

Supplementary Materials

Eosin Y-catalyzed visible-light-mediated aerobic transformation of pyrazolidine-3-one derivatives

Nejc Petek, Uroš Grošelj, Jurij Svete, Franc Požgan, Drago Kočar, Bogdan Štefane*

- ¹ Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000Ljubljana Slovenia; Bogdan.stefane@fkkt.uni-lj.si
- * Correspondence: Bogdan.stefane@fkkt.uni-lj.si; Tel.: +386-1-4798560
 - 1. Cyclic voltammetry

Cyclic voltammograms were recorded on ElectraSyn 2.0 (IKA, Staufen im Breisgau, Germany) on glassy carbon working electrode with Pt plated counter electrode and Ag wire quasi-reference electrode. Solution of **1c** (10 mM) was prepared in acetonitrile with Bu₄NBF₄ (50 mM) as an electrolyte. Ferrocene was added as an internal standard.

Literature potential for Fc⁺/Fc vs. SCE is 0.38 V in acetonitrile.

 $E_{1/2}$ (1c^{+/}1c) = 0.35 V (vs. Fc)

 $E_{1/2} (1c^{+}/1c) = 0.73 V (vs. SCE)$

Aranzaes, J. R., Daniel, M.-C., Astruc, D. Metallocenes as references for the determination of redox potentials by cyclic voltammetry. – Permethylated iron and cobalt sandwich complexes, inhibition by polyamine dendrimers, and the role of hydroxy-containing ferrocenes. *Can. J. Chem.* **2006**, *84*, 288–299.

2. Absorption spectroscopy

Absorption spectra of Eosin Y-disodium salt was recorded on Cary 50 Bio UV-VIS Spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). Normalized spectra recorded in acetonitrile and acetonitrile/TFA (0.5M solution as used herein for oxidation of compounds 1) is shown.

3. Mass spectrometry

TEMPO adduct of 1c was detected on Agilent 6224 Accurate Mass TOF LC/MS spectrometer.

Compound Ic	lentification R	esults			
Ion Mass Calc Ion M		s Differenc	ce IonFormula	IonSpecies	Best
394.22	47 3	394.2242	-0.4 C19 H31 CI N6 () (M+H)+	
394.22	47 3	394.2256	0.9 C21 H33 Cl N3 ()2 (M+H)+	~
MFE MS Zoome	d Spectrum				
x10 5 Cpd 2	: C21 H32 CI N3	O2: +ESI MFE Spe	ctrum (0.181-0.473 min) Fra	g=150.0V NP910-B_002.c	ł
8-			* 394.2247		
7-			(M+H)+		
6 -					
5-					
4 -					
3 -					
2-					
1-					
٥ لـــــــ					
	365 370 37	75 380 385 3 Count	390 395 400 405 s vs. Mass-to-Charge (m/z)	410 415 420 425	430

We confirmed the presence of endo and exo oxidation products of **1q** on mass spectrometer Shimadzu LCMS-IT-TOF system (Kyoto, Japan) with liquid chromatograph Nexera XR hyphenated to a mass spectrometer with ion trap and time of flight tube equipped with an electrospray ionization (ESI) source. Starting material (m/z 191.1179) is also present. Estimated ratio of endo and exo oxidation according to NMR analysis is 3:2 respectively.

No.	Mass	Diff (mDa)	Formula	DBE
1	188.0950	0.8	C11 H12 N2 O	7.0
2	188.0909	4.8	C6 H12 N4 O3	3.0
3	188.0797	16.0	C7 H12 N2 O4	3.0
4	188.1121	16.3	C3 H16 N4 O5	-2.0

4. Characterization of compounds 1–5.

General Remarks

Reactions were carried out in a commercially available SynLED Parallel Photoreactor (465-470 nm LEDs, 130–140 lm, Sigma-Aldrich, St. Louis, MO, USA), which operates at approximately 25–30 °C. The NMR spectra were recorded in deuterated solvents with Me₄Si as the internal standard on a Bruker Avance DPX 300 (Bruker, Billerica, MA, USA) and Bruker Avance III UltraShield 500 (Bruker, Billerica, MA, USA) plus instruments at 300 and 500 MHz for ¹H and at 75.5 and 126 MHz for ¹³C nuclei, respectively. Data for ¹H NMR are reported as chemical shifts (δ) in ppm, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant and assignment. Data for ¹³C are reported as chemical shift (δ) in ppm. Mass spectra were recorded on Agilent 6224 Accurate Mass TOF LC/MS spectrometer (Agilent Technologies, Santa Clara, CA, USA) and IR spectra on a Bruker FTIR Alpha Platinum spectrophotometer (Bruker, Billerica, MA, USA). Melting points were determined on a Kofler hot-stage microscope and on a MPA100 OptiMelt automated melting point system (Stanford Research Systems, Sunnyvale, CA, USA). Thin-layer chromatography (TLC) was performed on aluminum backed silica plates (0.2 mm, 60 F254, Sigma-Aldrich, St. Louis, MO, USA). Visualization of TLC (254 nm, Camag, Muttenz, Switzerland) was performed by fluorescence quenching or with potassium permanganate stains. Flash column chromatography (FC) and column chromatography (CC) were performed on silica gel (particle size: 35-70 µm, Sigma-Aldrich, St. Louis, MO, USA). Commercially available compounds were used without further purification.

Pyrazolidin-3-ones 1.

Compounds **1a-p** were prepared according to established literature procedures [1-4].

1-Benzyl-5,5-dimethyl-pyrazolidinone (1a). The ¹H-NMR data is in agreement with literature. [1]

5,5-Dimethyl-1-(4-methylbenzyl)pyrazolidin-3-one (**1b**). White solid (84%); mp 121–122 °C; ν_{max}/cm^{-1} (ATR) 3159, 3047, 2971, 2923, 1690, 1514, 1444, 1420, 1385, 1340, 1293, 1247, 1204, 1169, 1107, 1080, 1057, 1024, 985, 945, 922, 888, 850, 811, 788, 746, 709, 684; δ_{H} (500 MHz; CDCl₃; Me₄Si) 1.35 (s, 6H), 2.34 (s, 3H), 2.40 (s, 2H), 3.73 (s, 2H), 6.61 (s, 1H), 7.13 (d, *J* = 7.9 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H); δ_{C} (126 MHz; CDCl₃; Me₄Si) 21.1, 25.3, 43.0, 56.6, 62.3, 129.1, 129.4, 133.9, 137.5, 174.0; HRMS (ESI): MH⁺, found 219.1492. [C₁₃H₁₉N₂O]⁺ requires 219.1492.

1-(4-Chlorobenzyl)-5,5-dimethylpyrazolidin-3-one (**1c**). White solid (99%); mp 155–156 °C; ν_{max}/cm^{-1} (ATR) 3143, 3049, 2974, 1690, 1596, 1488, 1450, 1411, 1385, 1373, 1337, 1289, 1245, 1206, 1167, 1113, 1089, 1051, 1016, 989, 972, 846, 922, 889, 851, 807, 787, 749, 707, 687, 664; δ_{H} (500 MHz; CDCl₃; Me₄Si) 1.35 (s, 6H), 2.39 (s, 2H), 3.76 (s, 2H), 6.82 (s, 1H), 7.26 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H); δ_{C} (126 MHz; CDCl₃; Me₄Si) 25.4, 42.7, 56.4, 62.6, 128.8, 130.5, 133.5, 135.6, 174.3; HRMS (ESI): MH⁺, found 239.0946. [C1₂H₁₆ClN₂O]⁺ requires 239.0946.

4-((5,5-Dimethyl-3-oxopyrazolidin-1-yl)methyl)benzonitrile (**1d**). White solid (90%); mp 156–158 °C; ν_{max} /cm⁻¹ (ATR) 3153, 3054, 2974, 2858, 2228, 1690, 1610, 1505, 1468, 1448, 1418, 1374, 1339, 1293, 1248, 1209, 1167, 1111, 1079, 1049, 1023, 990, 973, 949, 925, 893, 860, 823, 793, 753, 689; δ_H (500 MHz; CDCl₃; Me4Si) 1.35 (s, 6H), 2.39 (s, 2H), 3.86 (s, 2H), 7.25 (s, 1H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 8.2 Hz, 2H); δ_C (126 MHz; CDCl₃; Me4Si) 25.4, 42.6, 57.0, 62.9, 111.6, 118.7, 129.7, 132.4, 142.9, 174.7; HRMS (ESI): MH⁺, found 230.1290. [C₁₃H₁₆N₃O]⁺ requires 230.1288.

1-(4-Methoxy-benzyl)-5,5-dimethyl-pyrazolidin-3-one (1e). The ¹H-NMR data is in agreement with literature. [2]

5,5-Dimethyl-1-(4-nitrobenzyl)pyrazolidin-3-one (**1f**). Pale yellow solid (85%); mp 186–187 °C; $\nu_{\text{max}}/\text{cm}^{-1}$ (ATR) 3141, 3061, 2977, 2852, 1693, 1602, 1513, 1450, 1374, 1350, 1333, 1292, 1250, 1208, 1169, 1112, 1074, 1044, 1016, 985, 953, 926, 895, 873, 857, 832, 818, 755, 738, 697, 650; δ_{H} (500 MHz; CDCl₃; Me₄Si) 1.36 (s, 6H), 2.40 (s, 2H), 3.91 (s, 2H), 7.25 (s, 1H), 7.53 (d, *J* = 8.8 Hz, 2H), 8.20 (d, *J* = 8.8 Hz, 2H); δ_{C} (126 MHz; CDCl₃; Me₄Si) 25.5, 42.5, 56.7, 63.0, 123.8, 129.7, 144.9, 147.5, 174.7; HRMS (ESI): MH⁺, found 250.1187. [C₁₂H₁₆N₃O₃]⁺ requires 250.1186.

1-(2,6-Dichlorobenzyl)-5,5-dimethylpyrazolidin-3-one (**1g**). White solid (93%); mp 154–155 °C; ν_{max}/cm^{-1} (ATR) 3143, 3052, 2969, 1697, 1581, 1561, 1465, 1432, 1381, 1369, 1335, 1288, 1242, 1196, 1165, 1109, 1090, 1054, 1006, 967, 940, 922, 891, 843, 774, 762, 682, 625; δ_H (500 MHz; CDCl₃; Me₄Si) 1.41 (s, 6H), 2.43 (s, 2H), 4.15 (s, 2H), 6.83 (s, 1H), 7.18 (t, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H); δ_C (126 MHz; CDCl₃; Me₄Si) 25.2, 42.6, 51.5, 63.4, 128.8, 129.7, 132.4, 137.0, 174.7; HRMS (ESI): MH⁺, found 273.0556.

5,5-Dimethyl-1-(3,4,5-trimethoxybenzyl)pyrazolidin-3-one (**1h**). White solid (98%); mp 132–133 °C; ν_{max}/cm^{-1} (ATR) 3445, 3332, 3154, 3071, 2966, 2931, 2839, 1673, 1590, 1506, 1449, 1417, 1377, 1328, 1229, 1178, 1121, 1048, 1007, 962, 925, 886, 832, 796, 781, 748, 669, 613; δ_{H} (500 MHz; CDCl₃; Me₄Si) 1.37 (s, 6H), 2.42 (s, 2H), 3.72 (s, 2H), 3.83 (s, 3H), 3.87 (s, 6H), 6.55 (s, 2H), 6.73 (s, 1H); δ_{C} (126 MHz; CDCl₃; Me₄Si) 25.2, 43.1, 56.1, 57.2, 60.9, 62.3, 105.8, 132.6, 137.4, 153.4, 174.0; HRMS (ESI): MH⁺, found 295.1652. [C₁₅H₂₃N₂O₄]⁺ requires 295.1652.

1-(2-Naphthylmethyl)-5,5-dimethyl-pyrazolidinone (1i). The ¹H-NMR data is in agreement with literature. [1]

Benzyl (1-benzyl-5,5-dimethyl-3-oxopyrazolidin-4-yl)carbamate (**1j**). The ¹H-NMR data is in agreement with literature. [5]

5,5-Dimethyl-1-pyridin-3-ylmethyl-pyrazolidin-3-one (1k). The ¹H-NMR data is in agreement with literature. [4]

1-(Furan-2-ylmethyl)-5,5-dimethylpyrazolidin-3-one (**1**). Colorless oil (84%); ν_{max}/cm^{-1} (ATR) 3189, 2973, 1682, 1505, 1421, 1387, 1371, 1330, 1245, 1223, 1147, 1115, 1077, 1014, 974, 922, 885, 800, 734, 663; δ_H (500 MHz; CDCl₃; Me₄Si) 1.33 (s, 6H), 2.30 (s, 2H), 3.82 (s, 2H), 6.28 (d, *J* = 3.1 Hz, 1H), 6.33 (dd, *J* = 3.2, 1.9 Hz, 1H), 7.39 (d, *J* = 1.7 Hz, 1H), 7.84 (s, 1H); δ_C (126 MHz; CDCl₃; Me₄Si) 25.2, 42.7, 49.6, 62.5, 109.5, 110.5, 142.6, 150.4, 174.6; HRMS (ESI): MH⁺, found 195.1125. [C₁₀H₁₅N₂O₂]⁺ requires 195.1128.

1-Ethyl-5,5-dimethylpyrazolidin-3-one (**1m**). The ¹H-NMR data is in agreement with literature. [1]

Benzyl [(4*RS*,5*RS*)-1-benzyl-3-oxo-5-(propan-2-yl)pyrazolidin-4-yl]carbamate (**1n**). The ¹H-NMR data is in agreement with literature. [5]

5,5-Dimethyl-1-(3-phenylpropyl)pyrazolidin-3-one (**1o**). White solid (77%); mp 130–132 °C; ν_{max}/cm^{-1} (ATR) 3051, 2964, 2848, 1687, 1649, 1491, 1453, 1415, 1385, 1340, 1239, 1124, 1024, 944, 922, 887, 796, 749, 725, 702, 679; $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 1.22 (s, 6H), 1.83 (p, *J* = 7.3 Hz, 2H), 2.32 (s, 2H), 2.62 (t, *J* = 7.2 Hz, 2H), 2.69 (t, *J* = 7.5 Hz, 2H), 7.14 – 7.23 (m, 3H), 7.24 – 7.33 (m, 2H), 8.80 (s, 1H); $\delta_{\rm C}$ (126 MHz; CDCl₃; Me₄Si) 25.2, 29.3, 33.0, 42.9, 51.7, 62.5, 125.8, 128.3, 128.5, 141.7, 175.1; HRMS (ESI): MH⁺, found 233.1651. [C1₄H₂₁N₂O]⁺ requires 233.1648.

5,5-Dimethyl-1-propylpyrazolidin-3-one (**1p**). Colorless oil (50%); *ν*_{max}/cm⁻¹ (ATR) 3182, 2966, 1681, 1466, 1366, 1244, 1026, 888, 784; δ_H (500 MHz; CDCl₃; Me₄Si) 0.94 (t, *J* = 7.4 Hz, 3H), 1.26 (s, 6H), 1.46 –

1.58 (m, 2H), 2.34 (s, 2H), 2.54 – 2.63 (m, 2H), 8.61 (s, 1H); δc (126 MHz; CDCl₃; Me₄Si) 11.6, 21.4, 25.1, 42.9, 54.5, 62.4, 175.0; HRMS (ESI): MH⁺, found 157.1335. [C₈H₁₇N₂O]⁺ requires 157.1335.

1-Ethyl-5-phenylpyrazolidin-3-one (**1q**). White solid (98%); mp 99–101 °C; ν_{max}/cm^{-1} (ATR) 2982, 2843, 1679, 1496, 1455, 1427, 1373, 1334, 1163, 1116, 1098, 1077, 1026, 986, 908, 872, 818, 800, 757, 702, 652, 636; δ_{H} (500 MHz; CDCl₃; Me₄Si) 1.13 (t, *J* = 7.2 Hz, 3H), 2.55 (dd, *J* = 16.8, 8.9 Hz, 1H), 2.66 (dq, *J* = 12.0, 7.0 Hz, 1H), 2.85 (dq, *J* = 12.0, 7.3 Hz, 1H), 3.01 (dd, *J* = 16.8, 8.5 Hz, 1H), 4.10 (t, *J* = 8.7 Hz, 1H), 7.28 – 7.43 (m, 5H), 8.49 (s, 1H); δ_{C} (126 MHz; CDCl₃; Me₄Si) 12.9, 39.4, 52.8, 67.5, 127.0, 127.9, 128.7, 140.1, 173.0; HRMS (ESI): MH⁺, found 191.1180. [C11H15N2O]⁺ requires 191.1179.

1-Ethyl-5-methylpyrazolidin-3-one (**1r**) was prepared according to a literature procedure (omitting the hydrobromide formation). [6]

Azomethine imines 2.

(*Z*)-1-Benzylidene-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (**2a**). Prepared from **1a** (61%). The ¹H-NMR data is in agreement with literature. [7]

(*Z*)-5,5-Dimethyl-1-(4-methylbenzylidene)-3-oxopyrazolidin-1-ium-2-ide (**2b**). Prepared from **1b** (63%). The ¹H-NMR data is in agreement with literature. [8]

(*Z*)-1-(4-Chlorobenzylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (**2c**). Prepared from **1c** (62%). The ¹H-NMR data is in agreement with literature. [8]

(*Z*)-1-(4-Cyanobenzylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (**2d**). Prepared from **1d** (48%). The ¹H-NMR data is in agreement with literature. [8]

(*Z*)-1-(4-Methoxybenzylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (**2e**). Prepared from **1e** (76%). The ¹H-NMR data is in agreement with literature. [8]

(*Z*)-5,5-Dimethyl-1-(4-nitrobenzylidene)-3-oxopyrazolidin-1-ium-2-ide (**2f**). Prepared from **1f** (34%). The ¹H-NMR data is in agreement with literature. [9]

(*Z*)-1-(2,6-Dichlorobenzylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (**2g**). Prepared from **1g** (88%). The ¹H-NMR data is in agreement with literature. [9]

(*Z*)-5,5-Dimethyl-3-oxo-1-(3,4,5-trimethoxybenzylidene)pyrazolidin-1-ium-2-ide (**2h**). Prepared from **1h** (71%). The ¹H-NMR data is in agreement with literature. [9]

(*Z*)-5,5-Dimethyl-1-(naphthalen-2-ylmethylene)-3-oxopyrazolidin-1-ium-2-ide (**2i**). Prepared from **1i** (73%). The ¹H-NMR data is in agreement with literature. [10]

(*Z*)-1-Benzylidene-4-(((benzyloxy)carbonyl)amino)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (2j). Prepared from 1j (44%). The ¹H-NMR data is in agreement with literature. [5]

(*Z*)-5,5-Dimethyl-3-oxo-1-(pyridin-3-ylmethylene)pyrazolidin-1-ium-2-ide (**2k**). Prepared from **1k**. Pale yellow solid (40%); mp 197–199 °C; ν_{max}/cm^{-1} (ATR) 2978, 1665, 1590, 1579, 1559, 1477, 1468, 1431, 1397, 1380, 1295, 1247, 1232, 1143, 1094, 1026, 948, 866, 849, 810, 705, 672, 638, 611; δ_{H} (500 MHz; CDCl₃; Me₄Si) 1.75 (s, 6H), 2.73 (s, 2H), 7.22 (s, 1H), 7.38 (dd, *J* = 8.2, 4.8 Hz, 1H), 8.59 (dd, *J* = 4.8, 1.7 Hz, 1H), 8.99 (d, *J* = 2.2 Hz, 1H), 9.17 (dt, *J* = 8.4, 2.0 Hz, 1H); δ_{C} (126 MHz; CDCl₃; Me₄Si) 28.9, 44.3, 74.6, 123.7, 126.3, 126.4, 138.0, 151.4, 152.1, 182.0; HRMS (ESI): MH⁺, found 204.1130. [C11H14N₃O]⁺ requires 204.1131.

(*Z*)-1-(Furan-2-ylmethylene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (**2l**). Prepared from **1l**. Offwhite solid (42%); mp 137–145 °C; ν_{max}/cm^{-1} (ATR) 3097, 1664, 1595, 1558, 1479, 1467, 1427, 1408, 1392, 1311, 1272, 1204, 1143, 1097, 1002, 938, 884, 832, 816, 767, 672, 652, 625; δ_{H} (500 MHz; CDCl₃; Me4Si) 1.67 (s, 6H), 2.73 (s, 2H), 6.63 (ddd, *J* = 3.7, 1.8, 0.7 Hz, 1H), 7.18 (s, 1H), 7.59 (dd, *J* = 1.8, 0.7 Hz, 1H), 7.91 (d, *J* = 3.6 Hz, 1H); δ_{C} (126 MHz; CDCl₃; Me4Si) 28.8, 44.9, 72.4, 113.7, 118.6, 121.1, 146.2, 146.3, 181.4; HRMS (ESI): MH⁺, found 193.0976. [C10H13N2O2]⁺ requires 193.0972.

(*Z*)-1-Ethylidene-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (2m). Prepared from 1m (47%). The ¹H-NMR data is in agreement with literature. [11]

Pyrazolo[1,2-*a*]pyrazoles 3.

Methyl 1-(4-chlorophenyl)-7,7-dimethyl-5-oxo-6,7-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole-2-carboxylate (**3a**). Prepared from **1c** (80%). The ¹H-NMR data is in agreement with literature. [12]

Methyl 7,7-dimethyl-5-oxo-1-(3,4,5-trimethoxyphenyl)-6,7-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole-2-carboxylate (**3b**). Prepared from **1h** (82%). The ¹H-NMR data is in agreement with literature. [12]

Methyl 7,7-dimethyl-1-(4-nitrophenyl)-5-oxo-6,7-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole-2-carboxylate (**3c**). Prepared from **1f** (73%). The ¹H-NMR data is in agreement with literature. [12]

tert-Butyl ((*S*)-1-((1*S*)-7,7-dimethyl-1-(4-nitrophenyl)-5-oxo-6,7-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazol-2-yl)-1-oxopropan2-yl)carbamate (**3d**). Prepared from **1f** (30%). The ¹H-NMR data is in agreement with literature. [13]

Methyl $(1S^*, 6R^*, 7R^*)$ -6-benzyloxycarbonylamino-7-isopropyl-1-(4-nitrophenyl)-5-oxo-6,7-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole-2-carboxylate (**3e**). Prepared from **1n** (52%). The ¹H-NMR data is in agreement with literature. [14]

Methyl 7,7-dimethyl-5-oxo-1-phenethyl-6,7-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole-2-carboxylate (**3f**). Prepared from **1o**. Yellow resin (62%); ν_{max}/cm^{-1} (ATR) 2951, 1732, 1693, 1601, 1496, 1453, 1399, 1331, 1261, 1202, 1117, 1037, 997, 968, 890, 824, 746, 699; δ_{H} (500 MHz; CDCl₃; Me₄Si) 1.05 (s, 3H), 1.33 (s, 3H), 1.93 (dddd, *J* = 14.0, 10.9, 5.8, 3.4 Hz, 3H), 2.06 (ddt, *J* = 13.7, 10.6, 6.0 Hz, 1H), 2.32 (d, *J* = 15.5 Hz, 1H), 2.72 (qdd, *J* = 13.7, 10.5, 5.7Hz, 2H), 2.83 (d, *J* = 15.6 Hz, 1H), 3.73 (s, 3H), 4.54 (ddd, *J* = 6.0, 3.3, 1.3 Hz, 1H), 7.14 – 7.22 (m, 3H), 7.24 – 7.30 (m, 2H), 7.46 (d, *J* = 1.3 Hz, 1H); δ_{C} (126 MHz; CDCl₃; Me₄Si) 18.3, 25.0, 30.9, 37.0, 48.8, 51.5, 60.3, 65.0, 115.2, 125.7, 128.3, 128.4, 131.8, 141.9, 164.4, 168.6; HRMS (ESI): MH⁺, found 315.1704. [C₁₅H₁₇N₂O₃]⁺ requires 315.1703.

Methyl 1,7,7-trimethyl-5-oxo-6,7-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole-2-carboxylate (**3g**). Prepared from **1m**. Yellow solid (77%); mp 90–93 °C; ν_{max}/cm^{-1} (ATR) 3089, 2977, 1730, 1685, 1590, 1443, 1367, 1327, 1271, 1230, 1190, 1169, 1120, 1095, 1065, 1051, 999, 971, 931, 889, 777, 759, 708; δ_{H} (500 MHz; CDCl₃; Me₄Si) 1.11 (s, 3H), 1.35 (s, 3H), 1.41 (d, *J* = 6.2 Hz, 3H), 2.34 (d, *J* = 15.6 Hz, 1H), 2.82 (d, *J* = 15.6 Hz, 1H), 3.75 (s, 3H), 4.54 (qd, *J* = 6.2, 1.5 Hz, 1H), 7.40 (d, *J* = 1.4 Hz, 1H); δ_{C} (126 MHz; CDCl₃; Me₄Si) 18.8, 23.2, 25.0, 49.3, 51.5, 56.3, 64.4, 117.5, 130.0, 164.6, 166.9; HRMS (ESI): MH⁺, found 225.1230. [C11H17N2O3]⁺ requires 225.1234.

Methyl 1-ethyl-7,7-dimethyl-5-oxo-6,7-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole-2-carboxylate (**3h**). Prepared from **1p**. Yellow resin (51%); ν_{max}/cm^{-1} (ATR) 2965, 1732, 1692, 1601, 1386, 1332, 1310, 1284, 1252, 1200, 1118, 1096, 1023, 963, 920, 891, 826, 754, 705; δ_H (500 MHz; CDCl₃; Me₄Si) 0.93 (t, *J* = 7.4 Hz, 3H), 1.06 (s, 3H), 1.32 (s, 3H), 1.59 – 1.77 (m, 2H), 2.31 (d, *J* = 15.4 Hz, 1H), 2.81 (d, *J* = 15.5 Hz, 1H), 3.74 (s, 3H), 4.42 (ddd, *J* = 6.0, 3.4, 1.3 Hz, 1H), 7.45 (d, *J* = 1.3 Hz, 1H); δ_C (126 MHz; CDCl₃; Me₄Si) 9.0, 18.2,

24.9, 28.2, 48.8, 51.5, 61.5, 65.0, 115.2, 131.8, 164.6, 168.8; HRMS (ESI): MH⁺, found 239.1388. $[C_{12}H_{19}N_2O_3]^+$ requires 239.1390.

Methyl $(1S^*,7R^*)$ -1-methyl-5-oxo-7-phenyl-6,7-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole-2-carboxylate (**3i**). Prepared from **1q**. Orange resin (34%); ν_{max}/cm^{-1} (ATR) 1691, 1598, 1449, 1403, 1371, 1336, 1300, 1263, 1208, 1164, 1099, 1062, 953, 920, 836, 757, 700, 676, 637; δ_{H} (500 MHz; CDCl₃; Me4Si) 1.18 (d, *J* = 6.3 Hz, 3H), 2.90 (dd, *J* = 16.4, 6.6 Hz, 1H), 3.00 (dd, *J* = 16.4, 12.6 Hz, 1H), 3.75 (s, 3H), 4.25 (dd, *J* = 12.6, 6.7 Hz, 1H), 4.30 (qd, *J* = 6.3, 1.7 Hz, 1H), 7.35 – 7.43 (m, 3H), 7.45 (d, *J* = 1.7 Hz, 1H), 7.47 – 7.51 (m, 2H); δ_{C} (126 MHz; CDCl₃; Me₄Si) 20.9, 44.6, 51.5, 65.5, 71.4, 118.2, 127.7, 128.9, 129.3, 136.7, 164.3, 165.5; HRMS (ESI): MH⁺, found 273.1227. [C15H17N2O3]⁺ requires 273.1234.

Methyl $(1S^*,7R^*)$ -1,7-dimethyl-5-oxo-6,7-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole-2-carboxylate (**3j**). Prepared from **1r**. Yellow resin (25%); ν_{max}/cm^{-1} (ATR) 2974, 1693, 1599, 1446, 1405, 1381, 1335, 1308, 1221, 1183, 1152, 1103, 1076, 1049, 982, 929, 872, 785, 758, 719, 673; $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 1.33 (d, *J* = 6.1 Hz, 3H), 1.49 (d, *J* = 6.3 Hz, 3H), 2.56 – 2.68 (m, 2H), 3.24 – 3.35 (m, 1H), 3.75 (s, 3H), 4.26 (qd, *J* = 6.3, 1.7 Hz, 1H), 7.36 (d, *J* = 1.6 Hz, 1H); $\delta_{\rm C}$ (126 MHz; CDCl₃; Me₄Si) 17.5, 22.0, 42.8, 51.5, 63.4, 65.0, 117.8, 129.5, 164.4, 166.6; HRMS (ESI): MH⁺, found 211.1078. [C10H15N2O₃]⁺ requires 211.1077.

 $(3R^*,5S^*)$ -6-Acetyl-3,5-dimethyl-2,3-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazol-1-one (**3k**). Prepared from **1r** and 3-butyn-2-one. Yellow solid (16%); mp 128–130 °C; ν_{max}/cm⁻¹ (ATR) 2964, 2925, 1722, 1643, 1540, 1413, 1259, 1192, 1091, 1018, 797; δ_H (500 MHz; CDCl₃; Me₄Si) 1.26 (d, *J* = 6.1 Hz, 3H), 1.39 (d, *J* = 6.3 Hz, 3H), 2.21 (s, 3H), 2.50 – 2.62 (m, 2H), 3.15 – 3.25 (m, 1H), 4.22 (qd, *J* = 6.4, 1.5 Hz, 1H), 7.28 (d, *J* = 1.3 Hz, 1H); δ_C (126 MHz; CDCl₃; Me₄Si) 17.5, 21.9, 26.8, 42.7, 63.5, 65.1, 127.3, 129.7, 167.6, 193.5; HRMS (ESI): MH⁺, found 195.1127. [C₁₀H₁₅N₂O₂]⁺ requires 195.1128.

(3*R**,5*S**)-6-Benzoyl-3,5-dimethyl-2,3-dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazol-1-one (**3l**). Prepared from **1r** and 1-phenyl-2-propyn-1-one. Yellow resin (11%); ν_{max}/cm^{-1} (ATR) 2973, 1715, 1622, 1568, 1408, 1382, 1357, 1308, 1268, 1217, 1177, 1135, 1078, 1016, 979, 943, 867, 795, 750, 713, 661, 613; δ_H (500 MHz; CDCl₃; Me₄Si) 1.38 (d, *J* = 6.1 Hz, 3H), 1.56 (d, *J* = 6.3 Hz, 3H), 2.60 – 2.73 (m, 2H), 3.33 (ddq, *J* = 12.0, 7.2, 6.1 Hz, 1H), 4.54 (qd, *J* = 6.3, 1.5 Hz, 1H), 7.20 (d, *J* = 1.4 Hz, 1H), 7.46 (dd, *J* = 8.3, 7.0 Hz, 2H), 7.53 – 7.58 (m, 1H), 7.69 – 7.74 (m, 2H); δ_C (126 MHz; CDCl₃; Me₄Si) 17.6, 21.4, 42.8, 63.5, 66.5, 126.4, 128.3, 128.6, 131.0, 132.3, 138.7, 167.0, 191.0; HRMS (ESI): MH⁺, found 257.1290. [C₁₅H₁₇N₂O₂]⁺ requires 257.1285.

Pyrazolidin-3-ones 4 and pyrazolones 5.

Compounds **4a-e** were prepared according to established literature procedures [15-17].

1-Phenylpyrazolidin-3-one (4a). The ¹H-NMR data is in agreement with literature. [15]

1-(4-Chlorophenyl)pyrazolidin-3-one (4b). The ¹H-NMR data is in agreement with literature. [15]

1-(4-Methoxyphenyl)pyrazolidin-3-one (4c). The ¹H-NMR data is in agreement with literature. [16]

5-Methyl-1-phenylpyrazolidin-3-one (4d). The ¹H-NMR data is in agreement with literature. [15]

1,5-Diphenylpyrazolidin-3-one (4e). The ¹H-NMR data is in agreement with literature. [17]

1-Phenyl-2*H*-pyrazolin-3-one (**5a**). Prepared from **1s** (58%). The ¹H-NMR data is in agreement with literature. [18]

1-(4-Chlorophenyl)-2*H*-pyrazolin-3-one (**5b**). Prepared from **1t** (63%). The ¹H-NMR data is in agreement with literature. [19]

1-(4-Methoxyphenyl)-2*H*-pyrazolin-3-one (**5c**). Prepared from **1u** (84%). The characterization data is in agreement with literature. [20]

5-Methyl-1-phenyl-2*H*-pyrazolin-3-one (**5d**). Prepared from 1v (30%). The ¹H-NMR data is in agreement with literature. [21]

1,5-Diphenyl-2*H*-pyrazolin-3-one (**5e**). Prepared from **1w** (20%). The ¹H-NMR data is in agreement with literature. [22]

5. 1 H and 13 C NMR spectra of novel compounds 1, 2 and 3.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

200 190 180 170 160 150 140 130 120

| - |
 | |
|---|------|------|------|------|------|------|------|------|------|------|--|

	ĺ			I	1	
			1			
	 	L				

200 190 180 170 160 150 130 120

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

200 190 180 170 160 150 140 130 120

MDPI

200 190 170 160 150 140 130

200 190

200 190 180 170 160 150 140 130 120

6. References

[1] M. P. Sibi, L. Venkatraman, M. Liu, C. P. Jasperse, A New Approach to Enantiocontrol and Enantioselectivity Amplification: Chiral Relay in Diels–Alder Reactions. *J. Am. Chem. Soc.* **2001**, *123*, 8444–8445.

[2] M. P. Sibi, L. M. Stanley, X. Nie, L. Venkatraman, M. Liu, C. P. Jasperse, The Role of Achiral Pyrazolidinone Templates in Enantioselective Diels–Alder Reactions: Scope, Limitations, and Conformational Insights. *J. Am. Chem. Soc.* **2007**, *129*, 395–405.

[3] A. Bongers, P. J. Moon, A. M. Beauchemin, Kinetic Resolution of Azomethine Imines by Brønsted Acid Catalyzed Enantioselective Reduction. *Angew. Chem. Int. Ed.* **2015**, *54*, 15516–15519.

[4] S. Adachi, N. Takeda, M. P. Sibi, Evaluation of Achiral Templates with Fluxional Brønsted Basic Substituents in Enantioselective Conjugate Additions. *Org. Lett.* **2014**, *16*, 6440–6443.

[5] A. Novak, M. Štefanič, U. Grošelj, M. Hrast, M. Kasunič, S. Gobec, B. Stanovnik, J. Svete, A Simple Synthesis of Polyfunctionalized 4-Aminopyrazolidin-3-ones as 'Aza-deoxa' Analogs of D-Cycloserine. *Helv. Chim. Acta* **2014**, *97*, 245–267.

[6] R. J. Fox, M. A. Schmidt, M. D. Eastgate, Strategy To Prepare 3-Bromo- and 3-Chloropyrazoles. *J. Org. Chem.* **2018**, *83*, 2830–2839.

[7] M. Schulz, G. West, Photochemische Reaktionen von Pyrazolidon-(3)-betainen. II. Synthese der β-Hydrazino-isovaleriansäure. *J. Prakt. Chem.* **1973**, *315*, 711–716. Photochemical reactions of 3-pyrazolidinone betaines. II. Synthesis of β-hydrazino isovaleric acid

[8] M. P. Sibi, D. Rane, L. M. Stanley, T. Soeta, Copper(II)-Catalyzed Exo and Enantioselective Cycloadditions of Azomethine Imines. *Org. Lett.* **2008**, *10*, 2971–2974.

[9] C. Turk, J. Svete, B. Stanovnik, L. Golič, S. G.-Grdadolnik, A. Golobič, L. Selič, Regioselective 1,3-Dipolar Cycloadditions of (1*Z*)-1-(Arylmethylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide Azomethine Imines to Acetylenic Dipolarophiles. *Helv. Chim. Acta* **2001**, *84*, 146–156.

[10] H. Kawai, A. Kusuda, S. Nakamura, M. Shiro, N. Shibata, Catalytic Enantioselective Trifluoromethylation of Azomethine Imines with Trimethyl(trifluoromethyl)silane. *Angew. Chem. Int. Ed.* **2009**, *48*, 6324–6327.

[11] Y. B. Koptelov, M. V. Sednev, R. R. Kostikov, (*Z*)-1-alkylidene- and 1-arylmethylidene-5,5dimethyl-3-oxopyrazolidin-1-ium-2-ides and their cycloaddition to *N*-arylmaleimides. *Russ. J. Org. Chem.* **2012**, *48*, 804–814.

[12] E. Pušavec Kirar, U. Grošelj, G. Mirri, F. Požgan, G. Strle, B. Štefane, V. Jovanovski, J. Svete, "Click" Chemistry: Application of Copper Metal in Cu-Catalyzed Azomethine Imine–Alkyne Cycloadditions. J. Org. Chem. **2016**, *81*, 5988-5997.

[13] E. Pušavec Kirar, U. Grošelj, A. Golobič, F. Požgan, S. Pusch, C. Weber, L. Andernach, B. Štefane, T. Opatz, J. Svete, Absolute Configuration Determination of 2,3-Dihydro-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazoles Using Chiroptical Methods at Different Wavelengths. *J. Org. Chem.* 2016, *81*, 11802-11812.

[14] J. Mirnik, E. P. Kirar, S. Ričko, U. Grošelj, A. Golobič, F. Požgan, B. Štefane, J.Svete, Cu⁰-catalysed 1,3-dipolar cycloadditions of α -amino acid derived *N*,*N*-cyclic azomethine imines to ynones. *Tetrahedron* **2017**, *73*, 3329–3337.

[15] J. Liu, S. Yang, R. Dong, Z. Jin, M. Wang, A Convenient One-Pot Synthesis of 1-Aryl-Substituted 4-Iodopyrazol-3-Ols via Aromatisation and Oxidative Iodination Reactions. *J. Chem. Res.* **2018**, 42, 24–27.

[16] C. Doebelin, M. Schmitt, C. Antheaume, J.-J. Bourguignon, F. Bihel, Nucleophilic Substitution of Azide Acting as a Pseudo Leaving Group: One-Step Synthesis of Various Aza Heterocycles. *J. Org. Chem.* **2013**, *78*, 11335–11341.

[17] C. Yu, S. Shen, L. Jiang, J. Li, Y. Lu, T. Lia, C. Yao, NHC-catalyzed regiodivergent syntheses of difunctionalized 3-pyrazolidinones from α -bromoenal and monosubstituted hydrazine. *Org. Biomol. Chem.* **2017**, *15*, 9149–9155.

[18] W. Sucrow, M. Slopianka, Pyrazolium-Betaine aus 1,1-Dialkylhydrazinen und Acetylencarbonsäureestern. *Chem. Ber.* **1978**, *111*, 780–790.

[19] Y. Li, R. Liu, Z. Yan, X. Zhang, H. Zhu, Synthesis, Crystal Structure and Fungicidal Activities of New Type Oxazolidinone-Based Strobilurin Analogues. *Bull. Korean Chem. Soc.* **2010**, *31*, 3341–3347.

[20] H. Koenig, N. Goetz, R. Kirstgen, B. Mueller, K. Oberdorf, Preparation of 1-(hetero)aryl-3hydroxypyrazoles. Patent DE4415484A1, 1995.

[21] S. Guillou, O. Nesmes, M. S. Ermolenko, Y. L. Janin, 4-Arylation of 3-alkoxypyrazoles. *Tetrahedron* **2009**, *65*, 3529–3535.

[22] D. L. Selwood, D. G. Brummell, J. Budworth, G. E. Burtin, R. O. Campbell, S. S. Chana, I. G. Charles, P. A. Fernandez, R. C. Glen, M. C. Goggin, A. J. Hobbs, M. R. Kling, Q. Liu, D. J. Madge, S. Meillerais, K. L. Powell, K. Reynolds, G. D. Spacey, J. N. Stables, M. A. Tatlock, K. A. Wheeler, G. Wishart, C.-K. Woo, Synthesis and Biological Evaluation of Novel Pyrazoles and Indazoles as Activators of the Nitric Oxide Receptor, Soluble Guanylate Cyclase. *J. Med. Chem.* **2001**, *44*, 78–93.