analysis, a magnetic
field of 14.1 T corresponding to a 27Al resonance frequency of 156.37 MHz was used.

Transmission electron microscopy (TEM) images were acquired by using a FEI Talos F200X (Thermo
Fisher Scientific, Waltham, MA, USA) equipped with a CMOS camera of 16 megapixels. Chemical
homogeneity in catalyst particles was analyzed by EDX mapping, taken in STEM-HAADF mode.

X-ray photoelectron spectra (XPS) were collected using a Physical Electronics PHI5700 (Eden Prairie,
Minnesota, USA). Measurements were carried out with monochromatic Mg Kα radiation (300 W
and 1253.6 eV) and multichannel detector in FAT mode (29.35 eV). Analysis area was set to 720 µm.
All binding energies were calibrated respect to C 1s peak of adventitious carbon at 284.8 eV. Physical
Electronics Multipack 9.6 software was employed to process all XPS data (Version 9.6, Physical
Electronics Inc., Chanhassen, MN, USA, 2003).

N2 adsorption–desorption isotherms at−196 ◦C were determined with an automatic gas adsorption
ASAP 2420 surface area and porosity analyzer model (Micromeritics, Norcross, GA, U.S.A). Samples
were previously evacuated at 200 ◦C and 10−4 mbar for 24 h. Specific surface areas were calculated
by taking a nitrogen molecule cross section of 16.2 Å2 and using the Brunauer–Emmet–Teller (BET)
equation. Pore size distributions were obtained using the DFT (Density Functional Theory) method.

Temperature-programmed desorption of ammonia (NH3-TPD) and carbon dioxide (CO2-TPD)
were recorded in order to evaluate the surface acidity and basicity of the catalysts, respectively. In the
case of NH3-TPD, 0.08 g of each sample were evacuated under helium flow by heating up to the
calcination temperature (300 ◦C), and then, after cooling, the adsorption of ammonia was performed at
100 ◦C. The NH3-TPD was carried out by increasing the temperature from 100 to 300 ◦C, with a heating
rate of 5 ◦C·min−1, maintaining at this temperature for 15 min and using a helium flow of 40 mL min−1.
CO2 adsorption was similarly carried out by using 0.2 g of catalyst and performing CO2 adsorption at
80 ◦C. The evolved gases (ammonia and carbon dioxide) were analyzed using a thermal conductivity
detector (TCD) (Shimadzu, Kyoto, Japan).

3.4. Catalytic Tests

The reactions were carried out under batch conditions, by using glass pressure tubes with
thread bushing (Ace, 15 mL) in a temperature-controlled aluminum block under magnetic stirring.
Experiments usually consisted on 1.5 mL of deionized water, 3.5 mL MIBK, 0.05 g of catalyst, 0.15 g
of glucose, and 0.65 g CaCl2 per g H2O. Reactors were purged with N2 before reaction to avoid
unwanted reactions. Once the reactions finished, the reactors were removed from the aluminum block
and submerged in cool water to stop the catalytic process. Analysis of both phases was performed
through high performance liquid chromatography (HPLC). A JASCO instrument equipped with
quaternary gradient pump (PU-2089), multiwavelength detector (MD-2015), autosampler (AS-2055),
and column oven (co-2065) was employed. Aqueous and organic phases were analyzed by employing
different columns, Phenomenex Rezex ROA-Organic Acid H+ (8%) (300 mm × 7.8 mm and 5 µm)
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and Phenomenex Luna C18 reversed-phase column (250 mm × 4.6 mm and 5 µm) respectively, by
using 0.005 N H2SO4 solution (flow rate 0.35 mL min−1) and pure methanol (flow rate 0.5 mL min−1)
as mobile phases at 40 ◦C and room temperature respectively. Glucose and fructose were quantified
using a refractive index detector for aqueous phase, whereas HMF was quantified by a UV detector in
both phases. Glucose conversion, HMF selectivity, HMF yield and carbon balance were calculated
as follows:

ConversionGlucose =
Glucoseinitial – Glucose f inal

Glucoseinitial
·100

SelectivityHMF =
HMF f inal

Glucosainitial −Glucosa f inal
·100

YieldHMF =
SelectivityHMF·Conversion

100

Balance =
HMF f inal + Glucose f inal + Fructose f inal

Glucoseinitial
·100

4. Conclusions

A series of AlxZry oxide catalysts was synthesized by coprecipitation of metal hydroxides and
subsequent calcination. A boehmite phase was identified by XRD and XPS analyses for the Al
catalyst, not being possible to distinguish between oxides and oxohydroxides for mixed metal oxides.
In particular, the Al5Zr5 catalyst could present pseudoboehmite or alumina phases, which were not
detected for the rest of catalysts. In addition, amorphous zirconia prevented structural identification
of Zr phases. Total acidity and basicity, as well as site densities, decreased progressively with the
zirconium content, in such a way that higher Al content provided more acidic and basic catalysts,
according to its amphoteric character. The Al5Zr5 catalyst did not follow this trend due to its different
superficial nature, showing acid–base properties similar to those of pure Al catalyst. As expected,
catalysts with the highest concentration of active sites achieved total conversion faster, although
this superior activity was also responsible for lower carbon balance values caused by promotion of
secondary reactions. The Al3Zr7 catalyst, being less active and needing longer reaction time, gave rise
to the best selectivity (50%) and yield (46%) at 175 ◦C. Therefore, it was also observed that the presence
of octahedral Al sites accelerated glucose dehydration into HMF, causing sooner their deactivation
for high Al content catalysts. However, a lower catalytic activity was found for Zr-rich catalysts,
but deactivation was also slower in such a way that the presence of pentacoordinated Al and/or a
lower Al content for Al3Zr7 catalyst led to the highest HMF yield. On the other hand, the reduction
of reaction temperature, as expected, led to longer reaction times to attain similar HMF yields, but
side reactions were partially avoided, yielding better carbon balance values. Moreover, both HMF
yield and selectivity obtained at 150 ◦C were similar to those obtained at 175 ◦C, suggesting glucose
dehydration route was similarly affected than secondary reaction paths and activation energies should
be close. Likewise, AlxZry catalysts could be reused at least for four catalytic runs, but their catalytic
activity started to decrease from the fifth cycle probably due to the deposition of organic molecules.
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