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Abstract: Machine-learning models have great potential to accelerate the design and performance
assessment of photocatalysts, leveraging their unique advantages in detecting patterns and making
predictions based on data. However, most machine-learning models are “black-box” models due
to lack of interpretability. This paper describes the development of an interpretable neural-network
model on the performance of photocatalytic degradation of organic contaminants by TiO2. The
molecular structures of the organic contaminants are represented by molecular images, which are
subsequently encoded by feeding into a special convolutional neural network (CNN), EfficientNet,
to extract the critical structural features. The extracted features in addition to five other exper-
imental variables were input to a neural network that was subsequently trained to predict the
photodegradation reaction rates of the organic contaminants by TiO2. The results show that this
machine-learning (ML) model attains a higher accuracy to predict the photocatalytic degradation rate
of organic contaminants than a previously developed machine-learning model that used molecular
fingerprint encoding. In addition, the most relevant regions in the molecular image affecting the pho-
tocatalytic rates can be extracted with gradient-weighted class activation mapping (Grad-CAM). This
interpretable machine-learning model, leveraging the graphic interpretability of CNN model, allows
us to highlight regions of the molecular structure serving as the active sites of water contaminants
during the photocatalytic degradation process. This provides an important piece of information to
understand the influence of molecular structures on the photocatalytic degradation process.

Keywords: interpretable machine learning; convolutional neural network (CNN); molecular image;
photocatalytic degradation rate constant; photocatalysis

1. Introduction

Recently, the utilization of machine learning has been expanded to environmental
engineering, such as health monitoring, wastewater forecast, environmental catalysis,
etc. [1–6]. Machine-learning models have become an inexpensive but effective tool for
the investigation and prediction of features of different environmental chemicals [7–10].
Particularly in the catalysis field, to accelerate new catalyst-discovery practice, data-driven
machine-learning models have been used to predict catalyst properties, e.g., band gaps,
and performance, e.g., adsorption energy, water-splitting efficiency, and water-contaminant
degradation efficiency [11–15].
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However, the “black box” character in machine learning makes the models indescrib-
able and intractable on the relationship between the input and output. A machine is given
data and an algorithm to learn, but the learning process of detecting data patterns is usually
too complicated for any human to fully understand [16]. This potential uncertainty leads
to raised distrust of model deployment, although some trained models have been reported
with accuracy as high as 99 percent [17]. Previously, machine-learning models were usu-
ally used in low-stakes situations, such as website search and digital marketing, where
explanations are not necessarily required and individual decisions do not significantly
affect daily lives [18–20]. With the rapid development of artificial intelligence technolo-
gies, researchers and scientists have explored ways to implement machine learning on
high-stakes decisions such as medical decisions, law, and education policy, which will
deeply affect people’s everyday lives [21–24]. Computer scientists have sent a warning
alert on the widespread use of black-box predictive models to assist high-stakes decision
making [25]. These uninterpretable models could give misleading guidance to the practice
and cause more problems to society [25]. Therefore, awareness of the bias and fairness of
the black-box models has been raised and the interpretability, in addition to accuracy, of
the predictive machine-learning models is highly demanded [26,27].

Deep-learning models are nonlinear systems, which are more challenging to interpret
than other linear models [28]. In this work, an interpretable deep neural-network model
was developed that can visualize the active sites of organic contaminants during their
photocatalytic degradation processes in addition to merely predicting degradation-rate
constants. Here, Degussa TiO2 was used as model photocatalyst for all the photocatalytic
degradation processes. The photocatalytic degradation rate constants of a variety of water
contaminants with presence of Degussa TiO2 in aqueous phase were collected from pub-
lished research articles under different experimental conditions. Molecular images were
used to translate organic contaminants into machine-readable language. Combined with
other experimental variables as model inputs, e.g., ultraviolet light intensity, initial con-
taminant concentration, initial pH of the solution, photocatalyst dosage, and experimental
temperature, a deep neural network was trained and the photocatalytic degradation-rate
constants were predicted. Furthermore, the most relevant regions that generate the rate con-
stants’ predictions were extracted from the molecular images through gradient-weighted
class activation mapping (Grad-CAM). The highlighted regions are interpreted as the active
sites of water contaminants during the photocatalytic degradation process. The predicted
active sites are compared with experiments, which confirms the interpretability of the novel
neural-network model. This interpretable model demonstrates the reliability of the deep
neural-network models for prediction of the photocatalytic performance and to somehow
open up the black box of adaptive decision making in environmental catalysis assisted by
machine learning.

2. Results
2.1. Model Performance and Comparison

The model was trained and tested using a 5-fold cross-validation method. Cross-
validation has advantages of full use of data and better estimation of model quality when
the dataset is small. The data are firstly randomly split into five equal-sized subgroups.
Four subgroups are selected for training data and the remaining one was for testing
data. This process repeats five times to assure that every subgroup has been tested. The
model quality is evaluated by averaging the five modeling results of each training–testing
combination. The coefficient of determination (R2), root-mean-square error (RMSE), and
mean absolute error (MAE) are used to assess the model performance. Three models are
trained and compared: CNN model trained with augmented dataset (CNN_Aug), CNN
model trained with original dataset (CNN_Ori), and ANN model trained using molecule
fingerprints (ANN) published in ref [15]. The scatter plots of the predicted vs. experimental
photocatalytic degradation-rate constants −log(k) are shown in Figure 1. The R2, MAE,
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and RMSE of each testing subgroup and their averaged scores using the cross-validation
method are listed in Table 1.
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Figure 1. The scatter plot of the predicted vs. experimental photocatalytic degradation-rate constants
−log(k) using (a) CNN_Aug model, (b) CNN_Ori model, and (c) ANN model.

Table 1. The R2, MAE and RMSE of each cross-validated subgroup and their averaged scores.

Model Metric Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 Subgroup 5 Average

CNN_Aug

R2 0.909 0.925 0.842 0.923 0.884 0.897

MAE 0.102 0.088 0.116 0.085 0.102 0.099

RMSE 0.149 0.141 0.197 0.125 0.161 0.156

CNN_Ori

R2 0.893 0.934 0.812 0.915 0.886 0.889

MAE 0.113 0.080 0.131 0.093 0.107 0.105

RMSE 0.161 0.132 0.214 0.131 0.160 0.163

ANN

R2 0.882 0.902 0.799 0.919 0.868 0.873

MAE 0.110 0.101 0.134 0.084 0.111 0.108

RMSE 0.170 0.162 0.222 0.128 0.172 0.173

The CNN_Aug model has better prediction performance than the other two deep-
learning models. The R2 of the CNN_Aug model (0.897) is higher than that of the CNN_Ori
model (0.889) and ANN model (0.873), showing better fitting accuracy. The MAE and RMSE
of the CNN_Aug model (0.099 and 0.156) are lower than those of the CNN_Ori model (0.105
and 0.163) and ANN model (0.108 and 0.173), showing smaller prediction error. Both CNN
models have improved performance than the ANN model, which implies that the CNN
model can extract more useful features from molecular images than molecule fingerprints,
resulting in smaller prediction error. Meanwhile, the CNN_Aug model has slightly better
performance than the CNN_Ori model, which demonstrates that the augmented dataset
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can help the model to better recognize different contaminants and extract more important
features. The segmented dataset improves the model accuracy and generalizability.

To investigate how different structures of contaminants affect the prediction accu-
racy by the CNN_Aug model, 78 distinct contaminants were classified into six subsets
according to their functional groups, i.e., amine, amide, carboxylic acid, ether, halogen, and
phenyl. The prediction results of each subset are shown in Figure 2. Table 2 summarizes
the R2, MAE, and RMSE of each subset. It is observed that the CNN_Aug model achieved
reasonable accuracy in the prediction of different groups of contaminants, among which
carboxylic acid, halogen, and ether groups have better accuracy with R2 around 0.9. Com-
pared with our previous paper using the ANN model, all of the functional groups have
improved accuracy. This also verifies the advantage of using the contaminant image as
input and confirms the reliability of the CNN_Aug model.
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Figure 2. The scatter plots of the predicted vs. experimental photocatalytic degradation-rate con-
stants −log(k) with different functional groups. (a) Amide, (b) amine, (c) carboxylic acid, (d) ether,
(e) halogen, and (f) phenyl.

Table 2. The R2, MAE and RMSE of different functional groups.

Metric Amide Amine Carboxylic
Acid Ether Halogen Phenyl

R2 0.868 0.756 0.917 0.891 0.905 0.869

MAE 0.127 0.128 0.079 0.114 0.101 0.118

RMSE 0.210 0.209 0.124 0.156 0.151 0.184

2.2. Feature Importance

The effects of input variables on the degradation-rate constants were analyzed to eval-
uate the impact of the photocatalytic-reaction parameters by using the SHAP method [29].
It assigns each feature an importance value, i.e., SHAP value, for a particular prediction
indicating how much a model prediction relies on each feature; in other words, how much
each feature contributes to the prediction. Moreover, it is capable of identifying the impact
of each feature on overall model prediction, i.e., the positive and negative relationships
of the features with the degradation-rate constants. This assists the understanding of the
impacts of input variables on the predicted outcome. In order to compare the importance
of parameters fairly, we set the same initial weight for each parameter. Although the
contaminant occupies 1280 nodes, it is treated as a single parameter. To avoid weakening
the importance of other experimental parameters, each of the initial weight of 1280 nodes of
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the contaminant type was divided by 1280. Figure 3 shows the SHAP value densities of the
five experimental variables. The water-contaminant type is excluded because it is categori-
cally dated and it is difficult to define any positive or negative impact on degradation-rate
constants.
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Figure 3. Density scatter plot of SHAP values of the input variables for the prediction of degradation-
rate constants.

In the row of each input, the points indicate the corresponding SHAP values with
the magnitude measured by horizontal ordinate and the color represents the input value
of that individual (the red code means a high value and the blue code means a low
value). Meanwhile, the points on the left side of the midline indicate the negative effect
on the predicted rate constants −log(k), while the points on the right side indicate the
positive effect. The farther away from the midline, the greater the absolute impact on the
predictions. For example, the lower values of initial concentration (blue points) are mainly
distributed on the left side while the higher values (red points) are mainly distributed on
the right side, indicating that higher initial concentration tends to increase model output
−log(k). Since the output −log(k) has a negative sign, theoretically it means a higher initial
concentration leads to lower the rate constant k, which is consistent with the experimental
observations [30–32]. Similarly, temperature has a negative effect on model output −log(k),
which indicates that higher temperature tends to increase the rate constant k. Higher TiO2
dosage tends to increase the rate constant k, since most red dots are on the left and blue
dots are on the right, but it is also observed that some red dots are scattered on the right
side. In experiment, it is found that the rate constant is directly proportional to the catalyst
amount when the catalyst amount is relatively small. After catalyst loading reaches a limit,
the rate constant slightly decreases [33]. This explanation matches the model prediction
and the red dots observed on the right side could be the TiO2 dosage beyond the loading
limit. As for pH, our model prediction shows that pH has a dominantly positive impact
on the increase in the rate constant despite some individual dots performing oppositely,
because most of the red dots are found on the left and most of the blue dots are on the
right while some red dots are observed on the right and some blue dots are also found on
the left. In reality, it is not necessarily true that higher pH will always increase the rate
constant, because pH variations can positively or negatively affects the adsorption of the
organic molecules on the catalyst surface due to different molecular structures [33]. Our
model indicates that higher pH, an alkaline environment, will increase the rate constant
for the majority of the contaminants analyzed, and for the other contaminants, an acidic
environment contributes to a faster degradation reaction. As for light effect, the model
shows that higher light intensity tends to decrease the rate constant, which is not consistent
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with the experiment. This might be due to the relatively small light effect and the errors
from the light-intensity measurement.

The distance between SHAP point and midline indicates the feature importance.
By averaging all of the SHAP values of each feature, we can obtain the overall feature
importance of each input variables, as shown in Figure 4. The importance factor of water
contaminant is obtained by adding the SHAP values of contaminant feature vector (vector
of 1280 generated by EfficientNet). Figure 4 also compares the importance factors of the
CNN_Aug model in this work and the previous ANN model [15]. The feature importances
of the two models share the same orders: contaminant type > initial concentration >
temperature > TiO2 dosage > pH > light intensity. The corresponding importance factors
are also in the same order of magnitude except for the contaminant type, which is reduced
from 1.024 to 0.291 by using the CNN_Aug model. This could be due to the molecular
expression of the contaminants for the machine to process. In the ANN model, molecular
fingerprints with a binary vector of 512 were used to represent the molecule while the
CNN_Aug model transforms the molecular image into 200 × 200 pixels, which is in total
40,000 data points. In addition, among those 40,000 data points, many of them are blank
information. Therefore, the CNN_Aug model has a denser molecular expression with more
blanks. This weakens the importance of contaminant type and improves the influence of
other reaction conditions on the degradation-rate constant.
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2.3. Interpretability of Active Site Prediction

A good deep-learning model should not only achieve a high accuracy, but also have
a reasonable interpretability. To better interpret the prediction, we extracted the use-
ful features from molecular images and rebuilt the heat maps for visual explanation of
photocatalytic degradation process. Gradient-weighted class activation mapping (Grad-
CAM) is used to extract the most relevant regions in the molecular image that make the
prediction [34]. It is a class-discriminative localization technique that generates visual
explanations for any CNN-based network without requiring architectural changes or re-
training. The important regions of the image which correspond to any decision of interest
are visualized in high-resolution detail, making the CNN model more transparent and
explainable. The process of Grad-CAM is shown in Figure 5.
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Figure 5. Process of Grad-CAM.

Given a molecular image as input, we first forward-propagated the image through the
convolution layers of the EfficientNet model to extract the output of the last convolutional
layer, i.e., feature maps. Feature maps contain the richest information of an image. Then,
we aggregated all feature maps according to corresponding weight (W). The weight of
the feature map can be calculated with the weights of each pixel. Finally, we upsampled
the aggregated map to the same size as the input image to obtain the heatmap, which
represents the important region that the model extracts. The heat map in Figure 5 shows the
highlighted area of 2-chlorophenol and “−Cl” are recognized. In theory, “−Cl” is the active
site involved in the photocatalytic degradation process of 2-chlorophenol. Some examples
of heat maps of other water contaminants are shown in Figure 6. We also searched for the
active sites from the photocatalytic degradation pathways in experiments. The predicted
active sites from the heat maps and experiments were compared to investigate the capability
of the heat maps to capture the active sites involved in the photocatalytic degradation
process. In Figure 6, the experimental part gives the possible molecule transformation
in the first step of the photocatalytic degradation process [35–40]. The functional groups
are substituted or decomposed after being attacked by active oxygen species (•OH, •O2−,
and H2O2) and these functional groups are referred as active sites in the heat maps. The
findings by the heat maps are reasonable and consistent with the degradation pathways
from experiment. These observations verify that the model can properly identify and
extract the important features of molecular images contributing to the prediction.

However, some irrational heat maps were observed, and some examples are provided
in Figure 7. Essentially, three types of irrational heat maps were found. Figure 7a shows
that the highlighted regions of n-propanol are all located in the blank area. Figure 7b is
the heat map of acetone that highlights the majority of the image. Figure 7c highlights
all the functional groups of benzylparaben. It is believed that the model uncertainty and
errors come from these irrational heat maps. The unreasonable mapping could be due
to two reasons. First, the molecular images are decomposed to 200 × 200 pixels, which
also include the blank areas. Pixels that contain the chemical information and the blank
are both processed by the model. Theoretically, the blank in molecular image does not
have a meaning in the photocatalytic reactions; however, they are given a definition and
used as training data when transforming the image information by the model. This makes
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the model confused about the blank and the real chemical information, so some of the
predictions give irrational mapping. Second, all of the molecules were transformed to the
same image size in despite of their different molecular sizes. Therefore, the molecular
images exhibit different sizes of bonding widths, or chemical fonts. For example, as shown
in Figure 6a,e, 2-cholorophenol and dichlorvos both have halogen group “−Cl”. Given the
differences in molecular size, the same “−Cl” group appears slightly different in molecular
images. This could increase the difficulty for the model to identify the same functional
groups, and raise the uncertainty and inaccuracy to the model.
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Approximately 30% of the heat maps are irrational maps that little chemical informa-
tion can be extracted from the highlighted regions. It is also observed that chemicals with
larger molecular weight have a higher percentage of irrational maps. This might be due to
the fact that each feature of chemicals with larger molecular weight occupies less pixels in
the molecular images. Therefore, the importance of each feature is depressed, which makes
the model difficult to predict based on different chemical features.
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3. Methods
3.1. Datasets

A dataset of 446 data points of photocatalytic experiments with TiO2 for training
and testing models was collected from the published research articles. The details of the
dataset are described in our previous published paper [15]. The input variables are organic
water-contaminant type, initial concentration of water contaminant (mg L−1), initial pH of
the solution, TiO2 dosage (g L−1), ultraviolet light intensity (mW cm−2) and experimental
temperature (◦C). The predicted output is the photocatalytic degradation-rate constant of
the water contaminant (min−1). Degussa P25 TiO2 nanopowder is used as photocatalyst
from all experiments.

The water contaminants are nonnumerical variables that are required to be converted
to a computer-readable language. In this work, the input of the water-contaminant type is
represented as a molecular image. RDKit, an open-source cheminformatics for machine
learning, was used to encode chemical formulas into molecular images [41]. The conversion
process involves two steps: the chemicals are firstly converted to SMILES (simplified
molecular-input line-entry system) strings, and then further transformed to molecular
images. SMILES strings are line notations for organic molecules that describe their atomic
information and structures. Polymorphs can be differentiated by SMILES strings, which
place the branch from a chain directly after the atom to which it is connected. For example,
n-propanol and isopropanol have the same chemical formula, C3H8O. Their SMILES
strings are CCCO and CC(O)C, respectively, which leads to distinct molecular images.
After conversion, the size of the molecular image is set as 200 by 200 pixels. Figure 8 is an
example of a water contaminant (benzoic acid) converting to the molecular image.

Catalysts 2022, 12, x FOR PEER REVIEW 11 of 15 
 

 

 

Figure 8. The molecular image of benzoic acid. 

3.2. Data Augmentation 

The drawback of encoding chemical formula into molecular image is the lack of ac-

curacy in recognizing the same contaminants with different orientations. Specifically, the 

image looks different but represents the same original contaminant if it is rotated or 

flipped. Therefore, the model may fail to recognize the same contaminant with a rotated 

or flipped image if the images with the original orientation alone are trained. For this pur-

pose, data augmentation was applied to improve the image identification. Through rota-

tion and flip operation, eight images for each contaminant can be generated. Figure 9 

shows the image-augmentation operations for benzoic acid. As a result, the size of training 

dataset is increased by eight times. 

 

Figure 9. Rotation and flip image of benzoic acid. 

3.3. Model Structure 

A convolutional-neural-network (CNN) model was developed to predict the first-

order photocatalytic degradation-rate constant k. The model structure is shown in Figure 

10. The CNN model is capable of extracting useful features from molecular images. The 

Figure 8. The molecular image of benzoic acid.

3.2. Data Augmentation

The drawback of encoding chemical formula into molecular image is the lack of
accuracy in recognizing the same contaminants with different orientations. Specifically,
the image looks different but represents the same original contaminant if it is rotated or
flipped. Therefore, the model may fail to recognize the same contaminant with a rotated or
flipped image if the images with the original orientation alone are trained. For this purpose,
data augmentation was applied to improve the image identification. Through rotation and
flip operation, eight images for each contaminant can be generated. Figure 9 shows the
image-augmentation operations for benzoic acid. As a result, the size of training dataset is
increased by eight times.
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3.3. Model Structure

A convolutional-neural-network (CNN) model was developed to predict the first-order
photocatalytic degradation-rate constant k. The model structure is shown in Figure 10. The
CNN model is capable of extracting useful features from molecular images. The extracted
features in addition to other five input variables were processed by the neural network to
predict the rate constants. The convolutional layers for image feature extraction are referred
to EfficientNet, which was created by Google in 2019 [42]. EfficientNet reduces parameter
size and computation by an order of magnitude, which demonstrates higher accuracy
and better efficiency over existing CNNs. The output of EfficientNet is a one-dimensional
vector of 1280 neurons. 1280 is the optimal number of neurons, which was searched as a
hyperparameter by Bayesian optimization algorithm. In addition to other five experimental
variables, the feature layer has 1285 neurons. The fully connected layer has 256 neurons
and the output layer has one neuron representing the predicted rate constant.



Catalysts 2022, 12, 746 12 of 14

Catalysts 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 

extracted features in addition to other five input variables were processed by the neural 

network to predict the rate constants. The convolutional layers for image feature extrac-

tion are referred to EfficientNet, which was created by Google in 2019 [42]. EfficientNet 

reduces parameter size and computation by an order of magnitude, which demonstrates 

higher accuracy and better efficiency over existing CNNs. The output of EfficientNet is a 

one-dimensional vector of 1280 neurons. 1280 is the optimal number of neurons, which 

was searched as a hyperparameter by Bayesian optimization algorithm. In addition to 

other five experimental variables, the feature layer has 1285 neurons. The fully connected 

layer has 256 neurons and the output layer has one neuron representing the predicted rate 

constant. 

 

Figure 10. The CNN model structure for the photocatalytic degradation-rate constant prediction. 

4. Conclusions 

An interpretable convolutional neural-network model, MI-CNN, was developed by 

use of molecular images to encode water contaminants to predict the photocatalytic deg-

radation-rate constants of the contaminants with the presence of Degussa TiO2. The model 

achieved improved performance over molecular fingerprint encoding in terms of predic-

tion accuracy. Furthermore, using gradient-weighted class activation mapping, this 

model is able to create heat maps that capture the most relevant regions in the molecular 

images that generate the prediction. These highlighted regions can be interpreted as the 

active sites in the organic molecules that are involved in the photocatalytic degradation 

process. After carefully comparing the predicted active sites with the degradation path-

ways from experiments, it confirms that some functional groups attacked by active oxy-

gen species (•OH, •O2−, and H2O2) are correctly captured in heat maps. These visual in-

terpretations of heat maps add transparency and confidence to the model prediction, 

which somehow opens up the black box of predictive deep-learning models in the appli-

cation of environmental photocatalysis. 

Figure 10. The CNN model structure for the photocatalytic degradation-rate constant prediction.

4. Conclusions

An interpretable convolutional neural-network model, MI-CNN, was developed
by use of molecular images to encode water contaminants to predict the photocatalytic
degradation-rate constants of the contaminants with the presence of Degussa TiO2. The
model achieved improved performance over molecular fingerprint encoding in terms of
prediction accuracy. Furthermore, using gradient-weighted class activation mapping, this
model is able to create heat maps that capture the most relevant regions in the molecular
images that generate the prediction. These highlighted regions can be interpreted as the
active sites in the organic molecules that are involved in the photocatalytic degradation
process. After carefully comparing the predicted active sites with the degradation path-
ways from experiments, it confirms that some functional groups attacked by active oxygen
species (•OH, •O2−, and H2O2) are correctly captured in heat maps. These visual inter-
pretations of heat maps add transparency and confidence to the model prediction, which
somehow opens up the black box of predictive deep-learning models in the application of
environmental photocatalysis.

5. Discussions

The major contributions of this paper are in the development of an interpretable
machine-learning (ML) model to predict the performance of photocatalytic degradation of
organic contaminants by TiO2. This ML model integrates the convolutional neural network
(CNN) with the artificial neural network (ANN). It utilizes molecular images to encode
the molecular structures of the organic contaminants, whose features are extracted by
EfficientNet, a special type of CNN model. The extracted features together with other
experimental variables affecting the photocatalytic reaction rate were input to an artificial
neural network. The cascaded CNN and ANN model is subsequently trained to predict the
photodegradation reaction rates of the organic contaminants by TiO2.
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The results show that this machine-learning (ML) model achieved a high accuracy
to predict the photocatalytic degradation rate of a wide range of organic contaminants.
Heat maps can be generated to identify the most relevant regions in the molecular image
affecting the photocatalytic rates by use of gradient-weighted class activation mapping
(Grad-CAM). This provides an important piece of information to understand the influence
of molecular structures on the photocatalytic degradation process.

While the paper used TiO2 to demonstrate the general procedures, the methodology
can be extended to other types of photocatalysts.
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