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Abstract: Proton exchange membrane (PEM) fuel cells using Pt-based materials as electrocatalysts
have achieved a decent performance, represented by the launched Toyota Mirai vehicle. The ideal
PEM fuel cells consume stored pure hydrogen and air. However, SO2, as a primary air contaminant,
may be fed along with air at the cathode, leading to Pt site deactivation. Therefore, it is important
to improve the SO2 tolerance of catalysts for the stability of the oxygen reduction reaction (ORR).
In this work, we develop the Pt/C-TiO2 catalyst against SO2 poisoning during ORR. Impressively,
the hybrid Pt/C-TiO2 catalyst with 20 mass % TiO2 shows the best ORR and anti-toxic performance:
the kinetic current density of ORR is 20.5% higher and the degradation rate after poisoning is 50%
lower than Pt/C. The interaction between Pt and TiO2 as well as the abundant hydroxyl groups on
the surface of TiO2 are both revealed to account for the accelerated removal of poisonous SO2 on
Pt surfaces.

Keywords: electrocatalysis; oxygen reduction reaction; sulfur dioxide; durability

1. Introduction

The PEM fuel cell has been considered as one of the most promising automobile power
supplies owing to its high energy efficiency and environmental benefits [1–3]. Delightfully,
the first-generation Toyota Mirai has provided an excellent example, using PtCo as a
cathode catalyst, achieving a max power with 114 kW and an endurance mileage of up
to 502 km. However, the widespread implementation of PEM fuel cells is facing a greatly
challenging poisoning/degradation problem caused by impurities such as SO2 and NOx
in the air, which is ideally supplied directly to the cathodes [4,5]. In particular, SO2 can
strongly adsorb onto the Pt surface and deactivate the active sites for the oxygen reduction
reaction (ORR), leading to the degradation of ORR performance [6–13]. For example,
it has been reported that the continuous feeding of 2.5 ppm SO2/air mixture for 45 h
at the cathode significantly reduced the fuel cell performance by 53% and, importantly,
the subsequent continuous clean air feeding for 20 h could not completely recover the
performance [14]. This is because the widely accepted Pt/C catalysts are not efficient
enough to remove the Sx species once the coverage is higher than 14%, where up to 95% of
mass activity can be lost [15]. In addition, an extremely harsh potential range of 1.2 V~1.5 V
is required to completely oxidize SOx into water-soluble SO2−

4 and/or HSO−
4 , which is

much higher than the working potential of a PEM fuel cell (0.6 V~0.8 V) [6,16,17]. In
this regard, the poisoning SO2 species is almost irreversible under the normal operating
conditions of a PEM fuel cell [18]. This fact triggers us to explore innovations in developing
advanced anti-poisoning catalysts.
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Numerous efforts have been made to prevent Pt-based catalysts from SO2 poison-
ing [19]. For example, Baturina and coworkers [20,21] found that the adsorbed SO2 is
more easily oxidized and removed on Pt3Co/C than Pt/C, although the alloying Pt3Co/C
catalyst is more sensitive to the poisoning (The same concentration of SO2 has a more
serious effect on the ORR performance of Pt3Co/C). They found that H2O is more likely
to decompose into hydroxyl (-OH) on Pt3Co/C, which is beneficial for accelerating the
electro-oxidation of SO2. In addition, Xu et al. [22] found that the SO2-poisoned 5 mass %
WOx–Pt/C can cause a higher loss of SO2 than commercial Pt/C after the first potential
cycling up to 1.5 V, which might be due to the synergistic effect between WOx and Pt. The
OH group on the hydrophilic WOx surface and the hydrogen spillover effect promote the
electro-oxidation of sulfur-containing species. In their latter work, the Pt/CeO2/C catalyst
was prepared by one-pot synthesis, enhancing the oxygen migration and thus improving
SO2 electro-oxidation and ORR activity [23,24]. In our previous work, we found that Ru
efficiently modified the electronic structure of Pt in PtRu alloy catalysts, leading to a weaker
interaction between Pt and SO2 [25]. In this work, we will focus on the effect of metal
oxides to the ORR performance and SO2 tolerance of Pt.

To tone-up the positive effects of oxidative hydroxyl and synergy, we herein develop
a hybrid Pt/C-TiO2 catalyst against SO2 poisoning during ORR. The selection of TiO2 is
based on its high hydrophilicity and outstanding chemical and electrochemical stability, as
well as strong interaction with the Pt component [26–33]. Importantly, based on the above
discussions, the abundant hydroxyl groups (-OH) on the hydrophilic TiO2 surface may
benefit poisonous sulfur removal. Accordingly, the electro-oxidation of SO2 is significantly
accelerated on such a Pt/C-TiO2 catalyst to reduce the SO2 poisoning. To our knowledge,
the effect of TiO2 on suppressing SO2 poisoning of Pt-based ORR catalysts has not been
reported. In this work, our hybrid Pt/C-TiO2 catalysts have higher ORR activity and better
sulfur tolerance compared to traditional Pt/C.

2. Results and Discussion
2.1. Characterization of Catalysts

Figure 1 shows the X-ray diffraction (XRD) patterns of the as-prepared Pt/C, Pt/C-
20TiO2 catalysts and TiO2 nanoparticles. For the Pt/C sample, the broad X-ray diffraction
peak in the range of 20◦~30◦ corresponds to the amorphous structure of XC-72 carbon
black, while the peaks at 39.8◦, 46.2◦, 67.5◦, and 81.3◦ correspond to Pt(111), (200), (220),
and (311) facets, respectively (JCPDS No. 04-0802). The commercial TiO2 sample shows
sharp peaks, which can be indexed to the anatase TiO2 (JCPDS No. 21-1272). The XRD
pattern of Pt/C-20TiO2 has the X-ray diffraction peaks of both Pt and TiO2. The above facts
demonstrate that the Pt/C and Pt/C-20TiO2 were synthesized successfully.

As the high-resolution transmission electron microscopy (HRTEM) image in Figure 2a
shows, the Pt nanoparticles are uniformly dispersed on the carbon supports with an average
size of about 2.74 nm (Figure S1). A small Pt particle size and uniform dispersion potentially
ensure good catalytic performance [34]. Figure 2b shows TEM images of the as-prepared
Pt/C-20TiO2 catalyst. The lattice fringes of 0.35 nm (red tags) and 0.22 nm (yellow tags) are
assigned to the TiO2 (101) plane and the Pt (111) plane, respectively. It can be seen that the
TiO2 and Pt particles are well contacted with each other.

2.2. Electrocatalytic Performance

The cyclic voltammogram (CV) and linear sweep voltammetry (LSV) curves of all
pristine catalysts (before poisoning) are shown in Figure 3a,b, respectively. The elec-
trochemical surface areas (ECSAs) of all the catalysts were calculated based on the H2
adsorption/desorption region at 0~0.3 V in CV curves. All the relevant data recorded and
calculated from electrochemical measurement are listed in Table 1.
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Figure 2. (a) TEM images of Pt/C and (b) Pt/C-20TiO2 catalysts.

The results show that the addition of TiO2 has little effect on the ECSA of the Pt/C
catalyst. Compared with that of Pt/C, the current peak, representing the oxygen reduction
of the Pt/C-TiO2 catalysts, shifts positively when TiO2 ≤ 30%; Pt/C-20TiO2 has the most
positive oxygen reduction peak, which likely indicates the best ORR activity, consistent
with the LSV results in Figure 3b. The activity towards ORR is improved by increasing TiO2
content and then started to decrease after reaching a maximum value, i.e., Pt/C-20TiO2.
Too much TiO2 (≥30 mass %) hinders the ORR activity, which is due to the low electron
conductivity of TiO2. On the other hand, the half-wave potential (E1/2) of Pt/C-20TiO2
is 0.867 V, presenting an increase by 0.014 V compared with Pt/C (0.853 V), and the ik @
0.9 V is 2.337 mA/cm2, 20.5% higher than Pt/C (1.939 mA/cm2). Based on the Koutechy–
Levich (K–L) equation (see Section 3.3), the ORR polarization curves of Pt/C-20TiO2 were
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measured at different rotation speeds (Figure S2a). The charge transfer electrons (n) of
Pt/C-20TiO2 can be derived from the slopes of the liner K-L plot (Figure S2b), which are
3.89, 3.87, 3.87, and 3.86 at 0.75 V, 0.7 V, 0.65 V, and 0.6 V, respectively, indicating the
four-electron reaction pathway of ORR. This fact demonstrates the positive effect of TiO2
for ORR activity.
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Table 1. Electrochemical data of all pristine (before poisoning) and SO2-poisoned catalysts.

Sample

Pristine SO2 Poisoned Negative Shift of
E1/2 after Poisoning

(mV)

Loss of ik @
0.9 V after
Poisoning

ECSA
(m2 gPt−1) E1/2 (V) ik@ 0.9 V

(mA cm−2)
ECSA

(m2 gPt−1) E1/2 (V) ik@ 0.9
V (mA cm−2)

Pt/C 97.07 0.853 1.939 27.06 0.782 0.624 71 67.8%
Pt/C-5TiO2 97.84 0.855 2.042 26.55 0.800 1.175 55 42.5%
Pt/C-10TiO2 102.04 0.858 2.172 28.32 0.809 1.424 49 34.4%
Pt/C-20TiO2 101.46 0.867 2.337 25.99 0.814 1.517 53 35.1%
Pt/C-30TiO2 99.11 0.86 2.210 29.82 0.775 0.801 85 63.7%
Pt/C-40TiO2 95.11 0.855 1.884 26.81 0.736 0.716 119 62.0%

The first CV scans of each catalyst after poisoning in Ar-saturated 0.1 M HClO4 solution
are shown in Figure 4a, where the ECSA of all the catalysts decreases in a similar way
because the strongly adsorbed SO2 blocks the active site of Pt. In addition, clear oxidation
peaks are observed in the potential range of 0.8 V~1.5 V, due to the electrochemical oxidation
of SO2. Notably, there is a negative shift in the SO2 oxidation peak of Pt/C-TiO2 catalysts
compared with Pt/C, indicating the higher activity of Pt/C-TiO2 catalysts to oxidize SO2.
Particularly, the Pt/C-20TiO2 has the largest negative shift by about 50 mV in SO2 oxidation,
as shown in Figure 4b. The oxide reduction potential region of Figure 4b is magnified
and shown in Figure 4c to compare the catalytic performance of Pt/C and Pt/C-20TiO2
before and after poisoning. It is clear that the reduction peaks of Pt/C-20TiO2 before or
after poisoning all positively shift compared with the Pt/C catalyst, indicating that the
Pt/C-20TiO2 has a better electrocatalytic performance to reduce oxygen-bearing species
than Pt/C at initial and after sulfur poisoning.
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The LSV curves of ORR after SO2 poisoning are shown in Figure 5a. After SO2
poisoning, the ORR activity of all catalysts is decreased, although the Pt/C-20TiO2 catalyst
still has the best ORR activity. The ik@ 0.9 V comparison between the fresh and poisoned
catalysts is shown in Figure 5b. With the addition of TiO2, the decrease percentage of kinetic
current density is significantly lowered. The Pt/C-10TiO2 and Pt/C-20TiO2 catalysts have
the smallest activity decay by only 34.4% and 35.1%, respectively, in contrast to 67.8% for
Pt/C. Table 1 shows that the E1/2 of Pt/C-20TiO2 went down by 53 mV negatively after
poisoned, much lower than the 71 mV of Pt/C. All this indicates that the SO2 tolerance of
Pt/C-20TiO2 is greatly improved than Pt/C.
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2.3. Mechanism of SO2 Tolerance

The X-ray photoelectron spectroscopy (XPS) spectra of the O 1s, Ti 2p and Pt 4f regions
in TiO2, Pt/C, and Pt/C-20TiO2 are shown in Figure 6. As shown in the O 1s region
(Figure 6a), the peaks at 533.5 ± 0.1 eV, 532.2 ± 0.1 eV and 530.6 ± 0.1 eV are assigned
to physically absorbed water (O1), chemisorbed OH species (O2), and lattice oxygen in
TiO2 and/or PtO (O3) [26,35]. In addition, it can be seen that the Ti 2p binding energy of
Pt/C-20TiO2 has a negative shift by 0.4 eV compared with Pt/C (Figure 6b). The Pt 4f
regions for Pt/C and Pt/C-20TiO2 can be fitted into three sets of doublets (Figure 6c). For
the Pt/C, Pt 4f peaks at 71.4 eV and 74.7 eV are assigned to Pt (0), 72.8 eV and 76.1 eV to
Pt (II) in PtO or Pt(OH)2-like species, and 74.0 eV and 77.3 eV to Pt(IV) in PtO2. Interestingly,
the binding energy of the Pt/C-20TiO2 catalyst is negatively shifted by 0.3 eV compared to
the Pt/C catalyst, indicating an electronic interaction between Pt and TiO2.
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The electron transfer from TiO2 to Pt increases the electron density of Pt, which was
reported as a necessity for effective ORR [36]. In addition, the binding energy between
Pt and OH-like oxygen-containing species is weakened, which accelerates the reaction of
O, OH, and H+ to generate H2O and improves the ORR activity [37,38]. Jaksic et al. [39]
found that in aqueous media, OH on the surface of metal oxides such as WO3 and TiO2
can be transferred to the Pt surface to form Pt-OH, which is the so-called spillover effect.
Reasonably, such an OH spillover effect of TiO2 will repel the OH groups on Pt, leading to
decreased binding energy between OH and Pt and promoting ORR activity [40]. On the
other hand, the electronic interaction between Pt and TiO2 is able to weaken the adsorption
of poisoning species on Pt surfaces [25,41]. At the same time, the spillover effect of oxidative
OH on the TiO2 surface plays a significant role in promoting the electro-oxidation (removal)
of SO2 [22]. Figure 7 is provided to illustrate this mechanism. For the Pt/C-TiO2 catalyst:
Pt provides electrocatalytic active sites for oxygen reduction; C supports Pt nanoparticles
and conducts electrons; and TiO2 modifies the electronic structure of Pt to enhance the ORR
activity and SO2 tolerance.
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3. Materials and Methods
3.1. Chemicals and Materials Characterization

Chloroplatinic acid (H2PtCl6, Sinopharm Chemical Reagent), Vulcan carbon XC-72
(Cabot Corp, Boston, MA, USA), TiO2 nanoparticles (25 nm, anatase, Aladdin, Shanghai,
China), perchloric acid (HClO4, Aladdin, Shanghai, China), anhydrous sodium sulfite
(Na2SO3, Dupont, Eleutherian Mills, DE, USA), and 5.0 wt % Nafion aqueous solution
(Dupont, Eleutherian Mills, DE, USA) were of analytical grade and used as received if not
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specified. Deionized water (18.2 MΩ cm, Mill-Q Corp, Darmstadt, Germany) was used in
all of the experiments.

TEM and HRTEM images were taken on JEOL JEM-2100 with an acceleration voltage
of 300 kV. The morphologies and crystal structure of the Pt/C, Pt/C-TiO2 catalyst and
TiO2 nanoparticles were characterized by XRD (Netherlands, Panalytical X’PERT) using
Cu Kα radiation. XPS measurements were performed by a Physical Electronics PHI model
5700 instrument with an electron energy analyzer, with half-spherical precision using Al
Kα radiation (1486.6 eV). The binding energy of all samples was calibrated vs. the C 1s
value of 284.6 eV.

3.2. Synthesis of Catalysts

The Pt/C catalyst (20 mass % Pt) was prepared by the microwave-assisted polyol
reduction method [42]. Briefly, 40 mg Vulcan XC-72 carbon black was well-dispersed into
60 mL ethylene glycol (EG) and isopropanol (V/V = 4:1) under ultrasonic treatment for 2 h.
Then H2PtCl6-EG solution was added to the slurry and stirred constantly for 2 h. Next,
1 mol/L NaOH-EG solution was dropped into the slurry under continuous stirring until
the pH was stable at 12. Argon was injected into the slurry for 20 min to remove oxygen,
which was then placed in a microwave oven (2450 MHz, 800 W) and heated for 2 min. After
the solution was cooled down to room temperature, a certain amount of dilute nitric acid
was added to pH = 3, followed by stirring for 12 h. After washing with plenty of boiling
ultra-pure water (Milli-Q, 18 MΩ cm), the Pt/C catalyst was dried in a vacuum oven at
70 ◦C for 12 h.

The Pt/C catalyst ink was prepared by dispersing 5 mg Pt/C catalyst into a mixture
of 5 µL of 5 wt.% Nafion solution, 1.25 mL isopropanol, and 3.75 mL ultra-pure water.
For the hybrid Pt/C-TiO2 catalyst ink, a certain amount of TiO2 nanoparticles were first
dispersed in 3.75 mL ultra-pure water, prior to adding and dispersing 5 mg Pt/C, 5 µL
Nafion solution, and 1.25 mL isopropanol. The hybrid catalysts were labeled as Pt/C-5TiO2,
Pt/C-10TiO2, Pt/C-20TiO2, Pt/C-30TiO2, and Pt/C-40TiO2 using different TiO2 contents of
5, 10, 20, 30, and 40 mass %.

3.3. Electrochemical Measurements

All electrochemical measurements were carried out in a three-electrode system with
an electrolyte of 0.1 mol/L HClO4 aqueous solution at room temperature, using the glassy
carbon rotating-disk electrode (GC-RDE, 5 mm in diameter) as the working electrode, a
saturated Ag-AgCl electrode as the reference electrode, and a piece of Pt foil (1 cm2) as the
counter electrode. 10 µL of catalyst ink was dropped onto the polished GC-RDE. Then the
electrodes were air-dried at room temperature. The catalyst loading was about 10 µg/cm2.

The ECSA of the catalyst is calculated based on the charge number of H adsorption or
desorption, as shown in Equation (1).

ECSA =
QH

0.21 × 10−3×mPt
(1)

where QH (C) represents the charge number of H adsorption or desorption and can be
obtained by integrating the CV curve in Ar-saturated 0.1 mol L−1 HClO4 solution between
0.05 and 0.4 V; and mPt (g) is the Pt load in the catalyst. Assuming there is a one-to-one
relationship between the Pt atom and H atom of the hydrogen monatomic layer on the
Pt/C catalyst, the charge amount of the hydrogen monatomic layer on the Pt/C catalyst
surface is 210 µC cm−2.

Before recording ORR activity, ultra-pure argon gas was injected into the electrolyte
for 20 min to remove dissolved oxygen. CV scans were then performed at the scan rate
of 50 mV s−1 in a potential range of 0.05 V~1.5 V for 10 cycles at room temperature. The
ORR activity of the catalyst was then measured by LSV from 0.05 V to 1 V at a scan rate
of 10 mV s−1 at 1600 rpm in O2-saturated 0.1 mol/L HClO4 solution. The kinetic current
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density at 0.9 V and transferred electron number were calculated from the ORR polarization
following the Koutechy–Levich (K–L) equation, Equation (2).

1
i
=

1
ik
+

1
id

=
1
ik
+

1

0.62nFAD2/3ω1/2ν−1/6c
(2)

where ik and id are the kinetic current density and limited diffusion current density, n is
the number of electrons transferred, F is the Faraday constant (96,487 C mol−1), A is the
geometric surface area of the RDE, c is the bulk concentration of O2 (2.64 × 10−4 mol cm−3),
D is the diffusion coefficient of O2 (1.93 × 10−5 cm2 S−1), ν is the kinematic viscosity of
the solution (0.01 cm2 S−1), and ω is the angular velocity. The half-wave potential (E1/2) is
read from the ORR curve of the catalyst, which is the potential corresponding to the half of
the limited diffusion current density.

The poisoning of catalysts was carried out by immerging the working electrode at
the potential of 0.65 V for 1 min in a 0.5 mmol/L Na2SO3 + 0.1 mol/L HClO4 electrolyte.
Then, the GC-RDE was rinsed with ultra-pure water and transferred to a fresh 0.1 mol/L
HClO4 electrolyte without SO2. The ORR activity of the poisoned electrode was evaluated
in an O2-saturated 0.1 mol/L HClO4 electrolyte using LSV at 1600 rpm. To investigate the
oxidation behavior of adsorbed SO2, a CV scan was performed between 0.05 V and 1.5 V
for 10 cycles at a sweep rate of 50 mV/s. All of the potentials were reported with respect to
the reversible hydrogen electrode (RHE) in this work.

4. Conclusions

Hybrid Pt/C-TiO2 catalysts were prepared by mixing Pt/C catalyst and TiO2 nanopar-
ticles. By adding TiO2, the ORR performances of fresh and SO2-poisoned catalysts were
all improved compared to the Pt/C and the activity loss caused by SO2 poisoning was
remarkably reduced. Our detailed observations indicate that the improved SO2 tolerance is
due to the accelerated electro-oxidation of SO2 in the presence of optimal TiO2. We suggest
that the electronic interaction between Pt and TiO2 and the OH spillover effect on TiO2
might be crucial for not only enhancing the ORR activity, but also removing the poisoning
SO2. These results indicate that the TiO2 modified Pt/C catalyst is a desired ORR catalyst
against sulfur poisoners in PEM fuel cells.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12050571/s1, Figure S1: TEM images of Pt/C and particle
size distributions; Figure S2: The ORR polarization curves of Pt/C-20TiO2 measured at different
electrode rotation speeds and the K-L plots from the polarization curve.
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