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Abstract: Matured compost, derived from a mechanical and biological treatment (MBT) plant, was
used as a precursor to produce catalysts through hydrothermal and thermal carbonization, HC and
PC, respectively. HC and PC displayed suitable properties to act as catalysts in the catalytic wet
peroxide oxidation (CWPO) treatment of the highly polluted leachate waters generated in the same
MBT plant (TOC0 = 27 g L−1; COD0 = 60 g L−1; BOD5,0 = 23 g L−1). The influence of catalyst loading
and pH were studied, considering multiple additions of H2O2. The best experimental conditions
found were T = 80 ◦C, pH0 = 3.0, 7.2 g L−1 of HC catalyst, 85.7 g L−1 of H2O2, added in five batches
in one-hour intervals between each addition. Under these experimental conditions, removals of 43%,
52%, 93%, 82%, 35%, 95% and 93% for the COD, TOC, BOD5, aromaticity, chlorides, turbidity and
color number (CN) were, respectively, observed. Ion exchange resins and coagulation–flocculation
were studied as pretreatment options to reduce the complexity of the leachate waters and enhance
the CWPO results. Both strategies resulted in higher mineralization and enhanced the consumption
efficiency of H2O2 (ηH2O2 ). The sequential treatment using coagulation–flocculation and CWPO with
PC catalyst showed the best results, achieving abatement of 94%, 70%, 98%, 93%, 31%, 96% and 95%
for COD, TOC, BOD5, aromaticity, chlorides, turbidity and CN, respectively.

Keywords: carbon-based materials; fenton-like systems; coagulation–flocculation; ion exchange;
waste valorization; municipal solid waste

1. Introduction

Municipal solid waste (MSW) encompasses the waste generated mainly in households
and commercial establishments. MSW has a heterogeneous composition depending on the
local where it is collected, containing a significant fraction of organic materials (30–50%) [1].
In 2019, each European citizen generated 502 kg of MSW, and MSW generation is expected
to amount to 3.4 billion tons by 2050 [2]. MSW can be managed in various ways, including
landfilling, incineration, or mechanical and biological treatment (MBT) plants. Landfilling
is the most harmful approach, as no pretreatment is performed, causing health-related
risks, discarding profitable resources and leading to a landfill leachate [3].
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MBT plants can be considered a sustainable alternative. In an MBT plant, the organic
matter is separated from the collected waste and further treated by anaerobic digestion,
generating three streams: biogas, a liquid stream (leachate water) and a solid stream. The
solid stream is then sent to maturation, resulting in compost, commonly sold as a soil
fertilizer. Composting from MSW has gradually increased in the EU, rising 278% between
1995 and 2019, from 14 to 53 million tons [2].

In a typical MBT plant, every 100 tons of undifferentiated waste results in 30 tons of
compost and allows recovering 5400 kWh of energy, a technological solution aligned with
a waste-to-energy perspective. Nonetheless, compost production surpasses its demand,
resulting in its discharge at landfill sites. Under this background and applying the directives
of end-of-waste criteria, alternatives to add value to compost must be sought, supported by
the perspective of a circular economy. One possible strategy is to prepare sustainable, low-
cost catalysts through the pyrolysis and hydrothermal carbonization (HTC) of compost [1,4].

As abovementioned, leachate waters are also generated in MBT facilities resulting
in another issue faced by solid waste management companies. Leachate waters pose
a significant threat to the environment. In opposition to leachate waters originating in
landfills, there are few literature reports or information regarding the characteristics and
subsequent treatment of leachate waters from MBT plants [5].

Leachate waters have a very complex matrix, composed of inorganic (e.g., metallic ions)
and organic fractions, resulting in a high content of total organic carbon (TOC), chemical
oxygen demand (COD) and five-day biological oxygen demand (BOD5). Furthermore,
several ions, such as chlorides, carbonates or sulfates, can also be found, affecting its
treatment performance [6,7]. Thus, the need to develop technologies suitable to handle
such complex matrices emerges [8,9].

In this context, catalytic wet peroxide oxidation (CWPO) appears as a suitable alter-
native known to be a low-cost technology with promising results [10]. CWPO relies on
the use of powerful oxidants, such as hydroxyl (HO•) and hydroperoxyl radicals (HOO•)
obtained from the selective decomposition of H2O2 over a catalyst, to oxidize the organic
pollutants in wastewaters. The process is conducted under mild operational conditions
(T = 25–130 ◦C, P = 1–5 atm) [10–12]. It is widely known that pH and catalyst load are some
of the most influential factors in treating complex matrices by CWPO [5,13,14].

As reported elsewhere [10,15], alkaline conditions result in a decrease in the perfor-
mance of CWPO for about 50% compared to neutral or acidic conditions. Increasing the
catalyst dosage is also expected to improve CWPO performance since higher catalyst doses
allow more active sites to promote the degradation of organic matter in wastewaters [12].
On the other hand, excessive catalyst load can cause an agglomeration of catalyst particles,
tending to decrease the exposed surface area of the active sites and impacting the efficiency
of CWPO [16–18]. Low catalyst loads, H2O2 doses and mild operating conditions can
be attained by developing stable, active and low-cost heterogeneous catalysts. Catalysts
development is one of the main challenges to the industrial application of CWPO [12].

To enhance the performance of the chemical treatment of complex matrixes, such as for
the leachate, an interesting strategy is to couple a pretreatment process with CWPO [8,15,19,20].
Coagulation–flocculation is a low-cost technology that can be operated with simple equip-
ment and that has been used as a pretreatment step to remove part of non-biodegradable
organic matter and colloidal particles from leachate waters. Ferrous sulfate, ferric chloride
and aluminum sulfate are common coagulants [20–22]. The use of ion-exchange resins is
another pretreatment option. They are usually applied to remove ammonia and metal ions,
although their operational costs are higher than coagulation–flocculation [22,23].

Some works report the treatment of real leachate waters by chemical processes [11,
16,17,24–28] or the synthesis and application of carbon-based materials in the CWPO of
organic pollutants [1,29–31]. However, there is a lack of reports combining the application
of low-cost carbon-based materials in the CWPO of real leachate wastewaters.

This work aims to assess solutions to treat highly concentrated leachate waters ob-
tained in MBT facilities, exploring the efficiency of CWPO using sustainable, low-cost
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catalysts prepared from the mature compost obtained in MBT plants and two different
pretreatments. Three approaches were evaluated in order to maximize the abatement
of the organic content of the effluent: (i) CWPO as a single treatment, (ii) ion exchange
resins coupled to CWPO and (iii) a coagulation–flocculation pretreatment step followed
by CWPO.

2. Results and Discussion
2.1. Characterization of Catalysts

Table 1 summarizes the elemental composition of the raw precursor (RP) and of
catalysts PC and HC. As observed, the elemental composition of PC and HC catalysts was
not significantly changed during their preparation when compared to RP. However, the
increase in the C/H ratio of the samples (9.2, 44.0 and 11.3 for RP, PC and HC samples,
respectively) indicates that carbonization was successful [4]. Higher differences were found
in the ashes content, representing inorganic substances in the RP and the catalysts. As
observed, pyrolysis resulted in an increase of 26.0% in ashes (from 55.5% to 81.5% for RP
and PC, respectively).

Table 1. Elemental composition of the raw precursor (matured compost, RP) and of the catalysts PC
and HC.

Catalyst C/H
Ratio

C
(%)

H
(%)

S
(%)

N
(%)

Ashes
(%)

Mg
(%)

K
(%)

Si
(%)

Al
(%)

Na
(%)

Ca
(%)

Fe
(%)

RP 9.2 21.3 2.3 0.6 1.7 55.5 1.7 1.8 0.40 3.4 0.74 11 2.3
PC 44 17.6 0.4 0.5 0.0 81.5 2.0 1.9 0.41 3.6 0.63 17 2.7
HC 11.3 19.3 1.7 1.2 0.1 32.6 1.6 1.0 0.47 3.5 0.47 12 2.5

On the other hand, hydrothermal carbonization led to a decrease in the ashes content
of 22.9% (from 55.5% to 32.6% for RP and HC, respectively). That result may be expected
from pyrolysis and hydrothermal carbonization processes since, in general, pyrolysis results
in the liberation of volatile carbon compounds from RP, increasing the content of inorganic
species. In contrast, hydrothermal treatment in the liquid phase at high temperatures leads
to the leaching of inorganic substances from RP [1,31].

It was observed that PC resulted in an increase in all metals analyzed (Mg, K, Si, Al,
Ca and Fe) in comparison to the composition of the RP, with the exception of Na, which
decreased in comparison with RP. Previous reports indicate that up to 37% of Na can suffer
volatilization at temperatures of 800 ◦C [32]. In contrast, HC has a lower concentration of
some metals (K, Na and Mg) in comparison to RP. However, for the case of some minerals
(Si, Ca and Al), an enhancement in its concentration has been observed, which is in line
with previous reports regarding the HTC of food and municipal waste at 250 ◦C [33].

These carbonization processes also result in materials with different acid–base prop-
erties, as shown in Table 2. On one hand, PC presents strong basicity (2.5 mmol g−1 and
pHPZC = 11.0), likely due to the removal of acidic functionalities during pyrolysis and the
higher ash content composed of alkali and alkaline-earth metals [4]. On the other hand,
HC shows a neutral acid-based character (acidity similar to basicity and pHPZC = 7.5).
Pyrolysis or HTC also leads to different surface areas (Table 2). HC and PC have surface
areas (SBET) of 12 and 77 m2 g−1, respectively. This difference in the surface area according
to the carbonization method was also reported by other authors [31].

Table 2. Acid–base properties and BET surface area of the catalysts PC and HC.

Catalyst Acidity (mmol g−1) Basicity (mmol g−1) pHPZC
SBET

(m2 g−1)

PC 0.9 2.5 11.0 77
HC 1.1 1.4 7.5 12
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2.2. CWPO of Leachate Waters as a Single Step

Table 3 summarizes the initial values of all parameters monitored in the experiments of
this study, henceforth referred to with a subscript 0 (e.g., TOC0) since those were the values
at the initial reaction time. As observed, the leachate water under study contained a high
load of organic matter (26.8 g L−1 of TOC and 10.2 g L−1 of aromaticity), which resulted
in a high chemical and biological oxygen demand (59.9 g L−1 of COD and 23.3 g L−1 of
BOD5, respectively). In addition, the high concentration of chlorides (5.01 g L−1), which is
a known HO• radical scavenger, can hinder the performance of CWPO [9,14]. The dose
of H2O2 used in the CWPO tests was established as the stoichiometric amount of H2O2
required to theoretically oxidize all organic matter, which was determined from the COD
value [34].

Table 3. Physico-chemical characteristics of the raw leachate.

Parameter Unity Value

TOC g L−1 26.8 ± 0.4
COD g L−1 59.9 ± 3.9
BOD5 g L−1 23.3 ± 1.1

Aromaticity g L−1 10.2 ± 0.6
Chlorides g L−1 5.01 ± 0.01

Conductivity mS cm−1 38.8 ± 0.1
pH at 25 ◦C - 7.2 ± 0.1

Color number (CN) m−1 40.0
Turbidity NTU 410 ± 6

Iron mg L−1 38.9 ± 2.8

Figure 1 shows the performance of CWPO applied as a single treatment of the leachate
water (without pretreatment) and the effect of the initial pH and catalyst load on CWPO,
assessed at 3.0–6.0 and 3.6–7.2 g L−1, respectively, using the catalyst HC.

The most acidic condition (pH0 = 3) resulted in a better CWPO performance at either
catalyst load. For the load of 3.6 g L−1, the treatment at the lowest initial pH (pH0 = 3)
resulted in the higher removal of COD and BOD5 (from 28% to 34% and from 47.7%
to 80% at pH0 = 6 and 3, respectively). TOC and aromaticity abatement were the only
parameters that experienced only a slight improvement at acidic pH (approximately 2% of
enhancement for each). It is noteworthy that ηH2O2 duplicated at a more acidic condition,
reaching 30%. The same phenomenon was observed for the catalyst load of 7.2 g L−1,
meaning that the CWPO for this leachate water performed better at acid pH, in line with
previous studies [24,34,35].

For the catalyst load, we observed that, at either pH0, a higher catalyst dosage led to a
higher abatement of the studied parameters. For example, at pH0 3, when using 3.6 g L−1 of
catalyst load, removals of organic matter, such as the TOC, COD, BOD5 and aromaticities of
17%, 34%, 79% and 61%, respectively, were obtained. When a catalyst load of 7.2 g L−1 was
considered, a significant enhancement of the TOC, COD, BOD5 and aromaticity removals
were observed (to 43%, 52%, 93% and 82%, respectively). The treatment conducted at pH0
3 and with the catalyst load of 7.2 g L−1 also reduced the turbidity and color number (CN)
by more than 95% of its original value.
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Figure 1. Effects of the initial pH and HC catalyst load (CHC) on the CWPO of leachate wa-
ter (Operating conditions: Vleachate = 25 mL, COD0 = 59.9 g L–1, CH2O2 = 85.7 g L–1 and 80 ◦C).
N.C. = non-catalytic run, CN = color number.

The considerable improvement in performance generated by the increase of catalyst
load is also confirmed by the ηH2O2 , reaching 43% of efficiency, almost three-times higher
than the value obtained in the CWPO run carried out at pH0 6 and catalyst load of 3.6 g L−1.
Similar results were also reported in other studies where the effect of catalyst concentration
on CWPO efficiency was analyzed. Diaz de Tuesta et al. (2021) observed that increasing
catalyst load from 0.5 g L−1 to 2.5 g L−1 at the same temperature (80 ◦C) increased caffeine
removal by two times [4]. Similar results were observed for phenol abatement using
a carbon black catalyst [12], an iron-based catalyst (Fe/γ-Al2O3) [13] and a gold-based
catalyst (Au/AC) [36].

The individual effect of pH0 and catalyst load in the abatement of all parameters
monitored in the CWPO process is evident. Furthermore, it is possible to observe that
the effect was different for each parameter. For example, the variation in BOD5 and
ηH2O2 were more affected by the pH than by the catalyst load. In addition, the effects of
both parameters also showed a synergy for certain parameters since the abatement greatly
increased, decreasing the pH at the highest catalyst load or increasing the catalyst load at the
most acidic pH. That effect was observed for the TOC, COD and aromaticity, demonstrating
the higher activity of the catalyst at lower pH. Therefore, pH0 of 3 and a catalyst load of
7.2 g L−1 were found to be the best condition chosen for the subsequent runs.

Figure 2 shows the results obtained for HC and PC at the selected conditions of pH0
of 3 and 7.2 g L−1 of catalyst load.
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Figure 2. Effects of the catalyst HC and PC on the CWPO of leachate water (Operating conditions:
Vleachate = 25 mL, pH0 = 3, COD0 = 59.9 g L–1, CH2O2 = 85.7 g L–1, Ccatalyst = 7.2 g L−1 and 80 ◦C).

We observed that both catalysts led to similar conversions since removals of 43% and
41% for TOC, 52% and 45% for COD, 93% and 91% for BOD5, 82% and 79% for aromaticity,
and 43% and 42% of ηH2O2 were obtained with HC and PC, respectively. Except for CN
and conductivity, the CWPO with HC presented slightly higher removals when compared
to PC. The removals achieved in those experiences can be ascribed to pure oxidation
since adsorption tests were also conducted at the same operating conditions (pH0 = 3,
COD0 = 59.9 g L–1, Ccatalyst = 7.2 g L−1, 80 ◦C), showing negligible removals (0% and 0.5%
with PC and 0% and 2.1% with HC, for TOC and COD, respectively). The adsorption
effect was expected to be low as neither of the catalysts has a very developed surface
area (Table 2).

It is known that the activity of catalysts in CWPO strongly depends on the capacity
of electron exchange of their active sites for the generation of hydroxyl and hydroper-
oxyl radicals from hydrogen peroxide decomposition and further oxidation of organic
substances present in the aqueous matrix [37]. Several works have reported the role of
oxygen-containing groups and related acid–base characteristics [38], residual metallic parti-
cles [38,39], defect sites [40], the presence of heteroatoms [41,42] and textural properties [43]
in the abatement of different pollutants.

It is often difficult to isolate a single site as the main active one as, in most cases, the
activity of those materials arises from a synergetic combination of numerous sites in the
catalyst particle. In this work, materials that differ significantly in their acid–base character,
in the amount of residual metallic particles and textural properties were synthesized, and
the activity they displayed was similar, suggesting that a mixture of those different possible
sites have relevant contributions to the activity revealed by those materials.

2.3. Ion Exchange Resin and CWPO

In order to enhance the removal of the organic content of the leachate water, a pretreat-
ment with ion exchange resins is herein proposed. The leachate water obtained after the
pretreatment was further subject to a CWPO treatment considering the conditions defined
above (pH0 = 3 and catalyst load of 7.2 g L−1). Figure 3 shows the results obtained in the
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CWPO of the leachate water with and without pretreatment by CAResin, using HC and
PC, to show the versatility of both catalysts. Since the pretreatment with the resins did not
result in any COD removal, no adjustment regarding the dose of H2O2 was needed.
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Figure 3. Effects of the pretreatment of the leachate waters by sequential anion and cation ex-
change prior to CWPO (Operating conditions: CAResin- pH0 = 3 and 9.5, Cresin = 20 g L−1;
CWPO- Vleachate = 25 mL, pH0 = 3, COD0 = 59.9 g L–1, CH2O2 = 85.7 g L–1, Ccatalyst = 7.2 g L−1

and 80 ◦C).

The combination of pretreatment by resin and subsequent CWPO proved to enhance
the treatment of the leachate waters, mainly on the degradation of the organic matter. For
example, in the runs conducted with HC catalyst, TOC abatement was enhanced from 43%
to 51% and COD removal from 50% to 65%, respectively, for the CWPO single treatment run
and the run using both CAResin and CWPO sequentially. However, aromaticity removal
decreased from 82%, considering the CWPO single treatment, to 71% in the sequential
resin and CWPO treatment, and BOD5 removal changed from 93% to 53%. This decrease in
the BOD5 removal combined with an enhancement of COD abatement indicates that the
CWPO after the treatment with CAResin enabled the degradation of a higher fraction of
organic matter.

However, the resultant effluent cannot be treated biologically compared to the single
CWPO treatment process. The main improvement can be noted in the efficiency of hydrogen
peroxide consumption. While ηH2O2 reached 43% for the CWPO of leachate water, the
ηH2O2 was 70% in the CWPO of the resin-pretreated effluent. The results may be ascribed to
removing some compounds during the pretreatment that can act as radical scavengers [9,14].
The pretreatment with the CAResin aimed at minimizing the interference of some radical
scavengers, such as bicarbonates and chlorides [5].

These radical scavengers consume hydroxyl radicals and hinder the oxidation of the
organic content of the leachate [20]. It can be concluded that the objective was achieved,
as in the CWPO reactions conducted with either PC or HC, an improvement in ηH2O2 was
observed, which means that fewer parallel reactions other than organic matter oxidation
took place. Since in a CWPO unit, H2O2 is the main operational cost [44], conditions that
result in a more efficient decomposition of the oxidant source are considered a key step in
developing suitable CWPO processes [44].
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Chloride ions, conductivity, CN and turbidity abatements had no significant changes
when comparing both approaches. Furthermore, no significant differences were found for
the runs conducted either with HC or PC.

To the best of our knowledge, there is a lack of reports in the literature that study
the combination of ion exchange resins and CWPO to treat leachates. In the work of
Oloibiri et al. (2017) [22], the treatment of landfill leachate was performed combining
three sequential techniques (coagulation–flocculation, activated carbon adsorption and ion
exchange resin). The main purpose of the ion exchange step was the removal of nitrogen
compounds as the last step of the treatment [22]. In this work, the ion exchange treatment
was rather used as a pretreatment step to reduce the complexity of the leachate and to
enhance the performance of CWPO.

Zamri et al. (2017) [23] evaluated the treatment of a stabilized leachate (COD average
= 1.8 g L−1 and BOD5 average = 0.21 g L−1) using ion exchange resin. The main focus was
the kinetic study and removing metallic ions, COD and NH3. They observed that a higher
resin mass enhanced the removal of COD [23]. In this work, the leachate studied has an
organic matter concentration noticeably higher (COD and BOD5 values are thirty- and
ten-times higher, respectively).

2.4. Coagulation–Flocculation and CWPO

Another strategy to improve the removal of organic matter consists in the application
of a coagulation–flocculation process as a pretreatment step before subjecting the effluent
to CWPO. For this purpose, four tests considering different loads of coagulants (5 and
10 g L−1) and pH (7 and 8) were conducted. Table 4 summarizes the TOC and COD values
obtained after those experiments. It is noteworthy that the experiments at pH 7 could not
remove any COD of the leachate water. Considering a pH of 8, removals of 16% and 23%
were obtained for coagulant concentrations of 5 and 10 g L−1, respectively.

Table 4. COD and TOC values of the leachate water after the coagulation–flocculation treatment at
different coagulant doses and pH conditions.

Parameter Original
Leachate

[Al2(SO4)3] = 5 g L−1 [Al2(SO4)3] = 10 g L−1

pH = 7 pH = 8 pH = 7 pH = 8

COD (g L−1) 59.9 59.9 50.2 59.9 46.2
TOC (g L−1) 27.0 27.0 23.8 27.0 22.4

Accordingly, the operational condition that resulted in the leachate water with a lower
COD value (pH of 8 and coagulant dosage of 10 g L−1) was chosen, and the effluent
obtained was then subjected to a CWPO run at pH0 = 3 and a catalyst load of 7.2 g L−1

(for both HC and PC). The results are depicted in Figure 4. The dose of H2O2 needed was
adjusted to the new COD value after coagulation–flocculation.

The strategy of combining coagulation–flocculation with CWPO resulted in the highest
removal of all analyzed parameters. As observed, the materials HC and PC displayed a very
different catalytic activity in the CWPO of the effluent after the coagulation–flocculation
treatment when compared to that obtained by single CWPO and by CAResin + CWPO
treatments. The use of PC as the catalyst resulted in a higher overall abatement of most
parameters when compared to the use of HC.
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Figure 4. Effects of the pretreatment of the leachate waters by sequential coagulation and floccula-
tion prior to CWPO (Operating conditions: Coagulation–flocculation-COD0 = 59.9 g L–1, pH0 = 8,
CAl2(SO4)3 = 10 g L–1; CWPO-Vleachate = 25 mL, pH0 = 3, COD0 = 46.2 g L–1, CH2O2 = 74.5 g L–1,
Ccatalyst = 7.2 g L−1 and 80 ◦C).

Overall, the highest mineralization obtained in this work was achieved when combining
the coagulation–flocculation step followed by CWPO with PC as the catalyst. This combination
increased the organic matter removal to above 70% for all parameters analyzed. The TOC,
COD, BOD5 and aromaticity removals were 70%, 94%, 99% and 94%, respectively, proving the
capacity of the proposed methodology to mineralize the organic matter of a heavily polluted
leachate water. An enhancement was observed for ηH2O2 from 43% (single CWPO treatment
process) and 68% (CAResin + CWPO) to 77% (coagulation–flocculation + CWPO).

In addition, it should be highlighted that the H2O2 dose needed for the CWPO of
pretreated leachate waters by coagulation–flocculation is lower than in the single CWPO
treatment since the amount of H2O2 added is related to the COD of the leachate, and COD
decreased during the pretreatment by coagulation–flocculation. Thus, a smaller amount of
H2O2 was required, and its consumption was more efficient. In the single CWPO treatment,
the abatement of BOD5 was two-times higher than the decrease of COD, showing that most
of the organic matter removal was of the biodegradable fraction. However, both BOD5
and COD parameters decreased above 90% (98% and 94%, respectively) by sequential
coagulation–flocculation and CWPO treatments, highlighting that this strategy could
degrade both non-biodegradable and biodegradable organic matter.

The removal of chloride content was also enhanced, from 5% (the lower abatement) to
36%. Turbidity and CN maintained a high abatement of 95% and 96%, respectively. The
treatment was very efficient in removing the color of the effluent (Figure 5), which is crucial
for the perception of treatment efficiency.
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Figure 5. Color removal after treatments. (a) Original leachate water, (b) after coagulation–
flocculation (Coag. + Floc.) step and (c) after sequential coagulation–flocculation and Catalytic
Wet Peroxide Oxidation (CWPO) treatment with PC catalyst.

When considering HC as the catalyst, the sequential coagulation–flocculation and
CWPO also enhanced the abatement of all analysed parameters, except for BOD5. TOC
removal increased from 43% to 65%, COD from 50% to 76% and aromaticity from 80% to
90%. BOD5 decreased from 93% to 77%. However, the most interesting result observed
when applying HC is not related to the high mineralization of organic content but to the
efficiency in the consumption of H2O2. For the single CWPO treatment, the ηH2O2 obtained
was 43%, combining CAResin and CWPO with HC resulted in a ηH2O2 of 70%, and with
the coagulation–flocculation treatment and CWPO, ηH2O2 reached ca. 100%, which means
that all H2O2 consumed was used to remove the TOC.

Although mineralization was not itself as high as when using PC, as mentioned
before, efficient use of H2O2 may impact the cost of the CWPO unit [44]. The main
difference observed with ηH2O2 when using PC or HC catalyst may be ascribed to the
slower decomposition of H2O2 when applying HC (as shown in Figure 6). This may be
ascribed to the basic character of PC (cf. Table 2) since basic catalysts are known to result in
less efficient consumption of hydrogen peroxide for catalytic peroxidation processes [42].
Chlorides and conductivity also presented higher abatements, from 35% and 21% to 54%
and 35%, respectively. Removals of turbidity and CN were maintained above 95%.
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Figure 6. Decomposition of hydrogen peroxide using PC and HC catalysts considering a single
H2O2 addition at the beginning of the reaction. (Operating conditions: pH0 = 3, Ccatalyst = 1.6 g L−1,
CH2O2 = 85.7 g L−1, 80 ◦C).
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Preliminary tests regarding the reusability of the catalysts were performed, and the
results are displayed in Figure 7. For the PC catalyst, no performance loss was observed
after the second cycle of reuse (TOC removal of 69% for the first and second cycles).
However, on the third cycle of reuse, a slight loss of performance was observed (TOC
removal dropped to 64%). On the other hand, for the HC catalyst, an improvement in
the abatement of TOC was observed in the second reuse cycle (72%) compared to the first
cycle (63%), which was maintained for the third cycle (72%). This behaviour regarding
an improvement in the catalytic activity of carbon-based materials was also observed in
previous publications [12]. H2O2 promotes an oxidation of the carbon material, increasing
its catalytic activity in further runs [12]. Those preliminary results reported here should
prompt further studies into the reutilization of those materials.

Catalysts 2021, 11, x FOR PEER REVIEW 11 of 18 
 

 

Figure 6. Decomposition of hydrogen peroxide using PC and HC catalysts considering a single H2O2 
addition at the beginning of the reaction. (Operating conditions: pH0 = 3, Ccatalyst = 1.6 g L−1, CH2O2 = 
85.7 g L−1, 80 °C). 

Preliminary tests regarding the reusability of the catalysts were performed, and the 
results are displayed in Figure 7. For the PC catalyst, no performance loss was observed 
after the second cycle of reuse (TOC removal of 69% for the first and second cycles). How-
ever, on the third cycle of reuse, a slight loss of performance was observed (TOC removal 
dropped to 64%). On the other hand, for the HC catalyst, an improvement in the abate-
ment of TOC was observed in the second reuse cycle (72%) compared to the first cycle 
(63%), which was maintained for the third cycle (72%). This behaviour regarding an im-
provement in the catalytic activity of carbon-based materials was also observed in previ-
ous publications [12]. H2O2 promotes an oxidation of the carbon material, increasing its 
catalytic activity in further runs [12]. Those preliminary results reported here should 
prompt further studies into the reutilization of those materials.  

 
Figure 7. TOC removal after reutilization runs with PC and HC catalysts for a leachate water 
previously treated by coagulation–flocculation (Operating conditions: pH0 = 3, COD0 = 46.2 g L–1, 
CH2O2 = 74.5 g L–1, Ccatalyst = 7.2 g L−1 and 80 °C). 

Table 5 displays a comparison of some published works related to the treatment of 
real leachate waters using a combination of coagulation–flocculation and Advanced Oxi-
dation Process (AOP). Although some works also resulted in high removals of COD (close 
to 90%), most reports are related to leachate waters with a much lower pollutant load 
(lower COD and BOD5) than the leachate water treated in this work. To the best of our 
knowledge, there is no other work dealing with the treatment of leachate waters with high 
concentrations of pollutants, as reported in this paper, using a combination of two low-
cost technologies (coagulation–flocculation and CWPO), especially applying sustainable 
catalysts obtained from a waste source. 

Table 5. Publications related to the treatment of leachate waters combining a pre-treatment step and 
an advanced oxidation step. 

Sequential treatment Leachate characteristics Catalyst Abatement Ref. 
Coagulation–flocculation + 

Photo-Fenton 
[COD] = 15 g L−1 

[TC] = 8 g L−1 Fe2+ 
63% and 96% for COD 
and TC, respectively [45]  

Coagulation–flocculation + 
Ozonation 

[COD] = 4 g L−1 
[BOD5/COD] = 0.01 

[CN] = 3.5 cm−1 
N.A. * 

88% and 98% for COD 
and CN, respectively 
BOD5/COD increased 

to 0.34 

[46]  

HC PC
0

20

40

60

80

100

3rd2nd

1st

X
ΤΟ

C 
(%

)

1st 2nd

3rd

Figure 7. TOC removal after reutilization runs with PC and HC catalysts for a leachate water
previously treated by coagulation–flocculation (Operating conditions: pH0 = 3, COD0 = 46.2 g L–1,
CH2O2 = 74.5 g L–1, Ccatalyst = 7.2 g L−1 and 80 ◦C).

Table 5 displays a comparison of some published works related to the treatment of real
leachate waters using a combination of coagulation–flocculation and Advanced Oxidation
Process (AOP). Although some works also resulted in high removals of COD (close to 90%),
most reports are related to leachate waters with a much lower pollutant load (lower COD
and BOD5) than the leachate water treated in this work. To the best of our knowledge, there
is no other work dealing with the treatment of leachate waters with high concentrations
of pollutants, as reported in this paper, using a combination of two low-cost technologies
(coagulation–flocculation and CWPO), especially applying sustainable catalysts obtained
from a waste source.
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Table 5. Publications related to the treatment of leachate waters combining a pre-treatment step and
an advanced oxidation step.

Sequential Treatment Leachate
Characteristics Catalyst Abatement Ref.

Coagulation–flocculation +
Photo-Fenton

[COD] = 15 g L−1

[TC] = 8 g L−1 Fe2+ 63% and 96% for COD and
TC, respectively [45]

Coagulation–flocculation +
Ozonation

[COD] = 4 g L−1

[BOD5/COD] = 0.01
[CN] = 3.5 cm−1

N.A. *
88% and 98% for COD and

CN, respectively
BOD5/COD increased to 0.34

[46]

Coagulation–flocculation +
Photo-Fenton

[COD] = 6 g L−1

Turbidity = 140 NTU Fe2+ 63% and 80% for COD and
turbidity, respectively [47]

Air stripping + Fenton +
sequencing batch reactor

(SBR) +
coagulation–flocculation

[COD] = 4.5 g L−1

[BOD5] = 0.8 g L−1 Fe2+ 93% and 88% for COD and
BOD5, respectively [48]

Coagulation–flocculation +
microeletrolysis-Fenton [COD] = 6 g L−1 Fe-C 90% of COD [20]

Catalytic oxidation +
chemical precipitation +

perozonation (O3/H2O2) +
biological oxidation

[COD] = 2.8 g L−1

[BOD5] = 0.36 g L−1

Turbidity = 29 NTU
N.A. * 75% and 95% for COD and

turbidity, respectively [49]

Coagulation + heterogeneous
photo-Fenton

[COD] = 4.9 g L−1

[BOD5] = 0.15 g L−1 Iron microspheres (Fe0) 85–90% for COD [50]

Coagulation–flocculation +
CWPO

[COD] = 60 g L−1

[TOC] = 27 g L−1

[BOD5] = 23 g L−1

Turbidity = 410 NTU

Compost-based 94%, 70% and 99% for COD,
TOC and BOD5, respectively This work

* N.A. = not applicable.

By the end of their life, the sustainable catalyst produced in this work could be easily
managed by being incorporated into construction materials [51,52], or, after thermal or
hydrothermal treatments, they could be redirected for soil amendment purposes [53,54],
energy recovery [53,55,56] or even for resource recovery [54], such as organic acids, alcohols
and other nutrients.

3. Materials and Methods
3.1. Reagents and Materials

The compost and leachate waters used in this work were collected from an MBT plant
for MSW located in the north of Portugal. The characteristics of the matured compost
were reported in previous works [1,29]. The leachate water was filtered using an analytical
paper filter of 25 µm in order to remove the suspended solids that would interfere with the
analytical measurements. The leachate properties are summarized in Table 3.

Hydrogen peroxide (H2O2, 30% w/v) and sodium hydroxide (NaOH, 98.73%) were
supplied by Fisher Chemical (Waltham, MA, USA). Sulfuric acid (H2SO4, 98%) was sup-
plied by Labkem (Barcelona, Spain). Titanium (IV) oxysulfate (TiOSO4, 99.99 wt.% metal
basis, c.a. 15 wt.% solution in dilute sulfuric acid) was supplied by Sigma-Aldrich (Stein-
hein, Germany). Silver nitrate (AgNO3 for analysis, ACS, ISO), mercury (II) sulfate (HgSO4,
99%), potassium dichromate (K2Cr2O7, 99.5%) and aluminum sulfate octadecahydrate
(Al2(SO4)3·18H2O) were obtained from Panreac (Barcelona, Spain). Folin–Ciocalteu’s phe-
nol reagent by Merck (Darmstadt, Germany). All reagents were used as received without
further purification. Distilled water was used throughout the research.

Sigma-Aldrich and Alfa Aesar (Kandel, Germany), respectively, supplied Lewatit TP
207 and Amberlite IRA-402(Cl) ion resins.
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3.2. Preparation and Characterization of Catalysts

Compost was first washed with distilled water (one liter per 100 g of compost) under
strong stirring to homogenize the precursor and suspended solids removed by filtration.
The recovered solid was dried overnight at 60 ◦C and later sieved to obtain particle sizes
from 53 to 106 µm, resulting in the raw precursor (RP) used to prepare the catalysts.

Two catalysts were then prepared from RP using pyrolysis and HTC (hydrothermal
carbonization) methodologies, resulting in pyrochar (PC) and hydrochar (HC), respec-
tively. The PC catalyst was obtained by thermal treatment at 800 ◦C under N2 flow
(100 Ncm3 min−1) for 4 h, following the procedure described elsewhere [29]. The HC
material was obtained by heating the homogenized compost suspended in water (1 g L−1)
at 230 ◦C for 2 h in an autoclave reactor following the procedure described elsewhere [1].
HC was then recovered, abundantly washed with distilled water and dried overnight at
60 ◦C.

Elemental analysis (EA) of PC and HC were performed in a Carlo Erba EA 1108
Elemental Analyzer (Egelsbach, Germany) in order to quantify their contents of C, H, N
and S. For the determination of ashes, PC and HC catalysts were weighed before and after
calcination at 800 ◦C during 4 h in a static air muffle. The composition of the ashes of RP,
HC and PC were estimated by microwave-based acid digestion followed by Inductively
coupled plasma-optical emission spectrometry (ICP-OES) analysis (Jobin Yvon Activa M.)
(Horiba Scientific, Kyoto, Japan).

BET surface areas (SBET) of PC and HC were determined from the analysis of N2
adsorption-desorption isotherms at 77 K, using a Quantachrome NOVA TOUCH LX4
adsorption analyzer (Anton Paar, Graz, Austria). Before determining the adsorption-
desorption curves, PC and HC catalysts were degasified under vacuum at 120 ◦C for
16 h.

3.3. Treatment of the Leachate Waters
3.3.1. Ion-Exchange Resin

For the pretreatment with cationic and anionic ion exchange resins (CAResin), 150 mL
of leachate with a pH previously adjusted to 9.5 (as producer recommendation) with a
NaOH 1 M solution was mixed with 3.0 g of the cationic ion exchange resin (TP207) in
an Erlenmeyer and stirred (240 rpm) for 48 h. Subsequently, the leachate was filtered and
its pH adjusted to 3.0 (using an H2SO4 1 M solution) and treated with the anionic resin
IRA-402(Cl), under the same conditions discussed above (150 mL of leachate, 3 g of resin,
240 rpm and 48 h of contact time).

3.3.2. Coagulation–Flocculation

Coagulation–flocculation tests were performed in Jar-Test equipment, using Al2(SO4)3
as the coagulant. Briefly, 400 mL of leachate was adjusted to pH = 7 or 8 (using NaOH
and H2SO4 1 M solutions). Then, the adequate quantity of Al2(SO4)3 was dosed to reach
concentrations of 5 or 10 g L−1 and the solution was stirred at 200 rpm for 5 min, at 20 rpm
for 30 min and then left to rest for 5 h. Finally, the suspension was filtered under vacuum
using a qualitative paper filter for further treatment by CWPO processes.

3.3.3. CWPO Experiments

The CWPO runs were conducted in a 500 mL glass round-bottom flask, equipped with
a condenser, continuously stirred and submerged in a heated oil bath with temperature
control. First, the pH of the leachate was adjusted to the desired value (3.0 or 6.0) employing
H2SO4 and NaOH 1 M aqueous solutions. Then, 25 mL of the leachate water was transferred
to the flask and heated to 80 ◦C (temperature selected according to previous works [4,35]).
The addition of 30% hydrogen peroxide was split into five stepwise additions at 0, 60, 120,
180 and 240 min of reaction time (the same volume of H2O2 was dosed for each load),
amounting to a concentration of 85.7 g L−1 (determined based on the theoretical amount
needed to mineralize all COD [34]).
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After adding the first hydrogen peroxide dose, the selected quantity of either PC or
HC was loaded (Ccatalyst = 3.6 or 7.2 g L−1), setting this reaction time as t0 = 0 min. Several
samples were then collected at selected reaction times to monitor the experiments for 24 h.
At the end of the reaction, the catalyst was separated from the liquid phase by filtration
with a membrane filter (0.45 µm). The recovered catalyst was dried in an oven at 60 ◦C
overnight and reutilized without further treatments.

3.4. Analytical Techniques

TOC was determined using a Shimadzu TOC-L CSN analyzer (Kyoto, Japan). The
H2O2, COD and aromaticity concentrations were determined by UV-VIS colorimetric meth-
ods (T70 UV/Vis Spectrometer, PG Instruments, Leicestershire, UK,) at the wavelengths of
405, 440 and 254 nm, respectively, following the methodology described elsewhere [5,34,57].
The interference of H2O2 in COD measurements was considered [58] to build a calibration
curve to subtract the COD of H2O2 on COD measurements (R2 = 0.9935). The apparent
COD value obtained (CODapp) was corrected as described in Equation (1).

COD (g L−1) = CODapp (g L−1) − 0.3305 CH2O2 (g L−1) + 12.387 g L−1 (1)

The BOD5 was determined by the standardized respirometric OxiTop method (WTW,
Xylem, Weilheim, Germany), and the apparent obtained BOD5 (BOD5,app) was corrected
using the theoretical interference of H2O2, using Equation (2) as given elsewhere [5].

BOD5 (g L−1) = BOD5,app (g L−1) − 0.4706 CH2O2 (g L−1) (2)

The conductivity, pH and turbidity were measured at room temperature using WTW In-
oLab Cond Level 1, PHS-3BW Bench TOP pH/mV/◦C meter (Bante Instruments, Shanghai,
China) and WTW Turb 550 equipment (Xylem, Weilheim, Germany), respectively. The
concentration of chlorides was determined using potassium chromate as an indicator
by Mohr titration with silver nitrate. The color number (CN) was determined by a UV-
VIS methodology, following the methodology described elsewhere [59,60]. Briefly, each
spectral absorption coefficient (SACi) was determined by absorption (Absi) at the selected
wavelengths of 436, 525 and 620 nm (Equation (3)), where x stands for the path length of
the cuvette (0.01 m). The color number was then determined from the SACs as detailed
in Equation (4).

SACi

(
m−1

)
=

Absi
x(m)

(3)

CN
(

m−1
)
=

SAC2
436 + SAC2

525 + SAC2
620

SAC436 + SAC525 + SAC620
(4)

The efficiency of H2O2 consumption (ηH2O2 ) was calculated considering the amount
of H2O2 necessary to oxidize 1 mol of carbon, as described in a previous work related to
CWPO [44] (Equation (5)).

ηH2O2(%) =
XCTOC,0 − CTOC

CH2O2,0 − CH2O2 XH2O2

(
2 molH2O2

1 molTOC

)
·100 (5)

where CTOC,0 and CH2O2,0 are the initial molar concentrations of total organic carbon and
hydrogen peroxide, respectively, CTOC and CH2O2 are those concentrations at the end of the
treatment, and XTOC is the conversion of TOC.

4. Conclusions

The combination of physicochemical pretreatments with CWPO, using low-cost sus-
tainable catalysts prepared from matured compost, proved to be a viable alternative for
the treatment of real leachate waters containing high organic pollutant concentration
(TOC = 27 g L−1, COD = 60 g L−1, BOD5 = 23 g L−1 and aromaticity = 10 g L−1). The
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CWPO treatment of the leachate water was strongly influenced by the pH and catalyst load,
both parameters showing a synergy that led to obtaining higher removals at the minimal
pH tested (T = 80 ◦C, pH0 = 3).

The leachate water may be treated directly by CWPO obtaining removals of 43%,
52%, 93% and 82% for TOC, COD, BOD5 and aromaticity, respectively, at T = 80 ◦C,
pH0 = 3, Ccatalyst = 7.2 g L−1 and using the stoichiometric dose of hydrogen peroxide for
the mineralization of COD (CH2O2 = 85.7 g L−1).

The sequential treatment of the leachate by ion-exchange resin or coagulation–flocculation
followed by CWPO enhanced the removal of organic matter and improved the efficiency
of H2O2 consumption in the latter. The highest mineralization of organic matter was
obtained by sequential treatment of coagulation–flocculation pretreatment at pH 8 using
Al2(SO4)3 = 10 g L−1, followed by CWPO (at the conditions as mentioned earlier) using
the catalyst obtained from pyrolysis (PC), resulting, respectively, in TOC, COD, BOD5 and
aromaticity removals of 70%, 95%, 99% and 94%.

On the other hand, when applying HC as the catalyst after pretreatment by coagulation–
flocculation, the best result in terms of the efficiency in degrading H2O2 was achieved
(ca. 100% efficiency), likely due to a more neutral character of this catalyst. Using either
PC or HC as catalysts, an efficient color abatement was observed, which is a particularly
important parameter for the perception of the quality of treatment and the final effluent.
Preliminary tests regarding the reusability of the catalysts were performed, and no evident
loss of performance was observed, although further studies should be conducted.
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