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Abstract: A novel diazoacetate monomer (1) carrying tert-butyloxycarboryl (Boc) protected D-prolinol
ester was designed and synthesized successfully. Molecular weight-controlled polymerization of
1 using the complex of π-allylPdCl coordinated Wei-phos (LR) ligand gives a series of helical poly-
carbenes (poly-1ms) with well-defined molecular weights (Mns) and low polydispersity (Mw/Mns).
Removing the protecting Boc groups on the D-prolinol ester pendants leads to the formation of
helical poly-1m-As, which showed high optical activity. Furthermore, the poly-1m-As showed high
catalytic ability on asymmetric Michael addition reaction (up to 76% ee and 94/6 dr). Both the
enantioselectivity and diastereoselectivity of the Michael addition reaction were increased comparing
to D-prolinol as catalyst. Moreover, the helical polycarbene catalyst can be easily recovered and
reused at least four times without significant loss of its enantioselectivity and diastereoselectivity.

Keywords: helical polymer; polycarbene; D-prolinol ester; michael addition reaction

1. Introduction

Asymmetric organocatalysis, which commonly feature mild reaction conditions and
wide functional groups tolerance, attracted considerable attention in recent years [1–3].
Despite these advantages, higher catalyst loading is necessary in many organocatalyzed re-
actions [4–6]. To solve these challenges, polymer-supported catalysts were developed [7–9].
Attaching organic catalysts to polymers can solve the problem of the reusing of the cata-
lyst [10,11]. Meanwhile, there is a risk of reducing the catalytic activity and selectivity of
the catalysts. To overcome these limitations, the design and synthesis of polymer which
is not only just serve as a scaffold but also can regulate the asymmetric induction effect
during the reaction process is highly desirable [12,13].

The helix is the most prominent feature for biological macromolecules like DNA and
proteins [14,15]. In recent years, great attention was paid to artificial helical polymers
to imitating the structure and function of natural helical polymers, and to develop new
functional polymers [16–19]. Optically active helical polymers were widely applied in
many fields, including chiral recognition [20,21], enantiomer separation [22,23], asymmet-
ric catalysis [24,25], liquid crystal, and so forth [26,27]. Among of this series of applications,
helical polymer-supported catalyst is of great significance. On the one hand, the high
molecular weight contributed to the recovery and recycle use of polymer catalyst. On
the other hand, the helical sense of polymer backbone can provide additional asymmetric
environment, which amplify the stereoselectivity of asymmetric reactions by exhibit syner-
gistic effect [28,29]. The groups of Suginome, Yashima, Deng, and Wan have done excellent
works in the field of asymmetric catalysis catalyzed by helical polymer catalysts [30–33].
Despite these elegant achievements, the research of helical polymer catalyst is still at the
initial stage.

Polycarbene, which has good environmental stability, is one of the most important
helical polymers, which has C−C main-chain bearing substituents on each main-chain
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carbon [34–37]. Accordingly, the introduction of organic molecular to helical polycarbene
might be a promising method for the design of new chiral catalyst. In this contribution, we
report our effort on the design and synthesis of a new diazoacetate monomer 1 bearing Boc-
D-prolinol ester (Scheme 1). Polymerization of monomer 1 using a chiral π-allylPdCl/LR

catalyst gives a series of helical polycarbenes (poly-1ms) with well-defined molecular
weights (Mns) and low polydispersity (Mw/Mns). Poly-1m-A which bearing secondary
amine pendants was acquired from poly-1ms by removing Boc group. Under the optimized
reaction conditions, poly-1150-A displays best performance in the asymmetric Michael
addition of nitrostyrene and cyclohexanone. Furthermore, poly-1m-A can be facilely
recovered and used for at least 4 cycles with maintained selectivity and activity.
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Scheme 1. Synthesis of poly-1m and poly-1m-A.

2. Results

As shown in Scheme 1, monomer 1 was prepared according to the literature reported
previously with slight modifications [38]. After the structures were characterized by
1H NMR and FT-IR (Figures S1 and S2, Supporting Information (SI)), monomer 1 were
polymerized by the complex of π-allylPdCl and Wei-phos (LR), which was an excellent
initiator for polymerization of diazoacetate reported by our group (Scheme 1) [38,39].
Variation on the initial feed ratio of monomer to catalyst produced a range of poly-1ms with
different Mn and narrow Mw/Mn in satisfied yields. The results for the polymerization of
monomer 1 were summarized in Table 1.

Table 1. Characterization data for poly-1ms and poly-1m-As a.

Run Polymer b Mn
c [kDa] Mw/Mn

c Yield d [%] g218
e (×10−4)

1 poly-150 15.8 1.24 83 4.24
2 poly-150-A 5.7 1.34 86 3.64
3 poly-175 16.4 1.27 80 5.46
4 poly-175-A 6.8 1.33 88 4.24
5 poly-1100 17.2 1.20 84 6.06
6 poly-1100-A 7.8 1.31 89 4.85
7 poly-1125 18.0 1.23 82 7.58
8 poly-1125-A 8.7 1.33 85 5.15
9 poly-1150 19.1 1.26 84 7.88

10 poly-1150-A 9.8 1.31 86 5.15
a These polymers were prepared according to Scheme 1. b Footnote indicated value of [1]0/[Pd(II)]0. c Mn and
Mw/Mn values were determined by SEC. d Isolated yields. e Asymmetric factor at 218 nm of poly-1ms and
poly-1m-As measured in THF at 25 ◦C (c = 0.1 mg/mL).

As depicted on Figure 1a and Table 1, symmetrical and unimodal elution peaks of all
the isolated poly-1ms with desired Mn and narrow Mw/Mn could be discerned. The SEC
curves shifted to higher-Mn region according with the increased ratio of 1 to Pd(II) catalyst.
Besides SEC analyses, the structures of obtained polymers were additionally verified by
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1H NMR investigations and FT-IR spectra (Figures S3 and S4, Supplementary Materials).
The new obvious resonance signals of CH in the main chain of the poly-1150 could be
distinguished at 4.28–3.94 ppm from the 1H NMR spectrum of poly-1150 (Figure S3,
Supplementary Materials). From the FT-IR spectrum of poly-1150, characteristic vibra-
tion of the -N2 group at 2107 cm−1 disappeared thoroughly, indicating that all of the
monomer was polymerized. Meanwhile, the vibration of methylbenzyl ester located at
1738 cm−1 could be clearly observed (Figure S4, Supplementary Materials). Furthermore,
circular dichroism (CD) and UV-vis spectra were used to confirm the optical activity of
poly-1ms shown in Figure 1b. The isolated poly-1ms showed distinctive positive CD at
218 nm, the absorption region of the polycarbene backbone, suggesting the formation of
a preferred right-handed helix [40]. The CD values at 218 nm increased gradually with
the increase of Mns of poly-1ms and remained as a constant until the Mn up to 18.0 kDa,
indicating a stable helix formed. There were no obvious changes on the CD and UV-vis
spectra of poly-1150 from: −10 to 30 ◦C, suggested that the helicity of poly-1150 didn’t
change with temperature (Figures S5 and S6, Supplementary Materials).
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Figure 1. (a) Size exclusion chromatograms of poly-1ms prepared from polymerization of 1 with
π-allylPdCl/LR in THF at room temperature in different initial feed ratios of [1]0/[Pd (II)]0. (b) CD
and UV-vis spectra of poly-1ms with different Mn measured in THF at 25 ◦C (c = 0.1 mg/mL).

With the poly-1ms in hand, the protecting Boc groups on the poly-1ms pendants
could be readily removed by treating it with the mixture of trifluoroacetic acid (TFA) and
dichloromethane (v/v = 1/10) at room temperature, after the finish of the reaction, the
reaction mixture was neutralized to pH = 8 by triethylamine (TEA) (Scheme 1). The afforded
poly-1m-As had symmetric and single model elution peaks on SEC curves. Compared to
that of their precursor poly-1ms, they shifted to low Mn-region (Table 1 and Figure 2a).
Removing the Boc groups on the pendants led to the decrease of the Mn reasonably.
Furthermore, the disappearance of the resonance signals of t-butyl at 1.38 ppm on the 1H
NMR spectrum of poly-1150-A was another confirmation for the success of deprotection
for Boc groups on the pendants. (Figure S7, Supplementary Materials). Meanwhile, a
new broad vibration band located at 3427 cm−1 appeared apparently on the FT-IR spectra
of poly-1150-A, indicated that new N-H bonds constructed (Figure S8, Supplementary
Materials). At the absorption region of the polycarbene backbone, poly-1150-As also showed
obviously positive CD, indicating the preferred right-handed helix of the main chain
formed. The CD intensity of poly-1m-As was decreased attributing to the removing of
the bulky Boc group. From the Figure 2c,d, we could conclude that the poly-1m-As could
maintain a stable helical conformation in most of tested common solvents. What’s more,
its helical structure could be maintained even when the temperature changes from −10 ◦C
to 30 ◦C in THF.
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Figure 2. (a) SEC curves for poly-1m-As with different Mns. (b) CD and UV-vis spectra of poly-1m-As
with different Mn measured in THF at 25 ◦C (c = 0.1 mg/mL). (c) CD and UV-vis spectra of poly-
1150-A measured in THF at different temperature (c = 0.1 mg/mL). (d) CD and UV-vis spectra of
poly-1150-A measured at various organic solvents at 25 ◦C (c = 0.1 mg/mL).

With several chiral helical poly-1m-As in hands, we concentrated our investigation
on their application. Asymmetric Michael addition reaction of trans-nitrostyrene and cy-
clohexanone is an efficient method for the access of γ-nitrocarbonyl compounds which
were valuable in the synthesis of natural products and medicines [41,42]. Firstly, cyclo-
hexanone and trans-nitrostyrene were selected as model substrates. For comparison, the
D-prolinol and helical poly-1m-As were employed under the same reaction condition. In
the presence of D-prolinol, the diastereomeric ratio (dr) and enantiomeric excess (ee) of the
product was determined to be 68/32 and 18%, respectively. On the other hand, the dr and
ee values of the product using poly-175-A as catalyt were reached to 71/29 and 54%, which
were much higher than the results of D-prolinol as catalyst at the same conditions (run 2,
Table 2). This result suggested that the incorporation of catalytic prolinol onto the helical
polycarbenes could significantly improve the enantioselectivity and diastereoselectivity of
Michael addition reaction. Next, the detailed studies of the Michael addition reaction cat-
alyzed by the helical catalysts were investigated. As anticipated, the dr and ee values of the
products were increased according to the increasing of the Mn of the polymer catalyst. For
example, the dr and ee of the obtained main product was 71/29 and 54% using poly-175-A,
which increased to 72/28 and 65% when poly-1100-A were used as a catalyst, respectively
(runs 2,3, Table 1). As the Mn of the polymer catalyst continued to increase, the enhance of
the enantioselectivity and diastereoselectivity also increased (run 2–4, Table 2). The dr and
ee values of the main product of the model reaction catalyzed by poly-1150-A were almost
the same to those of the poly-1125-A (run 4,5, Table 2). These results were consisted to
the relationship between the Mn-dependent helicity and poly-1m-A backbone (Figure 1b).
Furthermore, the D-prolinol-derived poly(acrylate) (PAA), which lacked the same level of
tertiary structure as polycarbene, was used as the catalyst for Michael addition reaction
under the same conditions. The ee and dr values of the product were up to 57% and 72/28,
which were much lower than the results catalyzed by poly-1150-A (run 12 and 14, Table 2).
It could be further supported that the enhanced enantioselectivity came from the helicity of
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the polycarbene. Next, poly-1150-A was chosen as the catalyst for the asymmetric Michael
addition reaction for investigating the other optimized conditions.

Table 2. Optimizing reaction condition for Michael addition reaction a.
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analysis using a chiral stationary phase. c Yield of isolated products. d Reaction time was 6 h. e Not detected.
f Reaction time was 72 h.

Then, a series of solvents including CH2Cl2, THF, CHCl3, MeOH and toluene were
chosen as the solvent for asymmetric Michael addition reaction to optimize the best reaction
medium. Unfortunately, no product was detected in toluene, and the reason may be due to
the poor solubility of polymer catalysts in toluene (run 9, Table 1). The results revealed that
the highest dr and ee values of the main product could be obtained when dichloromethane
using as solvent (run 5–9, Table 2). Furthermore, the loading of the polymer catalyst also
had effects on the enantioselectivity and diastereoselectivity of the products. Increased the
poly-1150-A loading from 20 to 30%, there was a bit increase on the yield but no significant
increase on the ee value of the main product (run 10, Table 2). Meanwhile, decreasing the
loading of the catalyst from 20 to 10% caused the enantioselectivity reduced from 72 to
65% (run 11, Table 2). The enantioselectivity was increased to 76% by lowering the reaction
temperature to 0 ◦C. A significant increase in dr value was discerned, which was up to
94/6 from 87/13 (run 12, Table 2). Much lower reaction temperature was not beneficial for
this Michael addition reaction (run 13, Table 2). Finally, the best reaction conditions for this
trans-formation were confirmed to using 20 mol% poly-1150-A in dichloromethane at 0 ◦C
and the desired γ-nitrocarbonyl compound was obtained in 77% yield with 94/6 dr and
76% ee (run 12, Table 2).

Compared with that of traditional organcatalyst, the polymer-based organocatalyst
could be recovered and reused due to its high Mn. Therefore, we further performed the
recovery and recycle experiments of poly-1150-A. As expected, poly-1150-A could be facilely
isolated from the reaction system in almost quantitative yield via simple centrifugation
and filtration. CD and UV-vis spectra demonstrated that the main chain of poly-1150-A was
maintained after the asymmetric Michael addition reaction. Gratifiedly, both the reactivity
and enantioselectivity of recovered poly-1150-A catalyst were not decreased and the desired
product was produced in 76% yield with 94/6 dr, and 76% ee. Further studies demonstrated
that the poly-1150-A can be recycled at least 4 times without obvious loss in its activity and
stereoselectivity (Figure 3).
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3. Materials and Methods
3.1. Synthesis of Monomer 1

The procedure was followed the literature reported with slight modification [38].
Under a N2 atmosphere, bromoacetyl bromide (1.1 mL, 12.92 mmol, 1.3 eq.) was added
dropwise to a stirred suspension of Boc-D-Prolinol (2.0 g, 9.93 mmol, 1.0 eq.) and NaHCO3
(2.5 g, 29.81 mmol, 3.0 eq.) in acetonitrile (60 mL) at 0 ◦C. The resulting mixture was stirred
for 30 min at this temperature. After the addition of H2O, the mixture was extracted with
CH2Cl2, and the combined organic phase was dried over anhydrous Na2SO4. The solvent
was then evaporated under reduced pressure, and the obtained residue was directly used
in next step without further purification. The obtained residue and TsNHNHTs (3.7 g,
10.93 mmol, 1.1 eq.) was dissolved in THF (70 mL). After cooling to 0 ◦C, 1,8-diazabicyclo
[5.4.0] undec-7-ene (DBU) (4.5 mL, 29.79 mmol, 3.0 eq.) was added dropwise to the mixture,
and kept stirring for 30 min at this temperature. Then, the reaction solution was quenched
by the addition of saturated aqueous NaHCO3, and extracted with diethyl ether. The
combined organic phase was then washed with brine, dried over anhydrous Na2SO4, and
evaporated to dryness to give a crude product. The obtained residue was further purified
by column chromatography using petrol ether and ethyl acetate as eluent (v/v = 8:1),
afforded monomer 1 as a yellowish oil (2.19 g, 82% yield). 1H NMR (600 MHz, CDCl3,
25 ◦C): δ 4.74 (s, 1H, N2CH), δ 4.23–4.10 (m, 2H, CH2), 3.95 (m, 1H, CH), 3.39–3.31 (m, 2H,
CH2), 1.97–1.78 (m, 4H, (CH2)2), 1.46 (s, 9H, CH3). FT-IR (KBr, 25 ◦C): 3103 (νC–H), 2974
(νC–H), 2876 (νC–H), 2109 (ν-N≡N), 1684 (νC=O) cm−1.

3.2. Typical Polymerization Procedure for Poly-1ms

Taking poly-1150 as an example following the literature reported with slight mod-
ification [38]. A solution of the as-prepared π-allylPdCl/LR catalyst in THF (0.37 mL,
0.01 mol/L, 0.0037 mmol) was added to a solution of monomer 1 (150 mg, 0.557 mmol)
in THF (1.05 mL) at 25 ◦C. The concentrations of the monomer and the catalyst were
0.39 mol/L and 0.0026 mol/L, respectively. The initial feed ratio of monomer to catalyst
was 150/1 ([1]0/[Pd]0 = 150). The reaction mixture was stirred at 25 ◦C, and lots of bubbles
were released upon the addition of the π-allylPdCl/LR catalyst. After the polymerization
solution was stirred for 2.5 h at 25 ◦C, it was precipitated into a large amount of n-hexane.
The precipitated solid was collected by centrifugation and dried in vacuum at room tem-
perature overnight, affording poly-1150 as a yellowish solid (127 mg, 84% yield). SEC:
Mn = 19.1 kDa, Mw/Mn = 1.26. 1H NMR (600 MHz, CDCl3, 25 ◦C): δ 4.29 (br, 1H, CH of
main chain), δ 3.94 (br, 2H, CH2), 3.25 (br, 3H, CHCH2), 1.92 (br, 4H, (CH2)2), 1.39 (br, 9H,
(CH3)3). FT-IR (KBr, 25 ◦C): 2975 (νC–H), 2855 (νC–H), 1687 (νC=O) cm−1.
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3.3. Typical Procedure for Poly-1m-As

Poly-1150 (0.20 g) was dissolved in CH2Cl2 (5.0 mL), and trifluoroacetic acid (TFA,
0.5 mL) was slowly added to the stirring solution at 0 ◦C [29]. After the resulting solution
was stirred at room temperature overnight, the solution was adjusted to pH = 8.5 by
triethylamine (TEA). After concentrated to dryness, the resulting residues were dissolved
in CH2Cl2 (1.8 mL), then a large amount of n-hexane was added, and a yellowish solid
was precipitated gradually. The solid was collected through centrifugation, and dried
in vacuum at room temperature overnight (102 mg, 86% yield). SEC: Mn = 9.8 kDa,
Mw/Mn = 1.31. 1H NMR (600 MHz, CDCl3, 25 ◦C): δ 4.30 (br, 1H, CH of main chain), δ
4.09 (br, 2H, CH2), 3.32 (br, 2H, CH2), 3.15 (br, 1H, CH), 2.01 (br, 4H, (CH2)2), 1.25 (br, 1H,
NH). FT-IR (KBr, 25 ◦C): 3397 (νN–H), 2975 (νC–H), 2776 (νC–H), 1665 (νC=O) cm−1.

3.4. General Procedure for Michael Addition Reaction

Poly-1150-A (6.73 mg, 0.04 mmol, with respective to repeating units, calculated by
dividing mass of polymer by molecular mass of repeating unit (omitting the end groups of
the polymer)) was added to the stirring solution of cyclohexanone (7.85 mg, 0.80 mmol)
in CH2Cl2. Then trans-nitrostyrene (29.62 mg, 0.20 mmol) was added to this solution
via a microsyringe. The resulting solution was stirred at 0 ◦C, followed by thin layer
chromatography (TLC) until the reaction was accomplished. Then, n-hexane was added
to the solution to precipitate the polymer catalyst. The precipitated polymer catalyst was
redissolved in CH2Cl2. Then, a large amount of n-hexane was added to the solution to
precipitate the polymer again, the process was repeated three times to remove the product
and unreacted materials. At last, the recycled polymer catalyst was dried under vacuum for
next recycle. The organic phase was collected and concentrated. Then, the crude product
was purified by column chromatography on silica gel using petroleum ether and ethyl
acetate (v/v = 8:1) as an eluent to afford the product.

4. Conclusions

In summary, a set of structural novel helical polycarbene-based organcatalysts, which,
bearing D-prolinol ester pendants, were developed. The right-handed helix of the main
chain played an important role for the catalytic activity. Compared to that of typical
small molecules with similar structure, the present polymers catalyst exhibited better
stereoselectivity in the Michael addition reaction of trans-nitrostyrene and cyclohexanone.
The stereoselectivity of the Michael addition reaction is closely related to the helical excess
of the polymer catalyst. The higher g218 of the polymer catalyst, the higher stereoselectivity
of the product was achieved. Satisfied ee and dr values (76% ee and 94/6 dr) of the product
can be obtained under the optimized reaction conditions. Moreover, it is convenient to
recover and reuse the polymer catalyst at least 4 times without obvious decrease in its
activity and stereoselectivity. In addition to providing an important method for modifying
helical polycarbenes, this study also provides a series of functional materials with potential
applications in the field of asymmetric catalysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/catal11111369/s1, Figures S1 and S2: 1H NMR and FT-IR spectra of monomer 1, Figures S3 and S4:
1H NMR and FT-IR spectra of poly-1150, Figure S5: CD and UV-vis spectra of poly-1150 measured
in different concentrations at 25 ◦C, Figure S6: CD and UV-vis spectra of poly-1150 measured in
THF at different temperatures. Figures S7 and S8: 1H NMR and FT-IR spectra of poly-1150-A,
Figure S9: 1H NMR spectrum of D-prolinol-derived PAA measured in CDCl3 at 25 ◦C. Figure S10:
1H NMR spectrum of (R)-2-((S)-2-nitro-1-phenylethyl) cyclohexanone measured in CDCl3 at 25 ◦C.
Figures S11–S13: HPLC curve of racemic (2-nitro-1-phenylethyl)cyclohexanone and (R)-2-((S)-2-nitro-
1-phenylethyl).
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