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Abstract: A few months before the COVID-19 pandemic, Pierre Vogel and Kendall N. Houk published
with a new textbook Wiley-VCH, “Organic Chemistry: Theory, Reactivity, and Mechanisms in Modern
Synthesis”, with a foreword from the late Roberts H. Grubbs. The book demonstrates how catalytic
processes dominate all fields of modern organic chemistry and synthesis, and how invention combines
thermodynamics, kinetics, spectroscopy, quantum mechanics, and thermochemical data libraries.
Here, the authors present a few case studies that should be of interest to teachers, practitioners of
organic and organometallic chemistry, and the engineers of molecules. The Vogel–Houk book is both
textbook and reference manual; it provides a modern way to think about chemical reactivity and a
powerful toolbox to inventors of new reactions and new procedures.
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1. Introduction

Our planet and its people face new problems that require new solutions. Many of us
are concerned by climate change, by the loss of biodiversity, by human population growth,
by the ageing of people, by neurodegenerative diseases and cancer that are expanding,
by the threat of new infectious diseases recently demonstrated so vividly, by the contin-
uously increasing cost of medical care in general, by drinking water availability and its
contamination, by air and ocean pollution, and by the degradation of the soil that nourishes
us. These problems should not make us fall into a depressed funk. Most scientists are
stimulated by these problems and can propose solutions that represent new opportunities
for engineers, investors, and business. In the search for these solutions, new molecules and
new devices are invented. The first industrial commodity produced by organic chemistry
was Perkin’s purple (mauveine) in 1856 [1–3]. The first synthetic drug was chloral hydrate
(Cl3CCH(OH)2 introduced on the market in 1869, a compound prepared first by Liebig in
1832 (chlorination of ethanol) [4–6]. At that time, all dyestuffs and drugs were extracted
from minerals, plants, and animals [7–9]. Only 300 organic compounds were known in 1800;
the first edition of the Beilstein Handbook of Organic Chemistry described 20,000 organic
compounds in 1882. Now, more than 80 million organic compounds are known. Nowa-
days, most dyestuffs are synthetic; most drugs are chemicals obtained through synthesis
or are biologics derived from cell cultures [10,11]. At the end of the 19th century, most
materials and commodities were made from minerals, plants, wood, animals, and metals.
Today many of them are made out of polymers derived from fossil carbon. Sooner or later,
engineers will find economical ways to obtain these commodities, and better ones, from
left-overs of agriculture and forestry, and from urban waste [12]. The molecules and devices
we need now are more and more sophisticated and must be invented at a faster and faster

Catalysts 2022, 12, 758. https://doi.org/10.3390/catal12070758 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal12070758
https://doi.org/10.3390/catal12070758
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://doi.org/10.3390/catal12070758
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12070758?type=check_update&version=2


Catalysts 2022, 12, 758 2 of 31

pace. Scientists are exploring a larger and larger chemical space; they are engineers of the
molecules who understand their structures from atoms, their dynamics (how they can be
transformed), and the way they generate assemblies (macromolecules).

With increasing molecular complexity and sophistication of the procedures available,
the study of chemistry represents a fantastic challenge. Scientists with experience and
especially teachers are responsible for finding suitable models and explanations the begin-
ners can apply as learning tools. This is done in a beautiful manner in the latest textbooks
of organic chemistry [13–15] and for transition metal-catalyzed reactions in the book of
Hartwig and colleagues [16]. In our textbook, we intend to complement these manuals
critically, reviewing selected fundamental concepts and theories and using them to discuss
a selection of reactions and processes that have been pivotal in the development of concepts
and procedures, and which will hold even greater importance for sciences of matter in
the future [17]. This textbook is a guide to quantitative and qualitative models that rely
upon thermochemical data and kinetics, and shows how to grasp reactivity and molecular
complexity such as asymmetric synthesis and catalysis. Here, we shall not summarize the
whole book, but present a few study cases.

2. Invention Is Quicker if Physical Organic Chemistry Principles Are Integrated in
Preparative Chemistry

The study of physical organic chemistry is a prerequisite for becoming a modern
molecular scientist [18,19]. The main feature of physical organic chemistry is to asso-
ciate chemical reactions that define chemical functions with quantitative measurements
(equilibrium constants, heat of reaction, rate constants, isotopic effects). Chemical infor-
matics estimate that 166.4 billion possible molecules can be made with up to 17 atoms
of C, N, O, S, and halogens based on known or estimated stability of compounds and
their possible reactions (known feasibility) [20]. When criteria of medicinal chemistry
and pharmacokinetics are used to filter the above database, Reymond and co-workers
estimate that about 10 million small molecules are potential drugs [21]. With the assistance
of robots, these molecules can be obtained quickly and one can generate large libraries of
new compounds, most of which are made by applying robust reactions (typically amide
formation, Suzuki–Miyaura C–C-coupling, Buchwald–Hartwig nucleophilic aromatic sub-
stitutions, azide + alkyne cycloadditions) [22–25]. We think this is not optimal today; the
chemical space exploration must add many less-common reactions, especially recently
developed catalytic processes [26]. Moreover, reactions permitting access to enantio-pure
compounds (asymmetric synthesis) must be developed and applied. This requires not only
imitation of literature procedures, but the invention of new and better ones. Nature remains
a source of inspiration; complicated bioactive compounds such as alkaloids, polyphenols,
polyketides, peptides, nucleic acids, oligosaccharides, and glycoproteins, as well as their
mimics, should be available through synthetic chemistry. Synthesis can produce analogs
and eventually better drugs than those offered by nature. For that, knowledge of physical
chemistry, physics, mechanics (when designing micro-reactors and automatic systems, for
instance), quantum chemistry, and the application of artificial intelligence can be quite
beneficial. Molecular scientists must have a profound understanding of chemical reactivity
and must be able to predict whether a planned reaction is possible or not, and at what rate
it will occur under the conditions chosen. For more than 100 years, successes of synthetic
chemistry have been the result of trial and error and serendipity [27]. This has turned many
talented students away from synthesis and from chemistry. Today, synthetic chemistry,
and especially organic and organometallic chemistry in homogeneous systems, is a reliable
science with reproducible procedures based on thermodynamics, kinetics, and availability
of highly performing analytical tools. Scientists using all this knowledge and techniques
have more productive and inventive intuition [28]. The relationships between molecule
dynamics and energy (heat, light) are established on a quantitative basis. With the help
of quantum mechanical calculations, one can invent models that can be applied to almost
any reaction. Literature and data banks (e.g., NIST WebBook of Chemistry [29]) provide us
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with quantitative and accurate thermodynamic data. The latter must be used to predict
chemical reactivity (equilibrium constant and reaction rates) and the properties of the
new compounds targeted. This is one of the messages that the Vogel–Houk book tries
to pass to students, chemists, biochemists, and engineers. The domestication of fire one
million years ago has permitted humans to continuously improve their quality of life. The
treatment of matter with heat has created new objects and new knowledge (metallurgy,
pottery, ceramics). The understanding of how matter and heat are interrelated is the basis
of the sciences of matter. This should be kept in mind when teaching or/and applying
chemistry, for instance.

Because the transformation of matter should not produce waste, atom economical
reactions should be preferred to reactions producing co-products [30–32]. Catalytic pro-
cesses should be chosen, as they save significant energy; furthermore, they should be run
in inexpensive, non-toxic, and recoverable solvents, if any.

Amide formation is one of the most important reaction in cells and in the laboratory.
The direct amidification of carboxylic acids by amines requires the elimination of water [33].
New catalysts have been invented that achieve direct amidification of carboxylic acids with
amines in an aqueous solvent (DMSO, 70 ◦C) [34].

CH3COOH + MeNH2 � CH3CONHMe + H2O (1)

Thermochemical data for Equilibrium (1) in the gas phase tells us that this direct
amidification is exothermic, with ∆rH◦(1) = −8 ± 1.5 kcal mol−1. Gas phase experimental
entropies are not available for Me2NH and CH3CONMe2. The entropy variation ∆rS◦(1)
of Equilibrium (1) under 1 atmosphere and at 25 ◦C can be estimated from the variation
of translation entropies [35], which depend on the molecular weights of reactants and
products, according to Equation (2) for equilibrium A + B � P + Q:

∆rS◦(A + B � P + Q) ∼= ∆rS◦trans = 1.5 Rln(MP·MQ/MA·MB) (2)

For Equilibrium (1) in the gas phase, ∆rS◦(1)∼=−1 eu (entropy unit = cal mol−1 K−1). This
gives an entropy cost of –T∆Sr

◦ ∼= 300 cal mol−1 = 0.3 kcal mol−1 at 25 ◦C. This indicates that
the reaction must be exergonic (K298K(1) > 1): ∆rG◦ = ∆rH◦ –T∆Sr

◦ ∼= −7.7 ± 1.5 kcal mol−1

at room temperature. In solution, this value will be affected by differential solvation effects,
and, when using larger carboxylic acids than acetic acid and different amines than methyl
amine, the entropy variation will be more negative (e.g., for a carboxylic acid and an amine
having both a molecular weight of 200, one obtains with relationship (2) ∆rS◦ ∼= −5 eu, and
an entropy cost –T∆Sr

◦ ∼= 1.5 kcal mol−1). Thermochemical data for model Equilibrium (1)
in the gas phase should encourage chemists to look for more catalysts that can induce the
direct formation of amides at room temperature without a co-solvent such as DMSO, or
with a co-solvent that can be recovered more readily, as well as for carboxylic acids and
amines that contains other functions (e.g., ketone, aldehyde, ester, etc.). We hope that this
example will convince chemists, biochemists, and engineers to use thermochemical data
available for compounds in the gas phase, even though the planned reaction must be run
in solution and at a temperature different than 25 ◦C.

3. Thermochemical Data Establish Fundamental Concepts of Reactivity

Under thermodynamic control, substitutions of alkyl halides (e.g., Equilibrium (3),
Pr = prop-1-yl) and of alkenyl halides (e.g., Equilibrium (4), vinyl = CH2=CH) by other
halides generally favor the formation of H-F in the gas phase:

Pr-F + HBr � Pr-Br+ H-F (3)

vinyl-F + HBr � vinyl-Br + H-F (4)

In contrast, Equilibria (5) that exchange the fluoride of acetyl fluoride (Ac-F = CH3CO-
F) with chloride, bromide, or iodide with the corresponding hydrogen halide H-X disfavor
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the formation of H-F, meaning that fluorine prefers to be bonded to an acyl carbon atom
rather than to a hydrogen atom. In contrast, equilibria of acetyl chloride (Ac-Cl) with the
corresponding bromide and iodide are nearly thermoneutral in the gas phase.

Ac-F + H-X � Ac-X + H-F (5)

∆rHo(5) = 4.6 (X = Cl), 4.0 (X = Br), 4.0 (X = I) kcal mol−1

Why does fluorine prefer the left side (C center instead of the H atom) of Equilibria (5)?
Donation of the non-bonding electrons of the oxygen atom of the carbonyl group stabilizes
the ionic form of the acetyl-halide bond. This negative hyperconjugation effect (n(C=O:)/σ*
interaction) involves the interaction of the non-bonding or lone pair, orbitals n(CO:) of
the carbonyl group, and the anti-bonding, empty orbital σ*(C-F) of the C-F bond. This
interaction is not possible in alkyl, alkenyl, and hydrogen halides, which do not possess
lone pair electrons. Of all acyl halides, this hyperconjugative interaction is strongest in acyl
fluorides, where the difference in electronegativity between carbon and fluorine is larger
than in the other acyl halides. Because of the large electronegativity difference between
F and C, σ*(C-F) is the best σ-acceptor of all C-X bonds. Furthermore, the conjugation
n(X:)/π*(C=O) (donation from the non-bonded electron pairs of X: to the carbonyl double
bond), which stabilizes the carbonyl compound, is the weakest for X=F, and strongest for
amino groups (Figure 1). The infrared carbonyl stretching frequencies of acyl derivatives
(νC=O) increase with the C=O bond strength, as shown below.
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Figure 1. Hyperconjugation in acyl halides (donation from the carbonyl group n(CO:) non-bonded
electron-pairs to the σ(C-X) bond) competes with the n(X:)/π(C=O) conjugation. This competition ex-
ists also in carboxylic esters and carboxamides. Reprinted with permission from Ref. [17]. Copyright
2019 Wiley.

The thermochemical data presented above demonstrate that a carbonyl group is
a π-withdrawing and a σ-donating group [36–38]. This explains the regioselectivity of
the electrophilic additions (6) to the alkene moiety of bicyclo[2.2.1]hept-5-en-2-one (1)
to be the opposite of those of its synthetic precursors, the corresponding cyanoacetate
(4) (reactions (7), Scheme 1) [39–41]. Quantum mechanical calculations find that the 6-
oxobicyclo[2.2.1]hept-2-yl (2, E=H) cation is much more stable than its 5-oxo isomer [42,43].
The former carbocation is stabilized by n(CO)/σ(C(1)-C(6))/π(C(6)) hyperconjugation,
what is not possible in the latter isomer. This type of interaction allows keto [44] and ester



Catalysts 2022, 12, 758 5 of 31

groups [45] to migrate more quickly in Wagner–Meerwein and pinacolic rearrangements
than alkyl and phenyl groups.
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Scheme 1. Homoconjugated carbonyl group can be electron-releasing. Norborn-5-en-2-one (1) adds
to electrophiles E-X giving the corresponding adducts 3 with high stereo- and regioselectivity arising
from the quenching of cationic intermediates 2 by the nucleophiles X-. 2-Cyanonorborn-5-en-2-yl
acetate (4) adds to electrophiles E-X with opposite regioselectivity giving the corresponding adducts 6
arising from the quenching of cationic intermediate 5 by the nucleophiles X-. In cationic intermediates
2 the positively charged center C(6) is homoconjugated with the carbonyl group whereas in cationic
intermediates 5 the positive charge prefers to reside on C(5), away from the two electron-withdrawing
substituents CN and AcO.

Carbon monoxide (C=O) has a dipole moment that places a partial negative charge on
its carbon atom [46,47]. In contrast, carbon dioxide (O=C=O) has partial negative charges
on its two oxygen atoms and a partial positive charge on its carbon atom. Carbon monoxide
is in fact an electron-rich carbene because of the electron donation by the non-bonding
electron of its oxygen atom. In carbonylmetal complexes, CO is a σ-donor and a π-attractor.

M=C=O↔M(−)-C≡O(+)

4. Mnemonic Devices Are Very Useful to Learn Chemistry, but They Must Be
Applied Critically

We now discuss Markovnikov’s rule about the orientation of the additions of H-X to
alkenes. The rule states that when water, a carboxylic acid, or a hydrogen halide adds to
an unsymmetrical alkene, the hydrogen atom joins the carbon atom bearing the largest
number of hydrogen atoms and the nucleophile (X) bonds to the vicinal center that is more
substituted. The classic explanation invokes a two-step mechanism in which the proton
adds first to the alkene forming a carbenium ion intermediate in the rate determining step,
which is then quenched by the nucleophile irreversibly. This hypothesis implies kinetic
control (the rate of the two competing regioselective additions are different and the major
regioisomer results from the fastest reaction). The stability sequence for alkyl cations is
tertiary > secondary > primary [48–50]. However, in addition, in the cases where R-X are
alcohols, amines, thiols, and alkyl halides, secondary derivatives are more stable than their
primary isomers (see Equilibria (8)). Similarly, tertiary systems are more stable than their
secondary isomers [51]. The formulation of Markovnikov’s rule as a kinetic control is not
always valid [52–55]. Additions to alkenes are exothermic but have negative entropies
(condensations) that can cause the reactions to be reversible (with standard Gibbs energy
variation ∆rGT = ±1 kcal/mol). For example, additions of water to unstrained alkenes
in the gas phase are exothermic by ca. −12 kcal/mol, a value very similar to the entropy
cost of the addition at 25 ◦C. For instance, in the gas phase, the standard heat of reaction
∆rH◦(2-methylpropene + H2O � t-butanol) ∼= −12.6 kcal/mol, and the standard entropy
variation of the equilibrium ∆rS◦(2-methylpropene + H2O � t-butanol) ∼= −37 eu; at 25 ◦C,
the entropy cost −T∆rS◦ amounts to −298·(−37 cal mol−1K−1) ∼= 11.0 kcal mol−1 [29,56].
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Thus, one predicts that the regioselectivity of the additions of water, alcohols, and carboxylic
acids to acyclic alkenes might be thermodynamically rather than kinetically controlled
above 25 ◦C. As shown with Equilibria (8) in the gas phase, the linear adducts are less stable
than their “branched” isomers. Additions of HX to terminal alkenes or 1,2-dialkylethylenes
avoid the generation of secondary carbenium intermediates and follow other mechanisms
that do not involve carbenium ion intermediates. The reverse reactions, that is, eliminations,
also may follow concerted mechanisms avoiding carbenium ion intermediates. Even for
such reactions, Markovnikov’s rule is generally followed. This is because of the Dimroth
principle, which was enunciated in 1933 [57]. If one or a set of reactants can undergo two
competitive one-step reactions that follow the same mechanism and produce two different
isomers, the favored product under conditions of kinetic control is the most stable one. The
energy barrier is the lowest for the most exothermic reaction (Bell–Evans–Polanyi theory
established in 1936–1938 for radical exchange reactions such as R-X + Y• → R• + X-Y, and
proton transfers: ∆‡H = α∆rH + β) [58,59]. Deviations to this principle are observed when
differential steric factors and solvation effects affect the reactions.

Prop-1-yl-X � Prop-2-yl-X (8)

X = Me Et n-Pr OH SH NH2 F Cl Br I
∆rH◦(8): −2.0 −1.6 −1.8 −4.2 −4.0 −3.2 −1.8 −3.1 −3.0 −2.4 kcal mol−1

Mnemonic tools such as the Markovnikov’s rule and the ever-popular arrow-pushing
are very useful when one learns chemistry [60]. At some point, we need to remember how
they have been constructed and on what measurements they are based upon. Scientists
should not be afraid to be critical of the models proposed to them and should ask for more
experimental proofs.

5. Models Must Be Based on Measurements and Thermochemical Data

We next discuss the mechanisms of some pericyclic reactions. Among them, cycload-
ditions, cheletropic additions, and ene-reactions all permit the construction of C-C and
C-hetero bonds in an atom economical fashion, sometimes with high chemo-, regio-, stereo-,
and enantioselectivity. Isomerizations such as electrocyclic ring opening or closing reac-
tions and sigmatropic rearrangements are also very interesting synthetic tools and will
continue to play an important role in synthesis. Most pericyclic reactions tolerate a large
variety of substituents and permit access to a large molecular diversity. Furthermore, these
reactions can be catalyzed and run under very smooth conditions, saving energy. Before
1965, concerted pericyclic processes were called “no-mechanism reactions” to imply that
there are no detectable intermediates and everything happens in one step. Since then, the
study of their mechanisms has revealed many subtleties and has contributed enormously
to our understanding of chemical reactivity. Depending upon the nature of the reactants
(type of substituents, number of substituents, etc.) and reaction conditions (temperature,
solvent, presence of additives and of catalysts), the pericyclic reactions may not follow
concerted, one-step mechanisms, but can be multi-step processes.

The Woodward–Hoffmann rules explain the stereoselectivity of concerted pericyclic
reactions [61]. The rules and other related theories such as the Longuet–Higgins correlation
of electronic configurations between reactants and products rely upon symmetry in the
transition structures [62]. Perfectly symmetrical transition structures are very rare, espe-
cially when non-symmetrical reactants are engaged (as demonstrated by kinetic isotopic
effects). The activation enthalpy (∆‡H) of a concerted reaction is the sum of repulsive
steric effects and skeletal distortion energies, minus stabilization energies resulting from
stabilizing orbitals interactions in the transition state [63]. The FMO theory applied to
transition structures of pericyclic reactions also predicts their stereochemistry, as well as
their aromatic character [64,65] (Evans’ rule) [66]. FMO theory provides estimates of sub-
stituent and additive effects on the rate and the chemo-, regio-, and stereoselectivity of the
reactions without requiring symmetrical transition structures [67]. Another approach takes
advantage of the fact that non-symmetrical transition structures of pericyclic reactions are
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diradicaloids, i.e., species with very narrow HOMO–LUMO gaps, or in valence bond termi-
nology, diradical
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 zwitterion species. Thus, without having to calculate molecular orbitals,
by using just thermochemical data (homolytical bond dissociation enthalpies: DH◦(R•/H•)
or DH◦(R•/X•)), the substituent effect on the relative stability of radicals, cations and
anions, ionization energies (IE(R•) [68], and electron affinities of radicals (–EA(R•)) [69] can
be used to predict relative rates and chemo-, regio-, and stereoselectivities of concerted,
one-step pericyclic reactions. The diradicaloid model, advocated by Dewar for Diels–Alder
reactions [70,71], is simple because it is based on thermochemical data (measurements) and
it can be applied to catalyzed pericyclic reactions.

For the cyclodimerization of ethylene into cyclobutane (reaction (9), gas phase, 25 ◦C,
1 atm.), one estimates the temperature at which cyclobutane equilibrates with ethylene. The
equilibrium constant KT(9) = 1 (∆rG◦ = ∆rH◦ − T∆rS◦ = 0) is realized at a relatively low tem-
perature, as given by ∆rH◦/∆rS◦ ≈ 18,400/41.6 ≈ 442 K = 169 ◦C. Above this temperature,
the cyclodimerization is endergonic (KT < 1). The cycloreversion of cyclobutane into ethy-
lene occurs between 350 and 450 ◦C with a measured barrier ∆‡H = 61.1 kcal mol−1. One
calculates ∆fH◦ (tetramethylene diradical) = ∆fH◦ (cyclobutane) + DH◦ (Et•/Et•) – ring
strain of cyclobutane = 6.6 + 86.0 − 26.5 = 66.1 kcal mol−1. This gives an enthalpy differ-
ence ∆rH◦(cyclobutane � tetramethylene diradical) = 66.1 − 6.6 = 59.5 kcal mol−1. With
a measured barrier ∆‡H(cyclobutane→ 2 ethylene) = 61.1 kcal mol−1, the thermochem-
ical data support the hypothesis of a diradical mechanism for the cycloreversion (9),
which has been demonstrated through femtochemistry by Zewail and co-workers [72].
The reaction is not concerted or pericyclic; there is no assistance between the σ-bond
breaking and π-bond forming processes (Scheme 2). The thermally “allowed” concerted
[π2s + π2a] cycloreversion is not followed, since it involves too severe distortions of cy-
clobutane to reach the twisted transition structures predicted by the Longuet–Higgins
theory and the Woodward–Hoffmann rules. The entropy of activation ∆‡S of this con-
densation is that of the reaction ∆rS◦ corrected for the three free rotations about the
three single C-C bonds of the 1,4-diradical (3 times 5 eu). This leads to the estimated
∆‡S = −41.6 + 15 ≈ −27 eu. One obtains finally the Eyring activation free enthalpy
∆‡G = ∆‡H − T∆‡S = 41 − 442·(−0.027) ≈ 53 kcal mol−1 (with ∆‡H = Eyring activation
enthalpy). Using equation lnk = −∆‡G/RT + lnT + 23.76 = −53,000/1.987·442 + ln(442)
+ 23.76 ≈ −30.7, one obtains a rate constant k(9) ≈ 4.6 × 10−14 dm3 mol−1 s−1, or a half-life
(time for 50 % conversion) τ 1

2 = 1/k(9) [initial concentration of ethylene = 1]≈ 682,400 years!
This reaction is too slow to be observed at 442 K.
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Scheme 2. Many (2 + 2)-cycloadditions and (2 + 2)-cycloreversions involve 1,4-diradical intermediates.

If one considers the substituent effects on the relative stability of radicals, one can
predict the relative rate and the regioselectivity of all (2 + 2)-cycloadditions of alkenes.
Thermochemical analysis analogous to that given for the cyclodimerization (9) of ethylene
into cyclobutane suggests that the octa-1,7-diene-3,6-diyl diradical is also an intermediate
of the (2 + 2)-cyclodimerization of butadiene. When the alkenes are substituted with polar
groups, their cycloadditions are solvent dependent because zwitterions can be formed in
place of diradicals.

6. Diradicaloids Are Transition Structures of Concerted Cycloadditions

Figure 2 represents the possible paths of a Diels Alder reaction. For the same ori-
entation (regioselectivity), there are three limiting mechanisms; two of them involve the
formation of (Z)-hex-5-en-1,4-diyl diradicals, and the third one corresponds to the syn-
chronous one-step reaction, as implied by the Woodward–Hoffmann rules. Between these
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extremes are the concerted but two-stage mechanism proposed in 1959 by Woodward
and Katz [73]. For the retro-Diels–Alder reaction of norbornene into cyclopentadiene and
ethylene, Zewail and co-workers proposed from their femtosecond real-time studies that
both concerted and non-concerted trajectories are possible; however, they decomposed
norbornene by an intense laser pulse and generated the diradical by a photochemical
process [74]. Were (E)-hex-5-en-1,4-diyl diradicals to be formed, they could not cyclize, but
would induce polymerization of the cycloaddends, as already discussed by Littmann in
1936 [75]. Polymerization often accompanies cycloadditions of relatively unreactive dienes
unless a radical scavenging agent is added to the reaction mixture. In between the three
limiting mechanisms defined above, a spectrum of non-synchronous one-step mechanisms
are generally thought to occur, as supported on the basis of kinetic isotope effects [76].
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Figure 2. Spectrum of mechanisms for the Diels already Alder reaction. In polar medium and for
polar substituents, the diradical intermediates D1 and D2 can be zwitterions. ‡ for transition states.

Thermochemical data tell us that the preferred diradical intermediate is the one for
which the substituents stabilize the radicals the best, and this implies, as a rule, that this
diradical results from combining the least substituted centers of the diene and dienophile.
In other words, the most stable isomeric diradical intermediate is the one that has generated
the strongest bond between the two reactants (for instance D1 or D1’, Figure 3). Since
many Diels−Alder reactions have measured activation enthalpies ∆‡H that are lower than
the enthalpy difference ∆rH◦ between the diradical and the cycloaddends, the difference
∆rH◦ − ∆‡H can be taken as Doering’s energy of concert (Figure 3). The transition state of
such reactions can be readily described in terms of frontier molecular orbital interaction
theory [77,78]. An alternative valence-bond representation is that transition structures can
be represented by diradicaloids, i.e., diradicals that exchange electron between the two
radical entities. Within the valence bond theory, this electron exchange can be represented
by a (Z)-diradical and one or two zwitterions, as shown in Figure 3 with D1
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Figure 3. The valence-bond diradicaloid model for transition states of concerted Diels–Alder reactions.
The lower is the sum EI(diene) + (−EA(dienophile)), or EI(dienophile) + (−EA(diene)); the faster is
the cycloaddition; the higher is the degree of concert.

The diradicaloid model explains the chemo-, regio-, and stereoselectivity (e.g., endo
rule of the Diels–Alder reactions) of all cycloadditions and cheletropic additions. If one of
the substituents A or D can be coordinated selectively to an additive, a catalytical effect can
be observed, which is explained also by the diradicaloid model.

7. Diradicaloid Transition Structures of Concerted Sigmatropic Rearrangements

Sigmatropic rearrangements and especially the (3,3)-sigmatropic rearrangements such
the 3,4-diaza-Cope rearrangement in the Fischer’s indole synthesis, the Claisen rearrange-
ments and its various variants, the aza-Claisen, the Overman, and the Cope rearrangements
have played an important role in synthesis, and will continue to do so. Here, also one con-
siders a spectrum of mechanisms (Figure 4) in which there are two limiting paths involving
diradical intermediates, and in between these two limits, concerted one-step mechanisms.
One limiting mechanism is dissociation with the formation of two allyl radicals 7 + 8; the
other is the associative formation of cyclohexa-1,4-diyl diradical intermediate of type D3
(Grob’s hypothesis).

Gajewski and Conrad mapped out the positions of transition states on such diagrams
through their measurements of secondary deuterium kinetic isotope effects and compar-
isons to equilibrium isotope effects [79]. In the concerted one-step mechanisms, the bond
forming process assists the bond breaking process. Their transition states can be represented
by transition structures belonging to two types of diradicaloids (Figure 5). The two allyl
radicals 7 + 8 exchange an electron, forming ion-pairs IP1 or/and IP2. On its side, diradical
D3 is stabilized by electron-exchange leading to zwitterions Z3 or/and Z4. Substituent effects
on the relative stability of radicals, cations, and anions allow one to predict the reactivity of
these concerted reactions. This model explains substituent effects on rates and the accelerat-
ing effects of catalysts. For instance, any additive that can stabilize one or the other of the
charge-transferred limiting structures will catalyze the (3,3)-sigmatropic rearrangement.
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Figure 4. More O’Ferrall–Jencks diagram for Cope and Claisen rearrangements. The horizontal
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lengthening of the σ(C(3)-C(4)) bond; the enthalpy is perpendicular to the plane made by the two
former coordinates. The position of the transition states (‡) in this diagram are deduced according to
Gajewski from the comparison of kinetic and equilibrium deuterium isotopic effects.
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8. Diradicaloid Transition Structures in Concerted Ene-Reactions and Related Processes

The Alder−ene reaction is the thermal reaction of two alkenes that are condensed into
another alkene with the formation of a new σ(C-C) bond and the transfer of a hydrogen
atom between them. A large number of analogous reactions are known for heteroatoms
containing unsaturated reactants, such as the aldol reaction (10) and the carbonyl-ene
reaction (11) (Figure 6). In the absence of Lewis or Brønsted acid, the transition structure
of the enol aldol condensation can be represented by a diradicaloid (1,4-diradical
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(10)). The role of the acid catalyst A is to stabilize the zwitterionic limiting structure Z5 by
equilibrating with zwitterion Z5’. As a consequence, the reaction may follow a multi-step
mechanism in which Z5’ is one reaction intermediate that can adopt quasi-cyclic or acyclic
conformations. Similar diradicaloid models (D5
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 Z6) can be considered for metalla-
carbonyl-ene reactions promoted by a Lewis acid (Figure 6, reaction (11)). Very electrophilic
ketones such as hexafluoroacetone react with allylsilanes without catalyst [80]. The Hosomi–
Sakurai reaction promoted by TiCl4 (Figure 6, reaction (11)) is not only regiospecific, but also
stereospecifically anti with respect to the silyl group, which leads to the formation of a (E)-
homoallylic alcohol [80–82]. ((E)-crotyl)trimethylsilane and ((E)-cinnamyl)trimethylsilane
react with aldehydes in the presence of TiCl4 to give homoallyl alcohols with over 93%
syn-selectivity (Figure 6, reactions (12) and (13)). Lower syn-selectivity is observed for
the reactions of (Z)-crotylsilanes [83,84]. The stereoselectivity is generally accepted to be
determined by chair-like six-membered (“closed”) transition states [85–90].
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Figure 6. The diradicaloid model illustrated with Equilibria (10) and (11) permits to explain the 
catalytic effect of added protic or Lewis acids (A) to enolate aldol condensations, to metalla-
carbonyl-ene reactions, and the carbonyl-ene-reaction. 

9. Valence Bond Theory Can Be Used to Explain Structural and Medium Effects on the 
Rates of Displacement Reactions 

The diradicaloid model is not limited to the transition structures of concerted 
pericyclic reactions. Concerted displacement reactions (14) are quite important in 
synthesis. 

R-X + Y:−/M+ ⇄ R-Y + X:−/M+ (14)

Shaik and Pross, as well as others, have described the SN2 reaction transition states in 
terms of valence bond theory [91–98]. The transition structure of a SN2 reaction (Figure 7) 
engaging a negatively charged nucleophile can be represented by the limiting structures: 

[Y:−/R•/X• ↔ Y:−/R+/X:− ↔ Y•/R•/X:− ↔ Y•/R:−/X•]‡. 

Figure 6. The diradicaloid model illustrated with Equilibria (10) and (11) permits to explain the
catalytic effect of added protic or Lewis acids (A) to enolate aldol condensations, to metalla-carbonyl-
ene reactions, and the carbonyl-ene-reaction.
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9. Valence Bond Theory Can Be Used to Explain Structural and Medium Effects on the
Rates of Displacement Reactions

The diradicaloid model is not limited to the transition structures of concerted pericyclic
reactions. Concerted displacement reactions (14) are quite important in synthesis.

R-X + Y:−/M+ � R-Y + X:−/M+ (14)

Shaik and Pross, as well as others, have described the SN2 reaction transition states in
terms of valence bond theory [91–98]. The transition structure of a SN2 reaction (Figure 7)
engaging a negatively charged nucleophile can be represented by the limiting structures:

[Y:−/R•/X• ↔ Y:−/R+/X:− ↔ Y•/R•/X:− ↔ Y•/R:−/X•]‡.
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This representation allows one to predict that the weaker the R-X bond (DH◦(R•/X•)
= ∆fH◦(R•) + ∆fH◦(X•) - ∆fH◦(R-X), ∆fH◦ = standard heat of formation); the faster the
nucleophilic displacement. Furthermore, the higher the stability of cation R+ and of
nucleofugal group X:−, or/and the higher the stability of the carbanion R:− the faster the
reaction is. Nucleophilicity of Y:− depends on how much the anion is dissociated from its
counter-ion M+, and this depends upon the medium polarity and/or catalyst that interact
specifically with M+. The lower the ionization energy (EI(Y:−)) of the nucleophile Y:–,
the faster the displacement reaction is. The higher the electron affinity (−EA(R-X)) of the
electrophile R-X, the faster the reaction is. Thermochemical data such as ionization energies
and electron affinities permit one to evaluate the power of the pushing effect of the arrow
associated with the attack of the electrophile by the nucleophile, and of the power of the
pulling effect of the arrow associated with the departure of the nucleofugal group X:−.
Additives that can combine with the nucleofugal group X (and not with the nucleophile Y)
are catalysts of the displacement reaction.

10. Hydrocarbation of Unsaturated Compounds by R-H Reagents Do Not Produce Waste

Classically, for the formation of single C-C bonds, chemists have relied upon displace-
ment reactions by matching a nucleophile with an electrophile (e.g., Nu-H + R-X + base→
Nu-R + base-H+/X−, or Nu-metal + R-X→ Nu-R + metal+/X−; R = alkyl, alkenyl, aryl,
heteroaryl, alkynyl) [99] and on electrophilic substitutions (Ar-H + E-X � Ar-E + HX; e.g.,:
Friedel–Crafts alkylation and acylation) [100]. Catalyzed or photo-catalyzed free-radical ad-
ditions to C-C multiple bond are applied more and more in fine organic synthesis, not only
to generate polymers (e.g., R-X (X= I, Br) + BCH=CHA→ R-CH(B)-CH(X)-A) [101–106].
Aldehyde and ketone olefinations are also powerful methods to create double C=C bonds.
All these reactions are not atom economical, as they produce co-products. The same can be
said for the very much used additions of organometallic reagents to unsaturated systems
(Nu-metal + A=E � Nu-A-E-metal, with A, E = carbon or heteroelement; = is a double
or triple bond) [107]. Direct additions (15) of R-H to unsaturated compounds are more
atom economical [108,109]. One-step concerted [π2s+σ2s]-cycloadditions are predicted
to be difficult reactions (symmetry forbidden, small LUMO/HOMO overlap, and large
energy gaps between these reactant MO’s). Conformational strain required for the theo-
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retically allowed concerted [π2a+σ2s]- or [π2s+σ2a]-cycloadditions renders these one-step
reactions impossible.

R-H + X=Y � R-X-Y-H (15)

Many of them are base-catalyzed and involve the conjugate bases R− of R-H as inter-
mediate. Examples are the aldol (e.g., R1CHO + R2CH2COR3 � R1CH(OH)-CH(R2) –COR3)
and the Claisen condensation (e.g., R1CH2COOR2 + R3CHO � R1CH(COOR2) –CH(OH)R3),
the Henry reaction (e.g., R1CH2NO2 + R2CHO � R1CH(NO2)-CH(OH)R2), and the Michael
addition (e.g., R1CH2COR2 + CH2=CHCOR3→ R1CH(COR2)-CH2–CH2COR3) [110]. Under
acidic conditions, the most common reactions are the Mannich reaction (e.g., R1COCH3
+ CH2O + R2NH→ R1COCH2-CH2-NR2 + H2O), the Alder ene-reaction (A-CH=CH2 +
R2C=CH-C(R’2)H � A-CH2-CH2-C(R2)-CH=C(R’2), the alkylation of arenes by alkenes (e.g.,
Ar-H + CH2=CHR � ArCH(Me)R), the alkylation of alkenes with alkanes (e.g., the alkyl pro-
cess, synthesis of isooctane from isobutene and isobutane), the hydroxyalkylation of alkenes by
aldehydes (e.g., the Prins reaction RCH=CH2 + CH2=O � RCH=CH-CH2OH) [111,112], and
the hydroxyalkylation of aromatic compounds with aldehydes. Other processes are catalyzed
by a nucleophile (KCN, amine, phosphine, diaminocarbene) such as the benzoin conden-
sation (e.g., 2 RCHO→ RCH(OH)-COR), the Stetter reaction (e.g., R1CHO + R2-CH=CH-
COR3→ R1CO(R2)CH-CH2-COR3), the Rahut-Currier reaction (e.g., ArCOCH=CHCOOR
+ CH2=CHCOMe→ ArCOCH2CH(COOR)C(=CH2)COMe), and the Morita-Baylis-Hillman
reaction (e.g., R1CHO + R2CH=CHA→ R1CH(OH)-C(A)=CHR2 [113]. Since the discovery
of the Fischer–Tropsch reactions (e.g., nCO + (2n+1)H2→ nH2O + CnH(2n+2)) and the Roelen
hydroformylation of alkenes (RCH=CH2 + CO + H2 → RCH2CH2CHO + RCH(CHO)Me),
transition metal-catalyzed hydrogenative C-C coupling reactions are taking more and
more importance in fine organic synthesis [114–116]. Because it can be applied to a large
variety of reactants and be asymmetric, Krische’s hydrogenative coupling of dienes (or
alkynes) with carbonyl compounds and imines (e.g., CH2=CH(R1)CH=CH2 + H2 + R2CHO
→ CH2=CH-C(Me)(R1)-CH(OH)-R2) is a very powerful synthetic tool [117–121]. Alterna-
tively, transition metal complexes can dehydrogenate primary alcohols and thus provide
the corresponding aldehydes as an intermediates and, formally, H2 necessary for the hy-
drogenative coupling of alkenes and aldehydes. Thus, one can use alcohols in the direct
hydro(hydroxycarbation) of alkenes, 1,3-dienes, allenes and alkynes. The concept devel-
oped by Krische and co-workers is therefore a formal hydrocarbation (16) of unsaturated
compounds by primary alcohols, a reaction that can simultaneously generate up to two
new contiguous stereogenic centers [122–124].

H2C=CR1(R2) + R3CH2-OH→ CH3-C(R1)(R2)-CH(R3)-OH (16)

Krische defines the process as being a hydro(hydroxycarbation) via transfer hydro-
genation. An example is given with Reaction (17) (Scheme 3). The alcohol equilibrates
with its aldehyde and an iridium hydride that adds chemoselectively to the alkene gener-
ating a methyl(propargyl)iridium intermediates, which, in turn, adds to the intermediate
aldehyde. When the transition metal catalyst is coordinated to an enantiomerically pure
ligand, the hydro(hydroxycarbation) can be highly stereo-(dr = diastereoisomeric ratio)
and enantioselective (ee = enantiomeric excess) [125,126].
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There have been many more exploratory studies on transition metal-catalyzed re-
actions than mechanistic studies. Thermochemical and kinetic data for transition metal
complexes and their reactions are not as numerous as for organic compounds, but are being
recorded more and more frequently. Nevertheless, because the structures and the reactions
of transition metal complexes can be modeled by the structures and reactions of organic
compounds, simple models are available to “classify” the reactions catalyzed by transition
metal species.

In classical chemistry, direct hydrocarbations of unsaturated compounds X=Y are
non-concerted processes. If R is an allyl moiety, a concerted ene-reaction can occur (e.g.,
CH2=CH-CH2R’ + X=Y→ H-X-Y-CH2-CH=CHR’). If the catalyst is a base B:, it deproto-
nates R-H forming the conjugate base R- as an intermediate, which then adds to the alkene
(or alkyne), generating an anionic adduct. The latter is then quenched by the conjugate acid
BH+ of the basic catalyst (nucleophilic addition (18)) or by R–H, realizing a chain process.
Concurrently, the anionic adduct intermediate can add to another alkene (alkyne) and start
the polymerization of the latter (anionic polymerization).

A second mechanism involves a radical intermediate R• in which the catalyst is a
radical or a species that can abstract a hydrogen atom from R-H. The addition of radical R•

to the alkene (alkyne) produces another radical that abstracts a hydrogen atom from H-X
(radical addition (19)) or from R-H (chain process). Concurrently, the intermediate radical
resulting from the initial radical addition can, in its turn, add to another alkene (alkyne)
and lead to the polymerization of the latter (radical polymerization).

A third mechanism involves a cationic intermediate R+ resulting from a hydride abstrac-
tion by a catalyst capable of abstracting a hydride from R-H reversibly. Such a mechanism
corresponds to an electrophilic addition (20). Alternatively, the alkene can be protonated
given a carbenium ion intermediate that adds to another alkene generating carbocationic
adduct. At this stage, the latter is reduced by a hydride transfer from the alkane (e.g., the
alkylate technology for the production of high octane number gasoline from a mixture of
butene and isobutane) [127–131]. Concurrently, the first cationic adduct can add to another
alkene, leading to its polymerization (cationic polymerization). Formally, instead of initiating
the reaction by forming a carbenium ion intermediate R+, one can imagine a catalyst M+ that
combines with R-H forming an organometallic species R-M and a proton. The protonation
of the alkene (alkyne) follows, forming a carbenium ion that is quenched by R-M (Reaction
(21), Figure 8), or that adds to another alkene (alkyne), starting its polymerization [132–139].
Mechanisms that involve a single electron transfer are also possible [140–142].
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11. Transition Metal-Catalyzed Hydrocarbations

Transition metal-catalyzed processes follow mechanisms in which several intermedi-
ates equilibrate with reactants and products. Thus, thermodynamics control the outcome
of the process in many instances. Other transition-metal-catalytic reactions that are not
reversible have rate-determining steps that determine the chemo-, regio-, stereo-, and enan-
tioselectivity. The latter can be guessed, or quantum chemical calculations can help, at least
in rationalizing the observations. A number of rules are available from thermochemical
data; for instance, the M-C bonds are weaker than the M-H bonds, and the C-C bonds are
weaker than the C-H bonds for comparable systems (same type of substitution). Scheme 4
with reaction (22) is generally retained for transition metal-catalyzed direct hydrocarbation
of unsaturated compounds.
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Unsaturated transition metal complexes (with 16 or fewer valence electrons) are able
to add across the σ(C-H) of R-H and form adducts of type R-[M]-H (can be an equilibrium
of geometrical isomers) in which a σ(M-R) and a σ(M-H) bond are formed. In this adduct,
the metal atom has gained two more valence electrons (VE) [143–147]. This is called an
oxidative addition [148]. The oxidative addition (23) of a transition metal complex ML
to a C-H bond is modeled in organic chemistry with the insertion of a carbene into a
single C-H bond to give an alkane. For instance, methane adds to methylene carbene
(reaction (24)), giving ethane (∆fH◦ = standard heat of formation in the gas phase). The
carbene has a carbon atom with a sextet of VE, meaning that it is unsaturated, whereas the
carbon center in the product (alkane) has an octet of VE, meaning it is saturated. Another
comparison is the reaction of a methyl cation with methane that equilibrates with an
ethonium ion (C2H7

+ = protonated ethane) in the gas phase [149]. Dihydrogen (H2) reacts
with methyl cations (which has a sextet of VE on its carbon atom), giving a methonium ion
(CH5

+ = protonated methane, carbon atom with an octet of VE) as shown (Scheme 5) with
Equilibrium (25) [150–154].

Transition metal complexes are good catalysts because they can exchange their ligand
at relatively low temperature and assemble two reactants that must combine around the
metal atom (template effect). Because bonds around the metallic center have bond angles
that can be changed with little deformation energy, reactions that combine two reactants
have relatively low energy barriers. Furthermore, the metallic center is highly polarizable,
which means that it can take or give electrons very readily and at each step of the process.

The first and last steps of a transition-metal-catalytic process are ligand exchanges,
as illustrated with the hydrocarbation reaction (22). The exchange of a ligand L (carbon
monoxide, amine, phosphine, arsine, ether, aldehyde, ketone, alkene, alkyne, arenes, H2,
etc.) with an alkene (Reaction (26)) is modeled by the cyclopropanation of alkenes with
methylene generated by photolysis of ketene (Reaction (27)), for instance, (Scheme 6).
Another reaction to consider as a model is the formation of a H-cycloproponium ion
by the addition of a methyl cation to an alkene (reaction (28)). H-cycloproponium ions
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are intermediates (species longer-lived than transition structures) in Wagner–Meerwein
rearrangements (see Table 1) [155].
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Table 1. Fundamental reactions of transition metal complexes and comparison with organic reactions.
Tolman’s rules are applied to define (conventionally) the oxidation number x of the metal, M (VE:
number of valence electrons). [M] = M(x) for a metal bearing other ligands eventually, including
solvent molecules. Reprinted with permission from Ref. [17]. Copyright 2019 Wiley.
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One of the processes that generates a bond between two reactants is the β-insertion
(Reaction (30), the opposite reaction being a β-elimination). For the insertion of a hydrogen
atom, the model reaction is the corner-to-corner migration in H-cycloproponium ions that
corresponds to a 1,3-hydrogen shift, as shown with reaction (29) [156]. The rearrangement
involves a transition structure that is a C-cycloproponium ion or edge-protonated cyclo-
propane (Scheme 7). A priori, any R group can do such migration (β-insertion). After the
β-insertion, the metallic center has lost two VE. For the reaction to occur, a ligand L must
coordinate the unsaturated metallic center.
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After the β-insertion, a reductive elimination (Reaction (31)), occurs, forming the
final product of hydrocarbation and an unsaturated metallic species that can return as
the active catalyst for another oxidative addition with reactant R-H, or be stabilized by
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the coordination of a ligand molecule L of a solvent molecule (Scheme 8). The reductive
elimination is the opposite reaction of the oxidative addition (e.g., Reaction (23)). If the
16-VE metallic adduct intermediate is an allylmetal species, it may add to the unsaturated
system in a metalla-ene reaction [157,158].
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stabilized by coordination to an adequate ligand or solvent molecule.

The other processes (α-insertion/α-elimination, α-cycloinsertion/α-cycloelimination,
β-cycloinsertion/β-cycloelimination) induced by transition metal complexes are also mod-
eled by reactions of carbocations, as summarized in Table 1 [156].

12. Review of the Fundamental Reactions of Simple Carbocations

The mass spectrum of methane (CH4) has peaks with mass/charge ratios m/Q = 12, 13,
14, 15, and 16 corresponding to the cations C•+, HC+, H2C•+, H3C+, and H4C•+, respectively.
The parent cation H4C•+ (or molecular ion) can dissociate into hydrogen radical H• and
methyl cation H3C+, and so on. If there is sufficient pressure in the ionization chamber, the
transfer of a proton (32) can take place (bimolecular reaction):

H4C•+ + CH4 → H3C• + CH5
+ (32)

In this case, a peak is observed in the mass spectrum of methane with a mass/charge
ratio m/Q = 17, which corresponds to methonium ion, CH5

+, whose carbon atom is sur-
rounded by an octet of valence electrons. It is much more stable (by 45 kcal mol−1,
Equilibrium (25)) than methyl cation, H3C+, whose carbon atom is surrounded by a sex-
tet of valence electrons. Methonium ion is the prototype of carbonium ions. Methyl
cation is the prototype of carbenium ions. The notation H4C•+ describes the methanium
radical-cation, which has seven valence electrons [159,160].

The salts of methyl and ethyl cations cannot be observed as persistent species in solu-
tion. When CD3CH2F is allowed to react with an excess of SbF5/SO2 at −78◦C, complete
deuterium/hydrogen scrambling in the ethyl group of ethyl fluoride is observed by 1H-
NMR spectroscopy. However, when CH3CH2F is added to DSO3F/SbF5 or DF/SbF5 in SO2
at −78◦C, no detectable incorporation of deuterium into the ethyl group occurs [161]. This
demonstrates that scrambling takes place intramolecularly in the ethyl cation intermediate
(Scheme 9). Quantum calculations predict similar stabilities for classical ethyl cations and
the bridged πH-ethenium ions (Equilibrium (33)) [162,163], which has been confirmed by
infrared spectroscopy of the ion in the gas phase [164,165]. The πH-ethenium ion is the
smallest possible π-complex of an alkene.
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The simplest all-carbon and hydrogen carbenium ion prepared as a stable salt in
solution is the i-propyl cation (Scheme 10). The 1,1,1-trideuterio-2-propyl cation (gener-
ated by treatment of 1,1,1-trideuterio-2-chloropropane in SbF5/SO2ClF at −110◦C) rear-
ranges (Equilibrium (34)) at−60◦C into isomeric ions with Arrhenius activation parameters
Ea = 16.4 ± 0.4 kcal mol−1 and logA = 13.2 ± 0.3 [166]. The [2-13C]prop-2-yl cation
generated from [2-13C]prop-2-yl chloride at low temperature was found to undergo in-
tramolecular carbon scrambling between −90 and −60◦C (Equilibrium (35)). This requires
a process involving a corner-protonated cyclopropane or an edge-protonated cyclopropane
intermediate (Equilibrium (36)) [167].
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Scheme 10. Both the hydrogen- (Equilibrium (34)) and carbon-atom scrambling (Equilibrium (35))
are observed in isopropyl salt in a super-ionizing media (SbF5/SO2ClF).

The edge-protonated cyclopropane is somewhat higher in energy than the corner-
protonated cyclopropane, although in the gas phase, fast scrambling (Equilibrium (36)) of
hydrogen in protonated cyclopropane has been observed (Scheme 11) [168]. Infrared ab-
sorption features of gaseous isopropyl cations showed that corner-protonated cyclopropane
is 8 kcal mol−1 less stable than isopropyl cations [169].
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Scheme 11. Edge-protonated cyclopropane is slightly less stable than corner-protonated cyclopropane.

The 1H-NMR spectrum of the but-2-yl cation (s-Bu+) in SbF5/SO2ClF solution measured
below −120◦C indicates a very fast proton interchange due to Equilibrium (37) [170,171].
Between−100 and−40◦C, all the hydrogen atoms in s-Bu+ are scrambled with an activation
energy Ea =7.5 ± 0.1 kcal mol−1 (logA = 12.3 ± 0.1). If a series of 1,2-hydride shifts were
responsible for the proton interchange, formation of a n-butyl (but-1-yl) cation intermediate
(n-Bu+) would be required (Scheme 12). However, by analogy with the isopropyl cation
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(Equilibria (34) and (35)), the formation of n-Bu+ would be expected to require an activation
energy higher than 15 kcal mol−1. Hence, a more facile process involving formation of a
protonated methylcyclopropane and degenerate hydrogen shifts via an edge-protonated
cyclopropane intermediate or transition state is more probable (Equilibrium (38)). When
heated to −40 ◦C, the but-2-yl cation rearranges irreversibly into a t-butyl cation with an
activation energy of 18 kcal mol−1. The similarity of this energy barrier with that observed for
the isopropyl� n-propyl cation rearrangement (Ea ∼= 16 kcal mol−1) indicates that the reaction
takes place via the primary carbenium ion intermediate isobutyl cation, i-Bu+, although this
species is undoubtedly bridged by H or methyl in its minimum energy structure.
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Gas phase measurements indicate that the protonated cyclobutane is less stable than
s-Bu+, protonated methylcyclopropane and n-Bu+ (Scheme 13) [172].
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Two different types of hydrogen exchange processes have been observed in the 1H-
NMR spectrum of the t-amyl cation (2-methylbut-2-yl cation) (Scheme 14) [173]. One
involves the interchange of the two types of methyl group protons, not affecting the methy-
lene group (Equilibrium (40)). On the NMR time scale, this process occurs at temperatures
above 0 ◦C and has an activation energy of Ea ∼= 15 kcal mol−1 (logA ∼= 13.2). The rear-
rangement first involves a 1,2-sigmatropic shift of hydrogen generating a secondary alkyl
cation intermediate (3-methylbut-2-yl cation). This is followed by a 1,2-sigmatropic shift of
a methyl group (Wagner–Meerwein rearrangement) that generates another secondary alkyl
cation intermediate (3-methylbut-2-yl cation). The latter undergoes a quick 1,2-sigmatropic
shift of a hydrogen-producing t-amyl cation via a protonated dimethylcyclopropane (as
intermediate or transition state). Since degenerate Wagner–Meerwein shifts of both hydro-
gen and methyl groups are very fast (Ea < 4 kcal/mol, see e.g., Equilibrium (37)) when
no change in the degree of chain branching of the carbenium ion occurs, the major part
of the activation energy for this rearrangement (15 kcal mol−1) must be due to the forma-
tion of the secondary ion intermediate (3-methylbut-2-yl cation) from an t-amyl cation
(2-methylbut-2-yl cation) [173].
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Scheme 14. Hydrogen- and carbon-atom scrambling in 2-methylbut-2-yl (tertioamyl) salt in a super-
ionizing medium (SbF5/SO2ClF).

The second process (41) occurs above 80 ◦C on the NMR time scale. It causes the
scrambling of all the hydrogen atoms in a t-amyl cation. It has an activation energy
Ea = 18.8 ± 1 kcal mol−1 (logA = 13.2 ± 0.5). A mechanism involving reversible hydride
shifts to primary carbenium ion intermediates (e.g., 2-methylbut-1-yl cation) can be rejected
on the basis that such species would have energies well above (ca. 30 kcal mol−1) that
of the starting tertiary cation (t-amyl cation). In the alternative mechanism shown with
Equilibrium (41), the hydrogen atom interchange involves corner-to-corner hydrogen shifts
in the protonated dimethylcyclopropane intermediates. Thus, this process, which involves
an overall change in the degree of chain branching, has an energy barrier 3 kcal mol−1
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higher than those for related processes not involving such a change [155,174]. X-ray
diffraction studies of crystals of a salt of 2-norbornyl cations ([C7H11]+] [Al2Br7]−.CH2Br2)
at 40 K demonstrated this secondary alkyl cation adopting a Cs symmetrical structure, that
is, a H-nortricyclonium cation (a corner-protonated cyclopropane) (Scheme 15) [175].
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Scheme 15. The 2-norbornyl cation is a stable corner-protonated cyclopropane derivative (non-
classical carbonium ion).

The secondary cyclopentyl cation is stable in SbF5/SO2ClF solution up to -20◦C [176].
It undergoes a fast, degenerate 1,2-hydride shift (equilibrium (42), Ea < 4.5 kcal mol-1), but
no ring contraction (equilibrium (43)) has ever been detected (Scheme 16). Considering an
energy difference of 15 kcal mol−1 for the isomerization of a secondary alkyl cation to a
primary isomer and the ring strain difference of 20 kcal mol−1 between cyclopentane and
cyclobutene, one estimates the cyclobutylmethyl cation to be less stable than the cyclopentyl
cation by ca. 35 kcal mol−1. Contrary to the cyclopropylmethyl cation, which is highly
stabilized [177,178], the cyclobutylmethyl cation does not enjoy the same hyperconjugative
stabilization [179,180].
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Scheme 16. The cyclobutylmethyl cation is not a stable primary carbenium ion.

In the gas phase, the doubly 13C-labelled cyclopentyl cations 11 and 12 generated from the
doubly 13C-labelled bromides 7–10 undergo degenerate carbon scrambling (Equilibrium (44))
prior to elimination of ethylene (Fragmentation (45)). The complete carbon scrambling can, in
principle, proceed via either the cyclobutylmethyl cation intermediate (Equilibrium (43)) or the
“non-classical” pyramidal cation 13 (Equilibrium (44)), as calculations have suggested that they
have similar energies [181,182]. Cation 13 can be viewed as a π-complex between ethylene
and a cyclopropyl cation (corner-protonated spiropentane) or as a double π-complex between
two ethylene units and the methylidynium ion, :CH+ (Scheme 17). The fragmentation of the
cyclopentyl cation into the allyl cation and ethylene (Fragmentation (45)) may also involve
cation 13 as an intermediate. The dissociation of an ethylene unit from 13 via transition state
14 is expected to give an allyl cation and ethylene. This process would be analogous to the
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gas phase fragmentation of the corner-protonated cyclopropane into molecular hydrogen
and allyl cations. Mechanisms similar to those presented with Equilibrium (44) have been
proposed to rationalize the complete hydrogen and carbon atom scrambling in the gaseous
cyclohexyl � methylcyclopentyl cation equilibrium that occurs prior to monomolecular
elimination of ethylene [183]. Cation 13 is also formed upon protonation of spiropentane.
In the gas phase, its lifetime exceeds 7× 10−9 s. Cation 13 is separated from the cyclopentyl
cation by 30 kcal mol−1 [184,185].
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Scheme 17. In the gas phase, the cyclopentyl cation equilibrates with the corner-protonated spiropen-
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13. Conclusions

The inventor of new processes can predict equilibrium constants and reaction rates
by applying simple rules of thermodynamics and using published thermochemical data.
Organic chemistry today offers a fantastic panoply of new reactions, especially catalytic re-
actions, that render the exploration of chemical space faster and more facile. Very important
and sustainable processes are available, especially when atom economical processes are
engaged, such as pericyclic reactions and direct hydrocarbation of unsaturated compounds.
Catalysts can be invented that permit these reactions to be run under smooth conditions (no
cooling, no heating, no solvent or in harmless solvents such as water, ethanol, ethyl acetate,
or 2-methyltetrahydrofuran). There is a catalyst for any kind of reaction that permits energy
savings and reduces the co-production of waste. The Vogel–Houk book has been written to
help engineers and inventors realize a more sustainable world and to quickly generate a
large number of new molecules that our civilization needs or will need. It also illustrates
how fundamental concepts of chemical reactivity are based on thermodynamics. In this
review, we have extracted a few models that help to show the analogies that exist between
reactions of organic compounds and transition organometallic compounds. They help to
understand a large number of catalyzed processes.
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