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Abstract: Glucose–carbon hybrids were synthetized with different carbon materials, namely carbon
nanotubes, reduced graphene oxide, carbon black and activated carbon by a hydrothermal treatment.
These carbon hybrids were used as Pt-supports (1 wt.%) for the furfural (FUR) hydroconversion in the
gas phase at mild operating conditions (i.e., P = 1 atm and T = 200 ◦C). The physicochemical properties
(porosity, surface chemistry, Pt-dispersion, etc.) were analyzed by different techniques. Glucose–
carbon hybrids presented apparent surface areas between 470–500 m2 g−1, a neutral character and a
good distribution of small Pt-nanoparticles, some large ones with octahedral geometry being also
formed. Catalytic results showed two main reaction pathways: (i) FUR hydrogenation to furfuryl
alcohol (FOL), and (ii) decarbonylation to furane (FU). The products distribution depended on the
reaction temperature, FOL or FU being mainly produced at low (120–140 ◦C) or high temperatures
(170–200 ◦C), respectively. At intermediate temperatures, tetrahydrofurfuryl alcohol was formed
by secondary FOL hydrogenation. FUR hydroconversion is a structure-sensitive reaction, rounded-
shape Pt-nanoparticles producing FU, while large octahedral Pt-particles favor the formation of
FOL. Pt-catalysts supported on glucose–carbon hybrids presented a better catalytic performance at
low temperature than the catalyst prepared on reference material, no catalyst deactivation being
identified after several hours on stream.

Keywords: activated carbon; carbon nanotubes; deactivation; decarbonylation; furan; furfural;
furfuryl alcohol; glucose; hydroconversion; Pt-catalysts

1. Introduction

Alternative feedstocks for chemical/pharmaceutical industries are progressively de-
manded to attend the increasing employ of chemicals and fuels properly, as well to si-
multaneously reduce the dependence of fossil fuels, i.e., coal and petroleum. Abundant
biomass is well-accepted as a sustainable alternative [1,2] for the transformation of poly-
meric lignocellulosic materials (composed of cellulose, hemicellulose and lignin) into
simpler molecules, which are suitable as raw materials in synthetic processes of valuable
products. Furfural (FUR; C5H4O2) is commonly obtained by fast pyrolysis of biomass or
acid-catalyzed hydrolysis of hemicellulose [3,4], and has been classified as one of the most
promising chemical platforms connecting biomass and value-added chemicals [5]. FUR is
a highly reactive molecule because of its two functionalities: the aldehyde group (C=O)
and the conjugated aromatic ring (furan ring). Most of the FUR produced is transformed
into furfuryl alcohol (FOL) by hydrogenation of the C=O group, although a vast list of
valuable products may be also obtained directly or indirectly from FUR [6,7] by different
processes, including tetrahydrofurfuryl alcohol (THFOL), 2-methylfuran (2-MFU), furan
(FU) or tetrahydrofuran (THF), among others. All of these chemicals have a high economic
and environmental impact for the production of green fuels, additives, lubricants, polymers
(e.g., polyester, polyurethane, polyamides), flavors, drugs, solvents and so on.

Catalysts 2021, 11, 49. https://doi.org/10.3390/catal11010049 https://www.mdpi.com/journal/catalysts

https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0002-0914-1139
https://orcid.org/0000-0001-7037-3417
https://orcid.org/0000-0002-2468-8407
https://doi.org/10.3390/catal11010049
https://doi.org/10.3390/catal11010049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/catal11010049
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/2073-4344/11/1/49?type=check_update&version=3


Catalysts 2021, 11, 49 2 of 16

The FUR transformation to value-added chemicals can be achieved in both liquid or
gas phases using a large variety of catalysts, including combinations of active metal phases,
supports and dopants, as well as several experimental conditions, which in turn determines
the product yield and distribution. The catalytic hydrogenation of FUR to FOL has been
traditionally studied using copper chromite catalysts [8], with a good FOL yield being
achieved. The two main drawbacks of this system are: (i) the high pressures (70–100 bar)
required, and (ii) the toxicity related to chromium species. The high selectivity of Cu-
catalysts is based on the fact that the FUR adsorption on the Cu-surface is preferentially
produced through the carbonyl group (configuration η1(O)), thus favoring the conversion
to FOL and the repulsion of the aromatic ring [9]. In contrast, the decarbonylation of FUR to
FU is industrially achieved using Pd catalysts [10]; however, deactivation may occur due to
the sintering and coke deposition [7]. In this case, decarbonylation is favored because FUR
is adsorbed on the Pd-surface with configuration η2(C,O) [7]. Sitthisa et al. pointed out that
Ni-based catalysts lead to the formation of linear compounds (e.g., butane, butanal and
butanol, among others) from furanic ring-opening reactions [11]. In other studies, the use of
promoters as alkali and alkali-earth metals [12], or bimetallic catalysts [13], have been used
to improve the selectivity to FOL or FU, respectively. An et al. [14] studied the influence of
Pt-particle size into mesoporous oxides during the FUR hydrogenation, small Pt-particles
favoring the decarbonylation, while Pt-particles larger than 7.1 nm yielded FOL as the
main product.

Biomass has been traditionally used as raw material for the production of porous
carbon materials for different applications; namely, adsorbents, molecular sieves, catalysts
or catalysts supports [15–18]. Compared to other typical supports, such as silica or alu-
mina, carbon materials are good candidates for developing FUR hydrogenation catalysts.
In this way, Nguyen-Huy et al. studied Pd-catalysts on different supports and concluded
that the material containing a carbon support (i.e., Pd/C) showed the highest conversion
and selectivity to THFOL, while Pd-catalysts containing silica or alumina (i.e., Pd/SiO2 or
Pd/Al2O3, respectively) rendered only the hydrogenation of the carbonyl group, i.e., to
FOL [19]. On the other hand, the catalytic performance of metals supported on carbon
materials is also directly related with the carbon microstructure [20]. Thus, Pd-catalysts on
carbon blacks (Pd/CB) demonstrated a high selectivity to FOL (99%) for the hydrogena-
tion of FUR in the liquid phase, while those supported on carbon nanotubes (Pd/CNT)
yielded THFOL at more severe experimental conditions [20]. Recently Stucchi et al. [21]
reported the use of an activated carbon (AC) obtained from birch sawdust to develop
bimetallic Pt-Mo/AC catalysts with a 10–40% of Mo and 1% of Pt for the hydrogenation
of FUR (at 150 ◦C and 3 bar of H2) using ethanol as solvent. The results showed that the
catalytic performance of the bimetallic Pt-Mo/AC catalysts was higher than that obtained
of the corresponding monometallic catalysts (Pt/AC and Mo/AC). The presence of Mo
increased the Pt-dispersion and distribution, improving the hydrogen spillover, and FUR
converted into furfuryl ethyl ether (FEE) with 99% selectivity by reaction of FUR with the
solvent [21]. Taylor et al. [22] studied Pt-Cu bimetallic catalysts for the hydrogenation of
FUR in liquid-phase, obtaining promising results compared to monometallic Pt catalysts.
Kosydar et al. [23] developed Pd/C catalysts for hydrogenation of FUR using nanostruc-
tured carbon supports prepared by hard-templating from SBA-15 or nanostructured SiO2,
as templates, and furfuryl alcohol or sucrose, as carbon sources. Pure and mesoporous
carbon materials obtained after removing the silica subtracts by fluorhydric acid treatment,
were oxidized with H2O2 or HNO3 to incorporate oxygenated surface groups (OSG). Hy-
drogenation of FUR was carried out into 2-propanol at 35 ◦C and 6 bar H2, FOL and THFOL
being obtained as main products [23]. The oxidation of the carbon supports decreased the
activity of Pd-nanoparticles and modified the product distribution, favoring the hydro-
genation of the aromatic ring and avoiding other secondary reactions. Similar results were
also reported by other authors using different types of oxidized carbon supports [24,25],
the presence of OSG into Pt/Pd catalysts leading to a decrease of their activity and a
higher selectivity to THFOL. The surface chemistry of carbon materials can be modified by
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inducing different types of surface groups. For instance, nitrogen-containing functionalities
are more electronegative than C-atoms, modifying the electronic structure with enhanced
π-binding abilities and increased basicity [26]. N-doping of carbon support promotes the
catalytic performance of Pd/C catalysts towards FUR hydrogenation, because of the elec-
tronic activation of Pd-nanoparticles [27]. For the case of Ni/C catalysts, the optimization
of carbon supports by N-doping with melamine allowed to convert selectively FUR to
THFOL in propanol solutions, due to the synergistic effect between active metal phases and
suitable N-functionalities [28]. Recently, the mechanism of direct decarbonylation of FUR
to FU over Pt-graphene has been investigated by density functional theory (DFT), the rate
determining step being the FU formation step on the Pt site of graphene structure [29].

An interesting and environmental-friendly approach to obtain carbon materials is
by hydrothermal carbonization (HTC) of monosaccharides solutions [30]. This procedure
allows obtaining nanostructured carbons with spherical shapes at low temperatures and
without additional chemicals, scaffold materials or surfactants, although an activation
process can be required to enhance the material porosity. Moreover, the surface chemistry
of carbon spheres can also be tailored by introducing different species during the one-pot
HTC synthesis. Thus, carbon spheres from glucose can be enriched with different het-
eroatoms during the synthesis using acrylic acid [31] and urea or aminourea [32,33] for
generating carboxylic groups or N-doping, respectively. Functionalities were also intro-
duced by a specific HTC treatment [34] followed by sulfonation treatment yielding acidic
functionalized carbon spheres, which were used as self-catalysts for cellulose hydrolysis
and fructose dehydration reactions [34]. The aim of this manuscript was to prepare low
loading Pt-catalysts on carbon spheres obtained from glucose by HTC synthesis for conver-
sion of FUR. Glucose–carbon hybrids were synthesized using different carbon materials,
including CB, CNT, AC and reduced graphene oxide (rGO). The influence of the type of
carbon material on the HTC process and the physicochemical properties of the resulting
materials is presented. Pt-catalysts were prepared by incipient wetness impregnation on
the corresponding glucose–carbon hybrids, and their activity and selectivity evaluated
for the continuous conversion of FUR in the gas phase using fixed bed reactors at mild
operating conditions (pressure and temperature).

2. Results and Discussion
2.1. Characterization of the Carbon Supports and Pt/Carbon Catalysts

The morphology of the reference material prepared from only glucose (i.e., CS) and
glucose–carbon hybrids (i.e., CS-CNT, CS-rGO, CS-CB, CS-AC) was maintained after ther-
mal carbonization, as observed in Figure 1a–f. The hydrothermal treatment of only glucose
(i.e., CS) leads to a carbon material formed by microspheres (Figure 1a). In the case of
glucose–carbon hybrids prepared by doping with different types of carbon materials,
a spherical morphology was also predominantly obtained (Figure 1b–f). This fact can
be attributed to the high amount of glucose used in the preparation in comparison with
the carbon dopant (i.e., 5 wt.%), this low loading of dopant being used to avoid its sedi-
mentation inside the autoclave during the synthesis. On the other hand, the size of the
microspheres depended on the type of carbon material employed. Thus, the CS material
(without any dopant) presented the narrowest distribution of spheres with particle sizes
around 250–300 nm (Figure 1a), while an increase of the sphere size was observed for
all glucose–carbon hybrids, the largest spheres of around 700—800 nm being formed for
CS-AC (Figure 1f). The spheres size decreased as follows: CS < CS-CNT < CS-CB < CS-
rGO < CS-AC. In the case of CS-CNT and CS-rGO samples, a coupled structure of carbon
nanotubes or graphene oxide flakes with spherical particles was obtained (Figure 1c,d,
respectively).
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Figure 1. Morphology of the pure glucose and glucose–carbon hybrids: (a) CS, (b,c) CS-CNT, (d) CS-rGO, (e) CS-CB and
(f) CS-AC.

Although the morphology of materials was defined during the HTC process, the ap-
parent surface area (SBET) of the initial samples was only around 20 m2 g−1, and thereby,
a subsequent thermal carbonization was required to develop the carbon porosity. The tex-
tural properties of the carbon supports are summarized in Table 1 and the corresponding
N2 adsorption-desorption isotherms at -196 ◦C are shown in Figure 2. The thermal car-
bonization significantly increased the porosity of the carbon supports, SBET values being
increased up to 541 m2 g−1 for the CS sample (Table 1). Interestingly, the carbon doping
led to a SBET reduction of ca. 12% compared to the reference material (CS) and regardless
of the type of carbon material used in the hybrids (e.g., 541 and 473 m2 g−1 for CS and
CS-CNT, respectively). These results can be related with the growing size of the carbon
spheres, which progressively enlarged the mesoporosity transforming the mesopores into
macropores, since only a clear increase in the mesopore volume (Vmeso) was observed after
doping with CNT (i.e., 0.14 and 0.21 cm3 g−1 for CS and CS-CNT, respectively). This fact
was pointed out by the change in the shape of the N2 adsorption isotherms (Figure 2).
The slope of these isotherms significantly decreased after carbon doping, with an increase
of N2 adsorption at high relative pressure (P/P0), indicating the presence of larger pores
and a decrease on the narrowest mesoporosity range. Regarding the microporosity of the
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glucose–carbon hybrids, the micropore volume (Vmicro) also slightly decreased compared
to CS (e.g., 0.22 and 0.19 cm3 g−1 for CS and CS-CNT, respectively), although the mean
micropore width (L0) becomes narrower (e.g., L0 = 1.3 and 0.8 nm for CS and CS-CNT,
respectively), leading to an increase of the surface associated to this porosity range (e.g.,
Smicro = 323 and 439 m2 g−1 for CS and CS-CNT, respectively), in contrast to the decrease
of SBET observed after carbon doping.

Table 1. Textural parameters and pHPZC for the different carbon supports.

Sample SBET Smicro Vmicro L0 Vmeso pHPZC(m2 g−1) (m2 g−1) (cm3 g−1) (nm) (cm3 g−1)

CS 541 323 0.22 1.3 0.14 7.5
CS-CNT 473 439 0.19 0.8 0.21 7.6
CS-rGO 478 504 0.19 0.7 0.15 7.3
CS-CB 473 433 0.19 0.9 0.08 7.0
CS-AC 496 442 0.20 0.9 0.05 7.1

SBET = apparent surface area; Smicro = micropore surface area; Vmicro = micropore volume; L0 = mean micropore
width; Vmeso = mesopore volume; pHPZC = point of the zero charge.
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Figure 2. N2 adsorption-isotherms obtained at −196 ◦C for pure glucose and glucose–carbon hybrids.

Raw materials obtained from glucose by only HTC showed an acidic character with
point of zero charge (pHPZC) values of ca. 3.4. The thermal carbonization performed on
all samples not only led to an enhanced porosity, but also to a strong reduction of the
oxygenated functionalities, mainly those evolved as CO and CO2. Thus, the release of
oxygenated surface groups was pointed out by the lower intensity of FTIR bands placed in
the region of 1200 cm−1 (C–O bonds) and 1700 cm−1 (C=O bonds) for carbonized samples
(Figure 3) [35,36]. Therefore, neutral pHPZC values in the range 7.0–7.6 were determined
for glucose–carbon hybrids after thermal carbonization (Table 1).

The nature and dispersion of Pt-nanoparticles in the Pt/carbon catalysts were de-
termined by both X-ray powder diffraction (XRD) and transmission electron microscopy
(TEM) analysis (Figures 4 and 5, respectively). All XRD patterns showed a wide band at
around 23◦ corresponding to the (002) lattice of graphite (JCPDS Card 89-8487), showing
that carbon supports present a certain structural ordering in spite of being mainly amor-
phous materials. Regarding the oxidation state of Pt-phase (Figure 4), only Pt0 was detected
in the catalysts after reduction, as pointed out by XRD peaks placed at 2θ = 39.7◦, 46.2◦,
67.2◦ and 81.0◦ associated to the (111), (200), (220) and (311) crystal planes of Pt0 (JCPDS
Card 04-0802). The most intense diffraction peaks were observed for Pt/CS-AC.

TEM micrographs of the Pt/carbon catalysts are shown in Figure 5. The images show a
good distribution of Pt-nanoparticles deposited on the carbon surfaces taking into account
the low metal loading used (Figure 5a,d,g,j,m). Furthermore, large Pt-particles responsible
for XRD peaks in Figure 4 were formed together with a high concentration of very small
Pt-nanoparticles (sizes around 1–3 nm), corroborating a Pt-heterogeneous dispersion on the
carbon supports. In general, small Pt-nanoparticles had rounded shapes, while the largest
Pt-crystallites tended to present an octahedral configuration (e.g., Figure 5b,c). On the other
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hand, Pt-nanoparticles were deposited not only on the carbon spheres formed from glucose
(Figure 5 b,e,h,k,n), but also on the dopant structure, as clearly pointed out for Pt/CS-CNT
and Pt/CS-rGO (Figure 5f,i, respectively). Small Pt-nanoparticles are concentrated on the
carbon spheres, while the formation of larger particles is favored on the interstitial voids. In
this context, the highest concentration of large Pt-particles exceeding 50 nm was observed
on the Pt/CS-AC catalyst (Figure 5n).
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Figure 3. FTIR-spectra before and after thermal carbonization of some selected samples.
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The average Pt-particle size (dPt) was determined by applying the Scherrer equation
to XRD data and analyzing TEM micrographs with Image J software. The results are
summarized in Table 2. As previously discussed, the formation of two types of Pt-particles
was obtained on carbon supports: (i) very small nanoparticles with sizes around 1–3 nm
and highly concentrated on the carbon spheres, which are unable to produce XRD peaks;
and (ii) large particles formed in the carbon interstices, some of them exceeding 50 nm
as for Pt/CS-AC, but statistically in a short number. This heterogeneous distribution
leads to the differences of Pt-particle sizes determined by both techniques, in which dPt
(XRD) was higher than dPt (TEM), because the main limitation of XRD is related to the
progressive line broadening as the crystallite size decreases, which typically avoids the
detection of particle size below 4 nm [37]. HRTEM analysis allows an accurate observation
of very small nanoparticles. Therefore, the average Pt-particle size obtained by XRD was
larger because small particles were not quantified with this technique. In general, Pt-
catalysts supported on glucose–carbon hybrids seem to favor smaller Pt-particle sizes than
that obtained on the reference material, i.e., Pt-CS. In a previous work, we described the
influence of the porosity and surface chemistry of carbon aerogels on the Pt-dispersion.
Thus, basic materials led to very small Pt-particle sizes, while a high external surface area
(or mesoporous volume) allowed obtaining also Pt-particles around 2–3 nm for acidic
carbons [38]. Since glucose–carbon hybrids presented neutral pHPZC values, the porosity,
and in particular, the mesoporous volume should be the factor influencing the Pt-dispersion,
which was high enough to achieve good Pt-distributions on the carbon surface.

Table 2. Pt-particle size (dPt) estimated by X-ray powder diffraction (XRD) and transmission electron
microscopy (TEM) analysis.

Catalyst dPt (XRD) dPt (TEM)
(nm) (nm)

Pt/CS 14.9 4.5
Pt/CS-CNT 12.7 3.5
Pt/CS-rGO 11.7 5.5
Pt/CS-CB 13.6 4.1
Pt/CS-AC 15.9 3.3

2.2. Catalytic Performance

The performance of all Pt-catalysts was studied in the hydroconversion (Scheme 1) of
FUR with time on stream (TOS) at different temperatures and using the same amount of
catalyst until reaching the stationary state (stable conversion values). As an example, Figure
6a,b shows the conversion of FUR and selectivity to FOL over Pt/CS-CNT, respectively.
The results showed that the conversion was maintained through the time of reaction
without significant changes to the product distribution (selectivity to FOL), indicating the
absence of catalyst deactivation. Results showed in Figure 6 are obtained progressively
increasing reaction temperature, but additional tests were randomly carried out repeating
the temperature previously checked to analyze the possible catalyst deactivation, and the
results were always comparable to those previously obtained. Similar results were obtained
for the other Pt/carbon catalysts (results not shown).

After reaching the stationary state, the performance of the different Pt-catalysts in the
hydroconversion of FUR was compared as a function of the reaction temperature (Figure 7).
In general, the conversion of FUR increased linearly at high temperatures ranging from 140
to 200 ◦C (Figure 7a). Nevertheless, the selectivity to FOL (SFOL) decreased very quickly
at low temperatures (120–140 ◦C) with increasing conversion (Figure 7b). In general, all
Pt-catalysts supported on glucose–carbon hybrids showed a higher SFOL than that obtained
for the reference material (i.e., Pt/CS) regardless of the reaction temperature. Regarding the
conversion of FUR, only Pt-catalysts prepared on CNT, a mesoporous material, presented a
clear better performance than Pt/Cs, since Pt/CS-rGO, Pt/CS-CB and Pt/CS-AC presented
intermediate or worse conversion, respectively. On the other hand, the catalytic results
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indicate larger differences between the catalysts at low reaction temperatures (Figure 7).
Thus, the conversion for the different catalysts tends to conversion values around 30–35%,
while SFOL decreases down to ca. 25% at 200 ◦C. Overall, the most active Pt-catalyst was
that obtained after CNT doping (Pt/CS-CNT).
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Scheme 1. Reactions and products involved in the hydroconversion of furfural (FUR) over Pt/carbon
catalysts. The reaction products included furan (FU) from FUR decarbonylation and furfuryl alcohol
(FOL) and tetrahydrofurfuryl alcohol (THFOL) from hydrogenation of the carbonyl group and/or
aromatic ring.
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Figure 6. Evolution of the catalytic performance as a function of time on stream over the Pt-catalyst supported on the
glucose-carbon nanotube hybrid (Pt/CS-CNT): (a) conversion of FUR and (b) selectivity to FOL.

Figure 8 shows the complete products distribution over all Pt-catalysts. FUR decar-
bonylation to FU and hydrogenation to FOL or THFOL were the only processes identified
(Scheme 1). In general, FOL was the predominant product at low reaction temperatures
(120–140 ◦C), while the formation of THFOL was favored at temperatures between 140 and
170 ◦C, and FU was always produced at temperatures ranging from 170 to 200 ◦C. Previous
works [7,12,14,39,40] reported that the FUR decarbonylation is thermodynamically favored
regarding the hydrogenation to FOL; however, hydrogenation is kinetically preferred.
Thus, FOL is usually the main product obtained at low temperatures in many catalytic
systems, while the formation of FU is favored at high reaction temperatures.

Both activity and product distribution have been also associated with the Pt-particle
size [14,39]. In this context, small Pt-nanoparticles favored the decarbonylation reaction
path, while the hydrogenation to FOL is achieved on large Pt-particles with dense (111)
layers or octahedral morphology. It is noteworthy that the product distribution depends
on the FUR adsorption mode on the catalysts surface. Most catalysts used in the gas
phase for the hydrogenation of FUR to FOL are based on Cu and SiO2, as active phase and
support, respectively [7], although there is still a certain controversy regarding the nature
of active sites, namely Cu+ or Cu0. The high FOL yield obtained is due to the preferential
FUR adsorption carried out using the electrons of the oxygen of the aldehyde group; thus,
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the FUR molecule is positioned perpendicularly to the catalysts surface (configuration
oxygen (η1(O)), avoiding the repulsions of aromatic ring with the Cu 3d band of the catalyst
surface [9].
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Figure 7. Catalytic performance as a function of reaction temperature over all Pt/carbon catalysts:
(a) conversion of FUR and (b) selectivity to FOL.

This repulsion between the aromatic ring and the catalyst surface does not occur
with metals such as Pt, Pd or Ni, and thereby, the FUR adsorption mode changes, the
molecule allowing to be adsorbed parallelly to the catalyst surface (configuration (η2(C,O)).
This configuration together with the formation of FOL may also evolve other reaction path-
ways, namely dehydration to 2-MFU or decarbonylation to FU [7]. Nakagawa et al. [41]
studied the direct hydrogenation of FUR to THFOL on Ni/SiO2 catalysts, suggesting that
the reaction occurred in two steps, FOL being the intermediary product. They proposed
that strongly chemisorbed FUR reacted with adsorbed hydrogen and after that, the hy-
drogenation of FOL to THFOL took place (Scheme 1). The FUR adsorption is stronger
than that of FOL and the hydrogenation of FUR to FOL is also less-structure sensitive, i.e.,
independent of the Ni-particle size. However, the hydrogenation of FOL to THFOL is
favored on small Ni-nanoparticles. Tsatsos et al. [42] reported the electronic interactions
of FUR with Pt(111), concluding that FUR chemisorbs nondissociatively on Pt(111) at low
temperatures (175 K), and the hybridization of the aromatic ring π orbitals is involved with
the Pt d band. At higher temperatures, the decomposition of the adsorbed FUR from clean
Pt(111) leads to the decarbonylation to FU, CO, H2, and graphite-like species. In addition,
the interaction of the metal with FUR influences the yield and product distribution, a strong
interaction between the metal surface and FUR ring favoring decomposition products,
while FU production is mostly obtained with weak ring interaction [43].

These conclusions are in agreement with our catalytic results. In a first step, FUR might
be strongly adsorbed on the Pt-surface mainly producing FOL over the most active catalytic
sites at low temperature. The increase of the reaction temperature leads to the progressive
activation of more active sites, which enhances the hydrogenation rate and that FOL is
transformed into THFOL. Thus, SFOL decreases and STHFOL increases until temperatures of
ca. 170 ◦C. These results indicate that the hydrogenation rate decreased favoring the decar-
bonylation reaction path, which is in accordance with the thermodynamic-kinetic balance
previously described [7,12,14,39]. Therefore, THFOL is considered a secondary product,
in which the formation is favored in the temperature range where FUR hydrogenation is
preferential and thereafter, decreased at the expense of decarbonylation.

It is noteworthy that catalysts are able to operate under a continuous flow system in
the absence of any solvent and catalyst deactivation, being active at temperatures lower
than those typically reported in the literature. The advantages of these continuous systems
were recently reviewed [44], including a better control of the experimental conditions,
simplicity, easy-scaling, product separation, catalyst recovering or regeneration, among
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others. The different activities of materials achieved at low temperatures significantly
decreased with increasing reaction temperature because of the activation of a large amount
of very small Pt-particles, which produced FU [39]. Furthermore, the results showed that
experimental conditions can be fitted in order to obtain the desired product, i.e., FOL at
low temperature, THFOL at intermediate and FU at temperatures higher than 170 ◦C.
Additional experiments will be required to fit the characteristics of the catalyst (e.g., dopant
concentration, HTC/thermal carbonization or activation variables), as well as the operating
conditions, such as contact time, FUR/H2 ratio, total flow or higher temperatures, which
would allow enhancing the catalytic performance and the specificity of the reaction.
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Figure 8. Products distribution obtained as a function of reaction temperature over all Pt/carbon
catalysts: (a) Pt/CS, (b) Pt/CS-CNT, (c) Pt/CS-rGO, (d) Pt/CS-CB and (e) Pt/CS-AC.

Overall, the catalysts prepared presented good activity taking into account our ex-
perimental conditions and the low metal loading used when compared to other materials
reported in the literature (Table 3).
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Table 3. Hydrogenation of FUR over different Pt-catalysts supported on carbon materials.

Catalyst Operating Conditions Conversion Selectivity
Ref.(%) (%)

1%Pt-40%Mo/AC
150 ◦C, 3 bar H2, EtOH

~80% at 2 h
~80% FEE [21]1%Pt/AC ~75% at 2 h

0.5%Pt/CNT 130 ◦C, 30 bar H2, EtOH 64.5% at 5 h ~55% FDA [24]
5%Pt/AC 100 ◦C, 10 bar H2, water 99% at 4 h 99% FOL [45]
10%Pt/CB 180 ◦C, 1 bar H2, 1-propanol 80.7% at 10 min g/g 49.4% FU [46]
5%Pt/C * 25 ◦C, 10 bar H2, water ~50% at 5 h ~95% FOL [47]

5%Pt/C3N4 100 ◦C, 10 bar H2, water 60.9% at 5 h >99% FOL [48]
3%Pt/AC 35 ◦C, 20 bar H2, water 99% at 12 h 89% FOL [49]

Pt/C 150 ◦C, 5 bar H2, 1,4-dioxane ~39.3% at 6 h ~89% FOL [50]
5%Pt/C *

140 ◦C, 60 bar H2, octane
~10% at 3 h ~55% FOL

[51]3%Pt/C ~58% at 3 h ~50% THFOL
1%Pt/CS

200 ◦C, 1 bar, 40 cm3 min−1 H2
32% - This

work1%Pt/CS-CNT 37% 47% FU

AC = activated carbon; CNT = carbon nanotubes; CB = carbon black; C * = commercial catalyst; FU = furan; FEE= furfuryl ethyl ether; FDA
= 2-furaldehyde diethyl acetal; FOL = furfuryl alcohol; THFOL = tetrahydrofurfuryl alcohol.

3. Materials and Methods
3.1. Preparation of Glucose–Carbon Hybrids and Pt/Carbon Catalysts

The synthesis of the glucose–carbon hybrid was carried out by following a hydrother-
mal method adapted from elsewhere [30]. Briefly, a certain amount (5 wt.%) of a carbon
material, namely CNT, rGO, AC or CB, was added to an aqueous solution of 0.3 M glucose
and sonicated for 30 min to yield a homogeneous suspension. The above mixture was
transferred into a polytetrafluoroethylene (PTFE) vessel and positioned in a stainless-steel
autoclave (Parr Instruments, Moline, IL, USA Mod. 4748), which was sealed and placed in
an oven at 190 ◦C for 8h for the HTC process to take place. The resulting glucose–carbon
hybrids were filtered and washed with distilled water, ethanol and acetone to remove pos-
sible oligosaccharides or other macromolecules formed from glucose during HTC. Finally,
the materials were carbonized using a horizontal tubular furnace at 800 ◦C under 150 cm3

min−1 N2 flow for 3 h. The material hybrids were labeled as CS-X, where “X” refers to
the carbon material added during the synthesis, i.e., CNT, rGO, CB or AC. Furthermore,
a reference material, labeled as CS, was prepared following the same procedure but without
addition of any carbon material. Pt-catalysts with a 1 wt.% of metal loading were prepared
by incipient wetness impregnation on the carbon supports using a Pt(NH3)4(NO3)2 aque-
ous solution. The catalysts were dried in an oven at 110 ◦C and treated at 400 ◦C under
60 cm3 min−1 H2 flow for 2h prior characterization or reaction. The catalysts were denoted
by adding “Pt” to the carbon support, i.e., Pt/CS, Pt/CS-CNT, Pt/CS-rGO, Pt/CS-CB and
PT/CS-AC.

3.2. Materials Characterisation

Textural characterization of materials was carried out by physical adsorption of N2 at
−196 ◦C using a Quadrasorb SI (Quantachrome, Boston Beach, FL, USA). The apparent sur-
face area (SBET) was calculated applying the BET equation [52] to N2 adsorption isotherms,
while Dubinin–Radushkevich and Stoeckli equations [53,54] were used to determine the
micropore volume (Vmicro), the micropore surface area (Smicro) and the mean micropore
width (L0). The Barrett, Joyner, and Halenda (BJH) method [55] was applied to the des-
orption branch of the N2 adsorption isotherms to obtain the pore size distribution (PSD)
and the mesopore volume (Vmeso). The acidity of the samples was evaluated by measuring
the point of zero charge (pHPZC) [35]. The morphology of the supports was examined by
scanning electron microscopy (SEM) using an AURIGA (FIB-FESEM) microscope from
Carl Zeiss SMT (Oberkochen, Germany) equipped with an EDAX (Oxford Instruments,
Abingdon, UK) microanalysis system. The Pt-particle size (dPt) was estimated from trans-
mission electron microscopy (TEM) using an Titan G2 60-300 microscope (FEI, Hillsboro,
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OR, USA) equipped with a high brightness electron gun (X-FEG) operated at 300 kV and
a Cs image corrector (CEOS). FTIR spectra for carbon supports were recorded with a
Nicolet 20SXB spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). X-ray powder
diffraction (XRD) patterns were recorded using a Bruker D8 Advance diffractometer with a
Cu Kα radiation source (Bruker, Rivas-Vaciamadrid, Spain). JCPDS files were searched to
assign the observed diffraction lines, and the average crystal size was determined using
the Scherrer equation.

3.3. Catalytic Performance and Products Analysis

Hydrogenation reactions were carried out in the gas phase and at atmospheric pres-
sure using a fixed bed reactor equipped with a thermocouple located close to the catalyst
for an accurate temperature control. After in-situ reduction, 0.1 g of the selected catalyst
was placed into the reactor and temperature and flows were fitted to the selected exper-
imental conditions. The reactant consisted in 40 cm3 min−1 of H2 flow controlled by an
electronic flowmeter and saturated with FUR vapor obtained by bubbling the total flow
through a saturator filled with FUR and placed into a thermostatic water bath at 25 ◦C
(Pvapor, FUR = 2.21 Torr). The concentration of FUR was monitored before and during the
experiments, as well as the reaction products were determined by on-line gas chromatogra-
phy (GC) using a gas chromatograph (Varian, model Chrompack CP-3800, Palo Alto, CA,
USA) equipped with a flame ionization detector (FID) and a Carbopack 80/120 column
(Sigma-Aldrich, St. Louis, MO, USA). The products were identified and quantified by
previous calibration with appropriate standards. The reaction was performed at different
temperatures ranging from 120 to 200 ◦C. Conversion and selectivity values were calculated
by Equations (1) and (2), according the fraction of reactant transformed or the amount of
each product formed, respectively, and allowing the calculation of the carbon balance along
the reaction.

Conversion (%) =
[FUR]i − [FUR] f

[FUR]i
× 100 (1)

Selectivity to X(%) =
[X] f

[FUR]i − [FUR] f
× 100 (2)

where [FUR]i and [FUR]f are the initial and final concentrations of FUR, respectively and
[X]f is the final concentration of the “X” formed product.

4. Conclusions

The conversion of glucose into a carbon biochar structured by microspheres was
studied by the hydrothermal carbonization (HTC) process. Different carbon materials were
used as nucleation centers to lead glucose–carbon hybrids. A dual structure was obtained
for the hybris with sphere sizes depending on the nature of the dopant. An additional
thermal carbonization was required to develop the porous texture. Doping led to glucose–
carbon hybrids with a narrower microporosity and a neutral surface chemistry (pHPZC ~ 7),
in comparison with the reference material synthetized with only glucose.

Pt-catalysts with low metal loading (1 wt.%) were prepared by incipient wetness
impregnation on the carbon–glucose hybrids, a good dispersion of small Pt-nanoparticles
being achieved on both carbon spheres and the corresponding dopant. Pt-particles pos-
sessed a rounded shape, but some large particles with octahedral geometry were also
formed. In general, Pt-particle size for hybrid supports was smaller than that for the
reference material.

FUR hydroconversion in the gas phase was studied below 200 ◦C and P = 1 atm.
The process is strongly dependent on the reaction temperature. Thus, the main reaction
pathway was the FUR hydrogenation, with FOL being produced at a low temperature
(~120 ◦C) and THFOL at an intermediate temperature (~160 ◦C), while decarbonylation
to FU was favored at higher temperatures. In general, Pt-catalysts supported on glucose–
carbon hybrids enhanced the activity of the FUR hydrogenation and selectivity to FOL at
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low temperature. The lack of acidic sites on the catalysts and the low reaction tempera-
ture avoided the coke formation and the particle sintering, respectively, with no catalyst
deactivation being detected.
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