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Abstract: This study demonstrates the use of a photoelectrochemical device comprising earth-
abundant hematite photoanode for the oxidation of 5-hydroxymethylfurfural (5-HMF), a versatile
bio-based platform chemical, under ambient conditions in the presence of an electron mediator. The
results obtained in this study showed that the hematite photoanode, upon doping with fluorine, can
oxidize water even at lower pH (4.5 and 9.0). For 5-HMF oxidation, three different pH conditions were
investigated, and complete oxidation to 2,5-furandicarboxylic acid (FDCA) via 5-hydroxymethyl-2-
furancarboxylic acid (HMFCA) was achieved at pH above 12. At lower pH, the oxidation followed
another route via 2,5-diformylfuran (DFF), yielding 5-formyl-2-furancarboxylic acid (FFCA) as the
main product. Using the oxidized intermediates as substrates showed DFF to be most efficiently
oxidized to FDCA. We also show that, at pH 4.5, the addition of the laccase enzyme promoted the
oxidation of 5-HMF to FFCA.

Keywords: photoelectrochemical cell; earth-abundant hematite photoanode; bio-based chemicals;
5-HMF oxidation; 2,5-furandicarboxylic acid

1. Introduction

The tremendous growth in the chemical manufacturing industry during the past
century has relied heavily on exploiting fossil resources to provide both carbon for the
chemicals and materials as well as energy for the processes. The chemical manufacturing
contributes nearly 20% of the global greenhouse gas emissions (amounting to 880 Mt CO2
equivalent in 2018) [1,2]. Replacing fossil energy with a renewable alternative such as solar
energy and using biomass for providing renewable carbon provides a sustainable route for
a fossil-free chemical industry of the future [3–5]. In general, high energetic compounds are
an excellent way to store harvested solar energy without the drawback of battery technology
and are the basic idea behind photoelectrochemical cells (PECs) [3]. In a typical PEC
operation, water is oxidized (2H2O→ O2 + 4H+) at the semiconductor photoanode, while
the protons liberated in this reaction migrate to the cathode to conduct a reduction reaction
(4H+ + 4e− → 2H2) [6,7]. The produced H2 is the significant energetic product stored for
further use, and the second product, O2, is of low industrial value [3,5]. An alternative
oxidation reaction that produces instead high-value chemicals at the photoanode [8] could
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significantly increase the fraction of stored energy as well as the efficiency of the system.
The design criteria of such photoelectrodes are earth-abundant materials such as Si [9,10],
Fe2O3 [11], CuO2 [12], or BiVO4 [13] that further reduce the cost and increase the scalability
of the system, hence improving the cost–benefit ratio.

The reaction that has attracted considerable interest to replace water oxidation (O2
production) in recent years is the oxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-
furandicarboxylic acid (FDCA). The U.S. Department of Energy (DOE) has ranked 5-HMF
and FDCA among the top value-added biomass-based chemicals [14]. While 5-HMF con-
stitutes an essential platform for a large number of chemicals, including fuels, solvents,
and polymer building blocks [15], FDCA is regarded as a sustainable alternative to tereph-
thalic acid in the production of polyester polyethylene 2,5-furandicarboxylate (PEF) with
better thermomechanical and barrier properties than polyethylene terephthalate (PET) [16].
FDCA is produced from 5-HMF through three oxidation steps, which can take two different
routes, as shown in Scheme 1. Oxidation of 5-HMF has been reported using chemical [17,18],
biocatalytic [19], electrochemical [20], or photoelectrochemical catalysis [5].

Scheme 1. Two possible pathways for oxidation of 5-HMF. The intermediates produced during
the oxidation are as follows: 2,5-diformylfuran (DFF), 5-hydroxymethyl-2-furan-carboxylic acid
(HMFCA), and 5-formyl-2-furoic acid (FFCA).

Earlier reports on the electrochemical oxidation of 5-HMF have indicated the need
for large electroactive surfaces and high catalyst loadings to obtain high reaction rates
and selective formation of FDCA [20]. A photoelectrochemical (PEC) system that utilizes
solar energy for oxidation can be one of the most lucrative and clean options [21,22].
Photoinduced electron-hole pairs are generated at the valence band of the photoanode, and
while the electrons are transferred to the cathode, the holes can be utilized at the anode
for the oxidation reaction [3]. In the past few years, various studies using earth-abundant
photoelectrodes/catalysts for the oxidation of 5-HMF have been reported using varying
illumination intensities and varying 5-HMF concentrations [5,19,23]. Moreover, most of
these systems have been operated at elevated temperatures. For the practical application
of a system driven by solar light, it needs to work at a maximum of 100 mW/cm2, which is
the power density of a typical solar illumination at airmass filter of 1.5 G observed on the
Earth [24]. Moreover, using as high a 5-HMF concentration as possible decreases the cost of
product recovery from the reaction. Herein, we report the use of earth-abundant hematite
photoanode for the PEC conversion of 5-HMF under ambient conditions of temperature
(21 ◦C) and pressure, as well as different pH values.

2. Results and Discussion
2.1. Photolectrochemical Water Oxidation Using Hematite Nanorods

The (photo-)electrochemical oxidation is typically performed under alkaline condi-
tions at which 5-HMF is prone to degradation into humin products [25]. On the other
hand, the hematite surface is spontaneously corroded by the protons in the electrolyte in
acidic or neutral conditions [26]. Thus, we tested the hematite photoanode performance
at three different pH conditions (4.5, 9.0, and 12.5) first for water oxidation followed by
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5-HMF oxidation. The hematite photoanode was synthesized on the conductive fluo-
rine tin oxide (FTO) substrate to yield FTO/α-Fe2O3 following the method reported by
Vayssieres et al. [27]. The FTO/α-Fe2O3 (bare hematite) was further modified by soaking
in the fluoride-rich iron-oxide electrolyte (1 mM NH4F in 0.15 M FeCl3) to yield fluorine-
doped FTO/α-Fe2O3/FeOOH (modified hematite) photoelectrode (see the Experimental
section for detailed synthesis method). The morphological characterization (X-ray diffrac-
tion and scanning electron micrograph) of the photoelectrode is presented in Figure S1. The
XRD (Figure S1a) for the bare and modified hematite overlaps for most phases except for
the presence of a small distinctive peak at 23.8 deg, indicating the (110) phase of FeOOH.
Figure S1b,c show the planar top view of the bare and modified hematite photoanode
wherein the modified hematite shows a thin film formed on top of bare hematite.

The photoelectrode was placed in a photoelectrochemical cell. The net photocurrent
density (photocurrent-dark current) Jph was recorded at 1.23 VRHE (voltage vs. reversible
hydrogen electrode) for the bare hematite photoelectrode at pH 4.5, 9.0, and 12.5, giving
0.05, 0.1, and 0.48 mA/cm2, respectively (Figure 1 dark gray color bar). The respective
current–potential curves are shown in Figure S2a,b. Upon doping with fluorine, the Jph at
1.23 VRHE for the modified hematite photoelectrode increased significantly to 0.1, 0.16, and
1.18 mA/cm2 at pH 4.5, 9.0, and 12.5, respectively (Figure 1 wine color bar), indicating the
PEC performance of the α-Fe2O3 photoanode to be enhanced when functionalized with
F-doped FeOOH. The effect is attributed to the reduced recombination losses at the surface
of the α-Fe2O3 nanorods and enhanced charge transfer through the FeOOH, consistent
with recent reports on F-doped hematite for water oxidation [28,29]. Thus, the F-doped
FeOOH avoids the corrosion of the hematite electrode surface and enhances charge transfer
even in mildly acidic electrolytes.

Figure 1. Net photocurrent responses for bare and modified hematite photoanodes for water oxida-
tion at 1.23 VRHE.

2.2. Photolectrochemical 5-HMF Oxidation

Subsequently, we evaluated the PEC performance of the modified hematite pho-
toelectrode for the oxidation of 5-HMF, which was produced from fructose, using the
method adopted from our previous study [30]. Figure 2a shows the current potential
curves recorded for 5-HMF oxidation at pH 12.5 in 1 M Na2SO4, and the corresponding
chronoamperometry (CA) response (Figure 2b) recorded at 1.1 VRHE. Interestingly, we
found that the onset potential (Vonset) [10], defined here as the potential at which net
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photocurrent density (Jph) reaches 0.1 mA/cm2, decreases by 30 mV from 0.81 to 0.78 VRHE
in the presence of 10 mM 5-HMF. This indicates that the oxidation of 5-HMF is favored over
water oxidation. Additionally, Jph of 1.8 mA/cm2 was recorded for modified hematite at
1.4 VRHE, which is 64% higher than that without 5-HMF. Similarly, the onset potential fur-
ther decreases with the addition of 2,2,6,6-tetramethyl piperidine-1-yl)oxidanyl (TEMPO),
a well-known artificial electron mediator [31]. Addition of 1 mg/mL and 2 mg/mL of
TEMPO (6.4 mM and 12.8 mM) in the 10 mM 5-HMF solution decreases the Vonset by
90 mV to 0.72 VRHE and by 220 mV to 0.59 VRHE, respectively, indicating that the oxidation
of TEMPO is significantly favorable over that of 5-HMF (see Table S1 for a summary).
The addition of TEMPO decreased the Vonset and led to a phenomenal increase in the
PEC performance of the 5-HMF oxidation system. We recorded the Jph of 3.2 mA/cm2

at 1.4 VRHE for 1 mg/mL TEMPO that increased by more than a factor 2 to 7.8 mA/cm2

on doubling the mediator concentration. TEMPO takes the photogenerated holes from
α-Fe2O3-FeOOH and is oxidized to TEMPO+ (oxo cation), which in turn oxidizes 5-HMF
while simultaneously regenerating the TEMPO. Our observations agree with Cha and
Choi [5] in that the shift (decrease) in the anodic onset potential by the addition of TEMPO
significantly reduces the overpotential for 5-HMF oxidation without competing with water
oxidation. As evident from Figure 2b, the photocurrent reaches a plateau after 3 h of CA,
indicating that most of the 5-HMF is oxidized. The details of 5-HMF conversion under
different conditions are given in Table 1.

Table 1. Photoelectrochemical oxidation of 5-HMF and derivatives using hematite photoanode at 20 ◦C and different pH values.

Experiment pH 12.5

Experiment at 1.1 VRHE
5-HMF

Conversion (%) Time (h)
Product Profile (Selectivity %) pH

5-HMFCA DFF FFCA FDCA Start End

10 mM 5-HMF 11.7 20 83.9 7.8 6.4 1.8 12.5 10

10 mM 5-HMF + 1 mg/mL TEMPO 42 20 71.1 1.4 4.1 23.4 12.5 11

10 mM 5-HMF + 2 mg/mL TEMPO 96.6 2.5 0.4 0.3 18.4 80.9 12.5 11

10 mM 5-HMF + 2 mg/mL TEMPO 99.2 5.5 0.5 2.2 6.4 90.7 12.5 11

Experiment pH 9.0

Experiment at 1.1 VRHE Conversion (%) Time (h)
Product profile (Selectivity %) pH

5-HMFCA DFF FFCA FDCA Start End

10 mM 5-HMF + 2 mg/mL TEMPO 47.3 20 1.5 31.7 66.2 1.6 9.0 5

10 mM 5-HMFCA +
2 mg/mL TEMPO 50.9 20 - - 5.7 94.2 9.0 6

10 mM DFF + 2 mg/mL TEMPO 90.1 20 - - 96.1 2.6 9.0 5

10 mM FFCA + 2 mg/mL TEMPO 40.6 20 - - - 97.4 9.0 5

Experiment pH 4.5

Experiment at 1.1 VRHE Conversion (%) Time (h)
Product profile (Selectivity %) pH

5-HMFCA DFF FFCA FDCA Start End

10 mM 5-HMF + 2 mg/mL TEMPO 51.7 20 1.6 29.6 67.3 1.5 4.5 4

10 mM 5-HMF + 0.5 mg/mL Laccase 14.9 20 21.4 53.5 24.1 1.0 4.5 4

10 mM 5-HMF + 2 mg/mL TEMPO +
0.5 mg/mL Laccase 78.3 20 0.7 7.7 85.9 5.7 4.5 4



Catalysts 2021, 11, 969 5 of 12

Figure 2. (a) Net photocurrent responses for 5-HMF photooxidation at pH 12.5 and (b) corresponding chronoamperometry
(CA) response at 1.1 VRHE.

Based on the decreased Vonset and higher Jph obtained at 2 mg/mL of TEMPO, we
performed PEC oxidation of 5-HMF at pH 9.0 and 4.5. Figure 3a,b show the current
potential curves recorded at the two pH values; the Vonset followed a similar trend at pH
9.0 and 4.5 as at pH 12.5. The Vonset decreased by 410 mV in the presence of 5-HMF and
was further reduced by 230 mV upon the addition of TEMPO. Likewise, the Jph at 1.4 VRHE
was increased by more than a factor of 2 in the presence of 5-HMF and by almost a factor of
7 upon the addition of TEMPO. At pH 4.5, the Vonset reduced significantly by 390 mV in the
presence of 5-HMF and by 720 mV by further addition of TEMPO. Similarly, almost a factor
of 2 and 11 increase in Jph was recorded at 1.4 VRHE in the presence of 5-HMF and upon
further addition of TEMPO, respectively. As the hematite bandgap is 2.1 eV (valence-band
edge at ~2.3 V vs. RHE) [8,32], the photogenerated holes in the hematite have sufficient
potential to oxidize TEMPO. Thus, the additional bias potential enhances electron–hole
separation, increasing the oxidation at the photoanode surface [33]. According to cyclic
voltammetry of TEMPO performed in an earlier report [34], the reversible electrochemical
oxidation of TEMPO is insensitive to pH and the nature of the buffer used. The cyclic
voltammograms for the oxidation of 5-HMF in dark and under illumination performed in
this study are presented in Figure S3, indicating a typical redox behavior of TEMPO under
different pH conditions.

These observations confirmed that the modified hematite photoanode can work effi-
ciently for 5-HMF oxidation at different pH values in the presence of a mediator without
interfering with the water oxidation reaction. The products formed during photoelectro-
chemical oxidation of 5-HMF under different conditions at pH 4.5, 9.0, and 12.5, respectively,
are presented in Table 1. The corresponding chronoamperometry (CA) response recorded
at 1.1 VRHE is shown in Figure 2b and the Supplementary Materials (Figures S4 and S5a).
We observed the 5-HMF photooxidation to be highly pH-dependent, in agreement with the
earlier study [19]. Control measurements performed in the dark at different pH values did
not show any detectable oxidation of 5-HMF (data not shown). As shown in Table 1, we
achieved only 11.7% photoconversion of 5-HMF at pH 12.5 without a mediator; the signifi-
cant fraction (83.9%) was converted to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA),
and the pH of the solution decreased to 10 at the end of the 20 h CA run. Supplementation
of 1 mg/mL TEMPO resulted in 42% of 5-HMF being oxidized, of which 23.4% was FDCA
and the remaining HMFCA, suggesting that oxidation occurs via route 2 shown in Figure 4.
On increasing the TEMPO concentration to 2 mg/mL, nearly 97% 5-HMF was converted
in 2.5 h to yield over 80% FDCA, and continuing the reaction resulted in almost 100% of
the 5-HMF being oxidized to give FDCA at >90% yield in 5.5 h. This corresponds to the
incident photon-to-current efficiency of 9.29% and the Faradic efficiency of 92.6%. The
earlier report using BiVO4 photoelectrode revealed no oxidation of 5-HMF in the absence
of TEMPO [5]. On the other hand, the high surface area nickel boride electrode providing
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high current density of around 50 mA/cm2 at a constant potential of 1.45 VRHE (which is
about six times higher than that in the present study) used for electrochemical oxidation
showed 100% 5-HMF conversion to FDCA in just half an hour [20].

Figure 3. Net photocurrent responses for 5-HMF photooxidation at pH (a) 9.0 and (b) 4.5.

As seen in Table 1, the efficiency of oxidation decreases at lower pH values. At pH 9,
5-HMF was partially converted to a mixture of the route 1 intermediates 2,5-diformylfuran
(DFF) and 5-formyl-2-furoic acid (FFCA) (Figure 4), the latter being present in a higher
proportion. Reactions performed using FFCA, DFF, and HMFCA, respectively, as sub-
strates under the same conditions showed DFF to be most efficiently converted with high
selectivity to FFCA. On the other hand, HMFCA and FFCA were partly converted, but with
high selectivity to FDCA. In all the experiments starting at pH 9.0, the pH was decreased
to 5.0 (pH 6 in case of 5-HMFCA). The corresponding CA and current potential curves
shown in Figures S5b–d and S6, respectively, indicate that the FFCA oxidation step is
the slowest, in accordance with the previous report [5]. This corresponds to the incident
photon-to-current efficiency of 6.07% and the Faradic efficiency of 12.6%.
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Figure 4. Schematic representation of the possible pathways of 5-HMF oxidation to FDCA at pH
higher than 12.0 and pH less than 12.0.

5-HMF oxidation at pH 4.5 in the presence of 2 mg/mL TEMPO showed a similar
pattern as at pH 9 (Figure 4), corresponding to the incident photon-to-current efficiency
of 5.14% and the Faradic efficiency of 17.7%. The addition of the enzyme laccase (from
Trametes versicolor) to the system significantly increased (78%) the degree of 5-HMF con-
version, yielding FFCA as the main product. Laccases are multicopper oxidases found
in plants, fungi, and bacteria, which catalyze the oxidation of phenolic and non-phenolic
compounds while reducing oxygen to water [35]. The enzyme was not effective in the
absence of TEMPO (Table 1).

The results obtained in this study are thus comparable to those in the earlier reports
on photoelectrochemical oxidation of 5-HMF (Table S2). In the literature, three other PEC
devices come closest to the efficiency we achieved in this study with a very inexpensive
system. One device is a Ni/CdS nanosheet photoelectrode, which showed highly efficient
oxidation of 5-HMF at the incredible power of 8W/cm2 and operated at a significantly
raised temperature (cost and necessary temperature control) [23]. This light intensity is
an 80-fold increase to the typical solar irradiation of 100 mW/cm2 used in this study. The
second study uses CoPz/g-C3N4 under five times stronger illumination (500 mW/cm2)
and achieved 99.1% 5-HMF conversion at pH 9.18. This device operates at nearly 10 times
lower 5-HMF concentration, significantly limiting the achievable conversion yields [19].
Closest to our system comes one reported device based upon a BiVO4 electrode operated
at elevated temperatures and functioning only in the presence of TEMPO [5]. In most
studies, a higher operating temperature was suggested to play a critical role in the selective
conversion of 5-HMF to FDCA. We highlight that our study is performed under ambient
conditions, with a relatively higher concentration of 5-HMF (10 mM) and at the illumination
power density of 100 mW/cm2, representing the typical solar irradiation conditions.

In accordance with the report by Shuai et al. [19], it is evident that 5-HMF photooxida-
tion using the modified hematite photoanode in the present study follows different routes
depending on the pH of the electrolyte solution (Figure 4). It was indicated that a higher
pH promotes the formation of alcohols and acids following the Cannizzaro mechanism,
resulting in the two different pH-dependent mechanisms for 5-HMF oxidation. We also
found that DFF and FFCA are unstable at higher pH, which is evident from the initial
HPLC chromatograms shown in Figure S7.
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As shown in Figure 4, with every oxidation step, two electrons are released in the solution
(in total, six electrons) that are used in TEMPO regeneration. Considering that the reduction
reaction at the counter electrode also plays a significant role in the photooxidation of 5-HMF,
we believe that, at a low pH where the concentration of protons is comparatively higher,
the FDCA yield is compensated by the reduction reaction at the cathode (H2 generation). It
would thus be important to study the 5-HMF oxidation in a dual-compartment cell separated
by a Nafion membrane where both the oxidation and reduction reactions are separated
to investigate the mass transfer limitations during 5-HMF photooxidation. It would also
be interesting to study the reaction kinetics using recently developed in situ femtosecond
transient absorption spectroscopy combined with spectroelectrochemistry techniques [36].

3. Experimental
3.1. Materials

Analytical-grade furan compounds FDCA, FFCA, DFF, and 5-HMF for use as HPLC
standards (and in oxidation experiments in the case of FFCA and DFF), and the precursors
(FeCl3, NaNO3, and NH4F) for the synthesis of hematite photoanode, were purchased
from Sigma Aldrich( Stockholm, Sweden). For use in oxidation experiments, 5-HMF and
HMFCA were synthesized and purified in our laboratory at high purity according to our
previous study [30]. (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) and Trametes versi-
color laccase (specific activity of 0.5 U/mg) were purchased from Sigma Aldrich. Sodium
sulfate and sodium hydroxide were purchased from Merck (Stockholm, Sweden). The
photoelectrochemical (PEC) oxidation of the furan compounds was performed in a custom-
made PEC cell. The Ag/AgCl reference electrode was purchased from IJ Cambria Scientific
Ltd (Llanelli, UK). The potentiostat from PalmSens (Houten, The Netherlands) and Ivium
Stat (Eindhoven, The Netherlands) was used for the PEC studies.

3.2. Hematite Photoanode Synthesis

The hematite photoanode was prepared following the method reported by Vayssieres
and coworkers [27]. Briefly, 0.15 M ferric chloride and 1 M sodium nitrate solutions were
adjusted to pH 1.1 by dropwise addition of 1 M HCl. The cleaned FTO substrates were
immersed in this solution for 12 h and placed in an autoclave at a constant temperature of
100 ◦C. The FTO/α-Fe2O3 electrodes were then rinsed with distilled water and ethanol,
followed by annealing at 800 ◦C for 5 min, and further modified by soaking in the fluoride-
rich iron-oxide electrolyte (1 mM NH4F in 0.15 M FeCl3) for 5 h at 100 ◦C followed by
rinsing with distilled water and subsequent annealing at 400 ◦C for 5 min to yield fluorine-
doped FTO/α-Fe2O3/FeOOH.

3.3. Photoelectrochemical Oxidation of 5-HMF, HMFCA, FFCA, and DFF

A solution of 10 mM furan compounds, 5-HMF, DFF, HMFCA, and FFCA, respectively,
was prepared in 50 mL of 1 M sodium sulfate (Na2SO4) with an average pH of 4.5. The
furan solutions were also prepared with other pH values, 9 and 12, by adjusting pH using
1 M NaOH solution. Then, 30 mL of each solution, with respective pH values, was used
directly or mixed with 1 or 2 mg/mL (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) in
the photoelectrochemical cell for photooxidation at room temperature. Control experiments
at different pH values were performed in dark while maintaining the other conditions.

The photoelectrode for the PEC measurements was prepared by gently polishing all
the edges with sandpaper, and connected to the crocodile clip, and the assembly was sealed
with conductive silver paste and further covered with Teflon tape. The other three edges
were coated with insulating epoxy. The current potential curve, also called linear sweep
voltammetry (LSV), was recorded for all the photoelectrodes in the dark and in light under
various conditions used in this study. The cold-white LED (MCWHL6-C1, Thor Labs,
Mölndal, Sweden) was used as a light source for illuminating the hematite photoanode.
The illumination intensity was maintained at 100 mW/cm2 throughout the study.
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The LSVs were performed versus Ag/AgCl reference electrode and converted to
reversible hydrogen electrode voltage using Equation (1):

VRHE = VAg/AgCl + 0.1976 + (0.059 × pH) (1)

Moreover, photoelectrochemical oxidation of 5-HMF was performed using 1 mg/mL
TEMPO at pH 12 as well as using 2 mg/mL TEMPO. The photoelectrochemical oxidation of
5-HMF at pH 9.0 and 4.5 was performed with and without 2 mg/mL TEMPO. At pH 4.5, we
also tested the T. versicolor lacasse as the oxidation catalyst with and without TEMPO as the
electron mediator. Five hundred microliter samples were collected at regular time intervals
over the reaction time for HPLC analysis of the substrates, intermediates, and products.

3.4. Product Analysis

The concentrations of 5-HMF, FFA, FFCA, and FDCA were determined using HPLC
(JASCO, Tokyo, Japan) equipped with a Bio-Rad Aminex HPX-87H column (connected to a
guard column (Biorad, Richmond, CA, USA), refractive index detector (ERC, Kawaguchi, Japan),
a JASCO UV detector operating at 254 nm, and a JASCO intelligent autosampler. The column
temperature was maintained at 65 ◦C in a chromatographic oven (Shimadzu, Tokyo, Japan).
Samples were diluted with Milli-Q quality water mixed with 20% (v/v) H2SO4 (20 µL/mL
sample), and then filtered using 0.45 µm filter. A 40 µL aliquot was injected in 0.5 mM H2SO4
mobile phase flowing at a rate of 0.4 mL/min. The peaks for the different compounds were
confirmed and quantified using the corresponding external standards.

The photoconversion of 5-HMF was calculated using Equation (2):

5−HMF conversion (%) =
(Initial concentration – Final concentration)

(Initial concentration)
× 100 (2)

The yield (%) of the product formed was calculated using Equation (3):

Yield of product (%) =
(mol of product formed )

(mol of initial 5−HMF)
× 100 (3)

The incident photon-to-current efficiency was calculated using Equation (4)

IPCE =
(|j|)× 1239.8

P× λ
× 100 (4)

where 1239.8 V nm represents a multiplication of h (Planck’s constant) and c (the speed
of light), P is the calibrated and monochromated illumination power density in mW/cm2,
and λ is the illumination wavelength.

The Faradic efficiency based on the 5-HMF conversion into products was calculated
using Equation (5).

FE (%) =
mol o f HMF Converted

total charge passed
× n× F× 100 (5)

where n is the number of electrons transferred during 5-HMF oxidation (6e−) and F is the
Faraday constant 96,485.3 s A mol−1.

4. Conclusions

In conclusion, this study demonstrates 99.2% 5-HMF conversion to FDCA with a yield
of >90% using hematite photoelectrode under visible illumination at pH > 12, ambient
temperature (21 ± 1 ◦C), and atmospheric pressure in the presence of TEMPO. The 5-
HMF oxidation follows different routes at pH above and below 12, i.e., via HMFCA and
DFF, respectively. The rate-limiting steps in the respective cases are the oxidation of
HMFCA and FFCA. Besides FDCA, even the intermediate oxidation products HMFCA,
DFF, and FFCA bearing different functionalities (hydroxyl, aldehyde, and carboxyl), formed
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during the PEC oxidation, constitute highly interesting building blocks for novel polymer
structures. This study serves as the foundation for the photo-conversion of 5-HMF that can
be enhanced in the future for selective production of FDCA by synthesizing high surface
area Earth-abundant hematite photoelectrodes and subsequent modification with a suitable
dopant. As is well known, the large-scale application of TEMPO is limited by its high
cost and potential toxicity. It would thus be important to consider alternative strategies
including polymer-supported TEMPO to enable its recycling and/or using other electron
mediators that are less expensive like TEMPOL (4-hydroxy-TEMPO) or those based on
natural resources like sinapic acid and syringaldehyde [34,37–41].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/catal11080969/s1, Figure S1 (a) X-ray diffraction patterns for the bare (black trace) and modified
hematite (red trace); (b) and (c) show the planar top view scanning electron micrograph for bare and
modified hematite photoanode, respectively, before the PEC experiment; while (d) shows a planar top
view scanning electron micrograph after the 20 h PEC run. The bar represents 1 µm. The bar represents
1 µm. Figure S2 LSVs for the bare and modified hematite photoanodes at different pH values (4.5, 9.0,
and 12.5) in 1 M Na2SO4 solution, and the corresponding dark current for (c) bare and (d) modified
photoanodes, respectively. The dark current response for 5-HMF oxidation at (e) pH 12.5, (f) 9.0, and
(g) 4.5 are also shown. Table S1 Vonset potentials obtained for modified hematite under different pH
conditions and the net photocurrent density recorded at 1.4 VRHE (in square bracket, orange color).
Figure S3 Cyclic voltammograms recorded in Na2SO4 + TEMPO with and without 5-HMF in dark
and under illumination at pH (a) 12.5, (b) pH 9.0, and (c) pH 4.5. Figure S4 Chronoamperometry
response for 5-HMF oxidation recorded under visible illumination and 1.1 VRHE at 100 mW/cm2 for
α-Fe2O3-FeOOH in 1 M Na2SO4 solution at pH 4.5. Figure S5 Chronoamperometry response for (a)
5-HMF, (b) FFCA, (c) HMFCA, and (d) DFF oxidation recorded under visible illumination and 1.1 VRHE
at 100 mW/cm2 for α-Fe2O3-FeOOH in 1 M Na2SO4 solution (pH 9.0). Figure S6 LSVs for the modified
hematite photoanode recorded for different furan compounds as substrates at pH 9.0 in 1 M Na2SO4
solution. Figure S7 HPLC chromatograms of the photooxidation of (a) DFF, (b) HMFCA, and (c) FFCA
in 1M Na2SO4 solution at pH 12.5 with 2 mg/mL TEMPO. Table S2 Comparison of the system presented
in this study with other photoelectrochemical or photocatalytic systems reported in the literature on
5-HMF oxidation to FDCA.
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