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Abstract: Chiral dimethyl 2-methylsuccinate (1) is a very important building block for the manufac-
turing of many active pharmaceutical ingredients and fine chemicals. The asymmetric reduction of
C=C double bond of dimethyl citraconate (2), dimethyl mesaconate (3) or dimethyl itaconate (4) by
ene-reductases (ERs) represents an attractive straightforward approach, but lack of high-performance
ERs, especially (S)-selective ones, has limited implementing this method to prepare the optically pure
dimethyl 2-methylsuccinate. Herein, three ERs (Bac-OYE1 from Bacillus sp., SeER from Saccharomyces
eubayanus and Af ER from Aspergillus flavus) with high substrate tolerance and stereoselectivity
towards 2, 3 and 4 have been identified. Up to 500 mM of 3 was converted to (S)-dimethyl 2-
methylsuccinate ((S)-1) by SeER in high yields (80%) and enantioselectivity (98% ee), and 700 mM of 2
and 400 mM of 4 were converted to (R)-1 by Bac-OYE1 and Af ER, respectively, in high yields (86%
and 77%) with excellent enantioselectivity (99% ee). The reductions of diethyl citraconate (5), diethyl
mesaconate (6) and diethyl itaconate (7) were also tested with the three ERs. Although up to 500 mM
of 5 was completely converted to (R)-diethyl 2-methylsuccinate ((R)-8) by Bac-OYE1 with excellent
enantioselectivity (99% ee), the alcohol moiety of the esters had a great effect on the activity and
enantioselectivity of ERs. This work provides an efficient methodology for the enantiocomplementary
production of optically pure dimethyl 2-methylsuccinate from dimethyl itaconate and its isomers at
high titer.

Keywords: dimethyl citraconate; dimethyl itaconate; dimethyl mesaconate; dimethyl 2-methylsuccinate;
enantioselective enzymatic reduction; ene-reducase

1. Introduction

Chiral dimethyl 2-methylsuccinate (1) is exceptionally valuable as it is a very impor-
tant building block for the manufacturing of many active pharmaceutical ingredients and
fine chemicals. For example, it is an important chiral synthon of sacubitril, which was
combined with valsartan for the treatment of heart failure [1]; aspernigrins C/D with
anti-HIV-1 activities [2]; moiramide B with antibacterial activity against methicillin resis-
tant staphylococcus aureus and a range of other antibiotic resistant human pathogens [3,4];
violaceimide A-E from the sponge-associate fungus Aspergillus violaceus [5]; and methyllyca-
conitine used as an antagonist at the α7 nicotinic acetylcholine receptor (Figure 1) [6]. It has
also found wide application in complex convergent synthesis [7] or metal-organic frame-
works [8] with enhanced material properties. In addition, it is often used as a reference
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for the determination of the absolute configuration of complex compounds [9]. Therefore,
efficient enantioselective synthesis of chiral dimethyl 2-methylsuccinate (1) is attracting
great interest from organic chemists in the academic and industrial community [10–14].
Among the various synthetic methods, the asymmetric reduction of C=C double bond of
dimethyl citraconate (2), dimethyl mesaconate (3) or dimethyl itaconate (4) represents an
attractive straightforward approach to access optically pure dimethyl 2-methylsuccinate (1).
However, chemical hydrogenation methods suffer some shortcomings, including harsh
reaction conditions, the use of high-pressure hydrogen, noble metal catalysts and expensive
chiral ligands, and generally inadequate stereoselectivity [15].
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Figure 1. Examples of bioactive natural products and drugs derived from chiral dimethyl 2-me-
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methylsuccinate (1).

As an alternative strategy, the asymmetric bioreduction of alkenes bearing an electron
withdrawing group to chiral alkanes has received significant attention in recent years [16,17].
Ene-reductases (ERs), which perform C=C bond reduction employing NAD(P)H as hydride
source via a flavin cofactor, are often highly chemo-, regio- and stereoselective [18–21].
There are some ERs from different sources [7,22], such as Kluyveromyces lactis [23], Yersinia
bercovieri [23], Thermus scotoductus SA-01 [24], Saccharomyces carlsbergensis [25], Rattus
norvegicus [26] and Pseudomonas putida [27], which have been used in the synthesis of
chiral dimethyl 2-methylsuccinate (1), but the substrate concentration was not more than
10 mM in most cases. As yet, very rare examples of preparative-scale synthesis of dimethyl
2-methylsuccinate (1) via ER-mediated reduction have been reported [16]. Mangan et al.
demonstrated that 223 mM (70 g, 1.99 L) of dimethyl citraconate (2) could be reduced to
(R)-dimethyl-2-methylsuccinate ((R)-1) in 89% yield by ERED-04 cell paste in 59 h using
a large amount of co-solvent toluene (28% v/v) [7]. Domínguez et al. reported that ENE-
102 lyophilized powder mediated the asymmetric reduction of dimethyl itaconate (4) to
give (R)-dimethyl-2-methylsuccinate ((R)-1) at high substrate concentration (730 mM) [28].
It should be noted that ERED-04 and ENE-102 were commercially purchased, and the
unavailability of protein sequence information prevents improving their performance by
protein engineering. This severely limits their applicability. In addition, the preparative
scale synthesis of (S)-dimethyl-2-methylsuccinate ((S)-1) by this bioreduction at high sub-
strate concentration has not been reported. In this study, through systematically exploring
the activity of a collection of ERs, we successfully identified a group of high substrate-
tolerant enzymes that could efficiently and enantiocomplementarily convert dimethyl
citraconate (2), dimethyl mesaconate (3) or dimethyl itaconate (4) into the enantiomers
of dimethyl 2-methylsuccinate (1) in high isolated yields with excellent optical purity. In
particular, formate dehydrogenase (FDH) was used for co-factor regeneration using sodium
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formate as the hydrogen source, showing advantages in terms of atomic economy and
environmental impact due to the by-products being CO2 (Figure 2).
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2. Results and Discussion

A library of 81 ERs available in our group (Table S1 in the Supplementary Materials)
were screened against dimethyl citraconate (2, 50 mM), dimethyl mesaconate (3, 50 mM) or
dimethyl itaconate (4, 10 mM) using E. coli whole cells expressing ER genes. A total of 26
and 18 ERs catalyzed the asymmetric reduction of 2 and 4, respectively, to afford (R)-1 in
99% conversion with excellent enantioselectivity (>99% ee) (Table S3), while 17 out of 81 ERs
were found to catalyze asymmetric reduction of 3 to furnish (S)-1 in excellent conversion
(>99%) and enantioselectivity (>99% ee). Interestingly, NEM, X8-2, Y1-1ER, Y1-4ER, LrER,
MsER, AaER and NcER1 showed complementary stereospecificity toward 3 with moderate
to excellent enantioselectivities (70%–96% ee). To compare the catalytic performance of
the best stereoselective enzymes, the asymmetric reductions of 2, 3 and 4 to (R/S)-1 were
performed at different concentrations by employing 50 mg/mL wet E. coli cells of ERs in
potassium phosphate buffer (100 mM, pH 7.0) containing 1.3 eq sodium formate, 2 U/mL
LbFDH, 0.5 mg/mL NADP+ at 30 ◦C for 24 h. When the concentration was increased to
700 mM, only Bac-OYE1 from Bacillus sp. [29] show high activity toward 2 (>99% conversion
(conv.)) (Tables S4 and S5). It is worth noting that the C=C bond isomerization of 2 to 3 was
observed for some ERs according to GC analysis. This phenomenon was also discovered
in the reduction of α-methylene-γ-butyrolactone catalyzed by ERs [30]. Bac-OYE1, YqjM
from Bacillus subtilis [31], BzER from Bacillus zhangzhouensis and SeER from Saccharomyces
eubayanus catalyzed the reduction of 3 at 300 mM concentration to give (S)-1 in >99%
conversion, but only SeER showed excellent conversion (99%) and enantioselectivity (98%
ee) when the concentration of 3 was increased to 500 mM (Table S6), which is the highest
reaction concentration for the synthesis of (S)-1 reported so far. Asymmetric reduction of 4
at a concentration of 400 mM was achieved by Af ER from Aspergillus flavus, affording (R)-1
in 99% conversion with 99% ee values (Table S7).

To explore the substrate specificity of the top five enzymes (Bac-OYE1, YqjM, BzER,
Af ER and SeER) with high activity and enantioselectivity, we tested their substrate tolerance
and enantioselectivity towards 2, 3 and 4 (Table 1). They were all (S)-selective towards 3
and (R)-selective towards 2 and 4. Interestingly, up to 500 mM of 3 was almost completely
converted to (S)-1 using wet cells of SeER, while the conversion of 2 and 4 at 50 mM was
only 58% and 27%, respectively, indicating that SeER had an obvious preference for 3. The
substrate tolerance of Bac-OYE1 and BzER towards 2 was significantly higher than that
of 4, and that of Af ER and YqjM towards 4 were significantly higher than other enzymes.
Their specific activity towards 2, 3 and 4 was also tested using purified enzymes (Table 2).
Bac-OYE1, SeER and Af ER exhibited the highest activity towards 2, 3 and 4, respectively,
which was consistent with the results of substrate tolerance assay. The specific activity of
Bac-OYE1 towards 4 was higher than that of YqjM, but its substrate tolerance was lower
than that of YqjM.
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Table 1. Asymmetric reduction of 2, 3 and 4 catalyzed by 5 ERs 1.

ERs

2 3 4

Conc.
(mM)

Conv.
(%) 2

ee
(%) 2

Conc.
(mM)

Conv.
(%) 2

ee
(%) 2

Conc.
(mM)

Conv.
(%) 2

ee
(%) 2

Bac-OYE1 700 >99 99R 300 >99 99S 50 97 99R

YqjM 500 75 99R 300 >99 99S 400 99 99R

BzER 500 >99 99R 300 >99 99S 30 >99 99R

Af ER 500 62 99R 300 >99 99S 400 >99 99R

SeER 50 58 54R 500 99 98S 50 27 99R

1 Reaction conditions: substrate (2, 3 or 4) at varied concentration in potassium phosphate buffer (1 mL, 100 mM,
pH 7.0), 1.3 eq sodium formate, 2 U/mL LbFDH, 0.5 mM NADP+ (0.39 g/L), and 50 mg wet cells at 30 ◦C for
24 h. 2 The conversion and ee values were determined by GC analysis, the absolute configuration of products was
assigned by comparison their retention times with standard sample (R)-1, which appears as superscript font.

Table 2. Specific activity of ERs towards 2, 3 and 4 1.

Enzyme
Specific Activity (U/mg)

2 3 4

Bac-OYE1 2.17 0.36 0.95
YqjM 1.06 0.05 0.61
BzER 0.55 0.10 0.53
Af ER 0.25 0.14 1.43
SeER 0.03 0.38 0.02

1 Assay conditions: 50–150 mM substrate, 50 mM glucose, 20 U glucose oxidase; 0.5 mM NADPH (0.42 g/L),
10 µL pure enzyme (1.92 g/L Bac-OYE1, 4.20 g/L YqjM, 15.36 g/L BzER, 11.94 g/L Af ER or 23.55 g/L SeER) in
200 µL Tris-HCl buffer (100 mM, pH 8.0).

After evaluation of the enantioselectivity and relative activity, SeER, Bac-OYE1 and
Af ER were selected for further study. To investigate the effects of pH and temperature,
activities of pure enzymes of SeER and Af ER at different pH and temperature were mea-
sured. Af ER exhibited optimum activity in the range of pH 7.0–8.5, but dropped off sharply
between pH 8.5 and 9.0 or below 4.5 (Figure S2a). This was similar to the observation
for Bac-OYE1 [32]. SeER had a broad pH range with optimum pH at pH 8.0 (Figure S3a).
Bac-OYE1 showed higher activities in Tris–HCl buffer, while SeER and Af ER showed higher
activities in sodium phosphate buffer. Since the pH of the reactions will increase 0.5–1
during the reduction reaction, the preparative-scale reaction was carried out at slightly
lower pH than the optimum one. The activities of SeER and Af ER at the different tempera-
tures were investigated (Figures S2b and S3b), it demonstrated that the optimum reaction
temperature of SeER and Af ER were 45 ◦C and 50 ◦C, respectively. The activity of SeER
decreased significantly when the temperature was over 45 ◦C. To our delight, there was
still 60% catalytic activity retained for Af ER when the temperatures was increased to 80 ◦C.
Af ER and SeER could retain more than 80% after being incubated at 30 ◦C or 40 ◦C for
24 h, indicating that they were very stable below 40 ◦C. Interestingly, an increase in activity
was observed at 40 ◦C within 4 h for Af ER and 8 h for SeER. This may be due to the
thermo-induced proper folding of the enzyme, leading to higher activity. However, the
precise mechanism requires further studies.

The respective kinetic parameters of SeER, Bac-OYE1 and Af ER towards 2, 3 and
4 were obtained by measuring the initial velocities of the enzymatic reaction at varied
substrate concentrations and calculating with curve-fitting according to the Michaelis-
Menten equation. The data of the catalytic rate (kcat) and catalytic efficiency (kcat/Km) are
summarized in Table 3. SeER exhibited higher kcat/Km toward 3 than 2 and 4. Bac-OYE1
showed a 1.6-fold and 3.0-fold greater kcat/Km towards 2 than 3 and 4, respectively. Af ER
displayed an approximately 8-fold greater kcat/Km towards 4 than 2.



Catalysts 2022, 12, 1133 5 of 12

Table 3. Kinetic parameters towards 2, 3 and 4 substrates for ERs 1.

Enzyme
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To further investigate the influence of the alcohol moiety of the ester functionalities
on the activity and enantioselectivity of ERs, SeER, Bac-OYE1 and Af ER were tested with
diethyl citraconate (5), diethyl mesaconate (6) and diethyl itaconate (7) at a substrate con-
centration of 50 mM (Table S11). The three enzymes showed the same stereo-preference
towards 2 and 5, and SeER displayed higher activity (>99% conversion) and enantioselec-
tivity (97% ee) towards 5 than 2. Interestingly, all the enzymes showed relatively lower
activity and enantioselectivity towards 6 and 7, demonstrating that the alcohol moiety of
the esters has a great effect on the activity and enantioselectivity of ERs. Then, substrate
tolerance of the three ERs towards 5 was also explored (Table S12), up to 500 mM 5 could be
completely converted to (R)-diethyl 2-methylsuccinate ((R)-8) by Bac-OYE1 with excellent
enantioselectivity (>99% ee), indicating that Bac-OYE1 has potential industrial application
for the production of (R)-8.

Under the optimized conditions, preparative-scale asymmetric reductions of 2, 3 and
4 to (R)- or (S)-dimethyl 2-methylsuccinate (1) were carried out by using 50 g/L of wet
cells of SeER, Bac-OYE1 or Af ER, respectively (Table 4). The reactions were completed
within 14–27 h. The reduction of 3 at 500 mM concentration by SeER generated (S)-1 in
80% isolated yield and 98% ee. (R)-1 was obtained from the reduction of 2 at 700 mM
concentration by Bac-OYE1 or 4 at 400 mM concentration by Af ER in 99% ee with the
isolated yields of 86% and 77%, respectively.

Table 4. Preparative-scale synthesis of (R/S)-1 1.

Sub. Prod. Conc. Vol.
(mL) ERs Conv.

(%) 2
Yield
(%) 3

ee
(%) 2

3 (S)-1 500 mM
(3.95 g, 79.1 g/L) 50 SeER >99 80 98

2
(R)-1

700 mM
(11.07 g, 110.7 g/L) 100 Bac-

OYE1 >99 86 99

4 400 mM
(3.16 g, 63.3 g/L) 50 Af ER >99 77 99

1 Reaction conditions: substrate (500 mM 3, 700 mM 2, or 400 mM 4), 1.3 eq. sodium formate, 2 U/mL LbFDH,
0.5 mM NADP+ (0.39 g/L), 50 g/L wet cells (SeER in 50 mL potassium phosphate buffer (100 mM, pH 7.0) for 3,
Bac-OYE1 in 100 mL Tris-HCl (100 mM, pH 8.0) for 2, or Af ER in 50 mL potassium phosphate buffer (100 mM,
pH 7.0) with 1.6% (v/v) DMSO for 4), 37 ◦C to 2 for 14 h and 3 for 20 h, or 30 ◦C to 4 for 27 h, the reaction mixture
was adjusted to the initial pH with 1 M HCl at intervals. 2 The conversion and ee values were determined by GC
analysis. 3 isolated yield.
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3. Materials and Methods
3.1. Material

Materials used for culture media including peptone, yeast extract and agar were
purchased from Becton, Dickinson and Company (BDX, Franklin Lake, NJ, USA). For-
mate dehydrogenase (LbFDH) [33] from Lactobacillus buchneri NRRL B-30929 was stored in
our laboratory. Dimethyl citraconate (2), dimethyl itaconate (4), mesaconic acid, racemic
dimethyl 2-methylsuccinate (1) and (R)-dimethyl 2-methylsuccinate ((R)-1) were purchased
from Tokyo chemical industry Co. Ltd. (Tokyo, Japan), Aladdin Industrial Corporation
and J&K Scientific (Guangdong, China). Citraconic acid and diethyl itaconate (7) were
purchased from Shanghai Jizhi Biochemical Technology Co., Ltd (Shanghai, China) and
McLean Biochemical Technology Co., Ltd (Shanghai, China). Dimethyl mesaconate was
prepared from mesaconic acid according to the procedure published [34]. β-Nicotinamide
adenine dinucleotide (NAD+) was purchased from Shanghai Yeasen Biotechnology Co.,
Ltd (Shanghai, China). β-Nicotinamide adenine dinucleotide 2′-phosphate reduced tetra-
sodium salt (NADPH), β-Nicotinamide adenine dinucleotide phosphate disodium salt
(NADH) and β-Nicotinamide adenine dinucleotide phosphate disodium salt (NADP+)
was purchased from Bontac Bio-Engineering (Shenzhen) Co., Ltd (Shenzhen, China). Mini
Start syringe filter was purchased from Sartorius AG (Gottingen, Germany). Chromato-
graphic silica gel (300-400 mesh) and chromatographic silica gel plate (GF254) were pur-
chased from Yantai Xinnuo Chemical Co., Ltd (Yantai, China). CDCl3 containing 0.03% v/v
tetramethylsilane (TMS) as an internal reference compound was purchased from Shanghai
Acmec Biochemical Co., Ltd (Shanghai, China). All other chemicals were purchased from
Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). GC analysis was performed on
an Agilent 7890A GC system (Agilent Technologies Co. Ltd., CA, USA). Columns include
a 30 m CYCLOSIL-B column with 0.32 mm inner diameter and 0.25 µm film thickness
(Agilent, Santa Clara, CA, USA). 1H and 13C NMR spectra were recorded on a Bruker
Avance III 400 MHz NMR spectrometer (Bruker, Billerica, MA, USA). Determination of
specific rotations was performed on an Anton Paar MCP 500 (Anton Paar, Graz, Austria) at
20 ◦C.

3.2. General Protein Expression Procedure

Flask scale gene expression was performed by the addition of a single colony of
transformant from an agar plate into 20 mL Luria-Bertani (LB) medium (10 g/L tryptone,
10 g/L NaCl, 5 g/L yeast extract, pH 7.0) supplemented with ampicillin (100 µg/mL) or
kanamycin (50 µg/mL) on a rotary shaker at 200 rpm and 37 ◦C overnight. The inoculum
(1% v/v) was then used to inoculate 800 mL LB medium containing ampicillin (100 µg/mL)
or kanamycin (50 µg/mL), and cultured under the same conditions. When the OD600 of
the broth reached 0.6–0.8, isopropyl β-D-thiogalactoside (IPTG) was added to a final con-
centration of 0.1 mM and induction was performed at 25 ◦C for 12–14 h. The recombinant
cells were then harvested by centrifugation (6000× g, 15 min) at 4 ◦C.

3.3. Purification of ERs

Cell pellets of ERs were resuspended to a concentration of 100 mg/mL in 100 mM
pH 7.5 Tris-HCl buffer. The cell suspension was lysed using a high-pressure homogenizer.
Following this, the cell debris was removed by centrifugation at 8000× g and 4 ◦C for
40 min, the supernatant was filtered through a 0.45 µm Mini Start syringe filter (Sartorius,
Gottingen, Germany), and then purified by ÄKTA purifier (GE, Atlanta, GA, USA) using
a Ni column. The column was conditioned with 0.1 M pH 7.5 Tris-HCl buffer containing
0.5 M NaCl and 0.02 M imidazole. After loading the supernatant into the column, the
column was rinsed in three column volumes with 0.1 M pH 7.5 Tris-HCl buffer containing
0.5 M NaCl and 0.02 M imidazole. The protein was then eluted in 0.1 M pH 7.5 Tris-HCl
buffer containing 0.5 M NaCl and 0.5 M imidazole. Fractions were then analyzed by
SDS-PAGE (ThermoFisher, Shanghai, China). The protein was collected, then washed
three times with the same volume of buffer through a 3000 kDa ultrafiltration tube for
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desalting. The protein concentration was determined by Pierce™ BCA Protein Assay Kit
(Thermofisher, Shanghai, China) and finally we added glycerol with a final concentration
of 10%, and stored at −80 ◦C.

3.4. General Procedure for the Preparation of Dimethyl Mesaconate (3), Diethyl Citraconate (5),
Diethyl Mesaconate (6) and Diethyl 2-Methylsuccinate (8)

Dimethyl mesaconate (3), diethyl citraconate (5) and diethyl mesaconate (6) were
prepared according to the procedure of reference [34]. To a solution of mesaconic acid
(25.00 g, 192.3 mmol) in MeOH (150 mL) was added conc. H2SO4 (2 mL). The reaction mix-
ture was refluxed and monitored by thin-layer chromatography [TLC, silica gel, methanol:
dichloromethane: acetic acid = 15.0:84.5: 0.5, Rf = 0.40 for mesaconic acid; ethyl acetate:
petroleum ether = 10:90, Rf = 0.63 for dimethyl mesaconate]. After completion of the
reaction, it was concentrated in vacuo. Then, the reaction was diluted with water (100 mL)
and extracted with ethyl acetate three times (3 × 100 mL). The combined organic layers
were dried over sodium sulfate (Na2SO4) and the solvent was removed in vacuo. The crude
residue was purified by silica gel column chromatography using ethyl acetate/petroleum
ether 1:20 as eluent.

The dimethyl mesaconate (3) was obtained as colorless oil (28.53 g, 94% yield). 1H
NMR (400 MHz, CDCl3) δ = 6.79 (s, 1 H), 3.79 (d, J = 14.79 Hz, 6 H), 2.30 (s, 3 H). 13C NMR
(100 MHz, CDCl3) δ = 167.56, 166.29, 143.74, 126.47, 52.59, 51.69, 14.30 [35].

Following the same procedure, the diethyl citraconate (5) was obtained as colorless
oil (6.30 g, 88% yield) from citraconic acid (5.00 g, 38.4 mmol). 1H NMR (400MHz, CDCl3)
δ = 5.84 (q, J =1.59 Hz, 1 H), 4.28 (q, J = 7.09 Hz, 2 H), 4.18 (q, J = 7.21 Hz, 2 H), 1.99–2.13 (m,
3 H), 1.33 (t, J =7.15 Hz, 3 H), 1.24–1.30 (m, 3 H). 13C NMR (100 MHz, CDCl3) δ = 168.94,
164.92, 145.40, 120.91, 61.40, 60.70, 20.53, 14.11, 13.98.

Diethyl mesaconate (6) was obtained as colorless oil (6.10 g, 85% yield) from mesaconic
acid (5.00 g, 38.4 mmol). 1H NMR (400 MHz, CDCl3) δ = 6.78 (q, J =1.51 Hz, 1 H), 4.20–4.28
(m, 4 H), 2.29 (d, J =1.59 Hz, 3 H), 1.32 (td, J =7.15, 4.16 Hz, 6 H). 13C NMR (100 MHz,
CDCl3) δ = 167.16, 165.96, 143.76, 126.66, 61.57, 60.62, 14.26, 14.19, 14.13.

Diethyl 2-methylsuccinate (8) was obtained as colorless oil (6.10 g, 86% yield) from
2-methylsuccinic acid (5.00 g, 37.8 mmol). 1H NMR (400 MHz, CDCl3) δ = 4.11–4.17 (m,
4 H), 2.83–3.01 (m, 1 H), 2.65–2.78 (m, 1 H), 2.39 (dd, J =16.38, 6.11 Hz, 1 H), 1.15–1.31
(m, 9 H). 13C NMR (100 MHz, CDCl3) δ = 175.30, 171.88, 60.63, 60.55, 37.74, 35.88, 17.02,
14.19, 14.17.

3.5. Analytical Scale Reaction of ERs towards 2–7 with Wet Cells

1.0 mL reaction mixture contained the corresponding ester (50 mM for 2, 3, 5, 6, 7, or
10 mM for 4), 1.3 equivalent sodium formate, 2 U/mL LbFDH, 0.5 mM NADP+ (0.39 g/L) or
NAD+ (0.33 g/L), and 50 mg wet cells of ERs and potassium phosphate buffer (100 mM, pH
7.0). DMSO (5% v/v) was added for 4 as the substrate. The reaction mixture was incubated
at 30 ◦C with shaking at 200 rpm for 24 h, and then extracted with 1 mL ethyl acetate. The
organic extract was dried over anhydrous sodium sulphate and analyzed by GC to measure
the conversions and ee values of the product for the reaction of 2, 3 or 4. Then, we further
increased the substrate concentration to 100–700 mM to investigate the substrate tolerance
of enzymes with high activity and stereoselectivity based on the primary screening.

For the reaction of 5, 6 or 7, the conversions were determined directly by GC analysis,
and the ee values of the products were determined by GC analysis of the dimethyl esters,
which were obtained by the hydrolysis of diethyl ester products and esterification in
methanol under the action of concentrated sulfuric acid. The general procedure was as
follows. After the conversion were determined by GC, the organic solvent was removed
in vacuo. The residues were dissolved in the mixture of 1 M NaOH (aq) and methanol
(1.0 mL, 1:1) and stirred at 50 ◦C for 2 h to generate the corresponding acid. Then, the
reaction mixture was quenched by 6 M HCl (100 µL) and dried in vacuo. The residues were
dissolved in methanol (1 mL) containing concentrated sulfuric acid (30 µL) and refluxed
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for 5 h to prepare the corresponding dimethyl ester. After removal of the solvent in vacuo,
the residues were diluted with ethyl acetate (1.0 mL) and washed with saturated sodium
bicarbonate solution (0.5 mL). The organic extract was dried over anhydrous sodium
sulphate and analyzed by GC to determine the ee values of the product.

3.6. Enzyme Activity Assay

The activity was measured photometrically by monitoring the decrease of NADPH at
340 nm (ε = 6220 L/mol/cm) including an oxygen consuming system [31,36]. Assay condi-
tions (200 µL): Tris-HCl buffer (100 mM, pH 8.0), substrate (50–150 mM), glucose (50 mM),
glucose oxidase (20 U); NADPH (0.5 mM, 0.42 g/L), 10 µL pure enzyme (1.92 g/L Bac-OYE1,
4.20 g/L YqjM, 15.36 g/L BzER, 11.94 g/L Af ER or 23.55 g/L SeER). Every measurement
was conducted in triplicate and corrected by a blank not containing any substrate.

3.7. Effect of pH and Temperature on Purified ERs

Sodium citrate (100 mM, pH 4.5 or 5.5), potassium phosphate buffer (100 mM, pH 5.5,
6.5, 7.0, 7.5 or 8.0), Tris-HCl buffer (100 mM, pH 8.0, 8.5 or 9.0) and glycine-NaOH buffer
(100 mM, pH 9.0 or 10.0) were used to determine the optimum pH for pure enzyme. The
effect of temperature on the activity of purified ERs were determined by assaying the
activity of purified ERs over the range of 30–80 ◦C. The thermal stability of the enzyme
was determined by incubating purified ERs in 1 mL potassium phosphate buffer (100 mM,
pH 7.0) at various temperatures (30, 40 and 50 ◦C). Samples were withdrawn at a regular
intervals and residual activity was measured under standard assay conditions (by using
the above-described oxygen consuming system). Graphs were drawn using Origin 9.6.4
(OriginLab, Northampton, MA, USA).

3.8. Determination of Kinetic Parameters

The kinetic parameters of ERs for 2, 3 and 4 were determined by measuring the
oxidation of NADPH in a range of substrate concentration from 0.1 to 150 mM at 25 ◦C and
the measurements were performed in 96-wells plate as follows: glucose (50 mM), glucose
oxidase (20 U), NADPH (0.5 mM, 0.42 g/L), 10 µL pure enzyme (1.92 g/L Bac-OYE1,
4.20 g/L YqjM, 15.36 g/L BzER, 11.94 g/L Af ER or 23.55 g/L SeER) in the corresponding
optimum pH buffer (100 mM, potassium phosphate buffer (pH 7.0 or 7.5), Tris-HCl buffer
(pH 8.0 or 8.5), 200µL). Every measurement was conducted in triplicate and corrected by a
blank not containing any substrate. Protein concentrations to assign specific activities were
derived as described before. Methanol (10% v/v) was added when measuring 3, and DMSO
(5% v/v) were added when measuring 4. The Km and Vmax values were obtained from
non-linear regression of Michaelis–Menten plots using SigmaPlot 12.0 (Systat, IL, USA).

3.9. Preparative Scale Synthesis of Dimethyl 2-Methylsuccinate (1)
3.9.1. (R)-Dimethyl 2-Methylsuccinate ((R)-1) Using Bac-OYE1

To a 200 mL conical flask, dimethyl citraconate (2) (11.07 g, 700 mM), NADP+ (0.5 mM,
0.39 g/L), sodium formate (910 mM), Bac-OYE1 wet cells (5 g, 50 g/L) and LbFDH (2 U/mL)
in Tris-HCl (100 mM, pH 8.0) were added. The total volume was 100 mL, and the reaction
was shaken at 37 ◦C for 20 h. The reaction mixture was adjusted to pH 8.0 with 1 M HCl at
intervals, and monitored by GC. After complete conversion, the reaction was quenched
using 1 M HCl. The reaction mixture was extracted three times with equal volumes of
petroleum ether and ethyl acetate (v/v = 4/1), and dried over anhydrous Na2SO4. The
product was obtained by removal of the solvent under reduced pressure and characterized
by 1H NMR and 13C NMR. The product was obtained as colorless oil (9.63 g, 86% yield,
99% ee). 1H NMR (400 MHz, CDCl3) δ = 3.69 (d, J = 6.97 Hz, 6 H), 2.86–2.99 (m, 1 H),
2.68–2.82 (m, 1 H), 2.41 (dd, J = 16.50, 5.99 Hz, 1 H), 1.23 (d, J = 7.09 Hz, 3 H). 13C NMR
(100 MHz, CDCl3) δ = 175.74, 172.31, 51.96, 51.75, 37.43, 35.72, 17.04. [α]D

20 = 5.280 (c = 1.0,
CHCl3, for (R)-1 with ee = 99%) [lit. [35] [α]D

20 = 5.8 (c = 1.0, CHCl3) with 98% ee for (R)].
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3.9.2. (S)-Dimethyl 2-Methylsuccinate ((S)-1) Using SeER

To a 200 mL conical flask, dimethyl mesaconate (3) (3.95 g, 500 mM), NADP+ (0.5 mM,
0.39 g/L), sodium formate (650 mM), SeER wet cells (2.5 g, 50 g/L) and LbFDH (2 U/mL)
in potassium phosphate (100 mM, pH 7.0) were added. The total volume was 50 mL, and
the reaction was shaken at 37 ◦C when added. The reaction mixture was adjusted to pH 7.0
with 1 M HCl at intervals, and monitored by TLC and GC. After complete conversion, the
reaction was quenched using 1 M HCl. The reaction mixture was extracted three times with
equal volumes of petroleum ether and ethyl acetate (v/v = 4/1), and dried over anhydrous
Na2SO4. The product was obtained by removal of the solvent under reduced pressure and
characterized by 1H NMR and 13C NMR. The product was obtained as colorless oil (3.22 g,
80% yield, 98% ee). 1H NMR (400 MHz, CDCl3) δ = 3.69 (d, J = 6.97 Hz, 6 H), 2.84–3.01 (m,
1 H), 2.69–2.81 (m, 1 H), 2.41 (dd, J = 16.50, 5.99 Hz, 1 H), 1.23 (d, J = 7.21 Hz, 3 H). 13C
NMR (100 MHz, CDCl3) δ = 175.74, 172.32, 51.96, 51.75, 37.43, 35.73, 17.04. [α]D

20 = −5.560
(c = 1.0, CHCl3, for (S)-1 with ee = 98%) [lit. [37] [α]D

20 = −3 (c = 1.0, CHCl3) with 90% ee
for (S)].

3.9.3. (R)-Dimethyl 2-Methylsuccinate ((R)-1) Using AfER

To a 200 mL conical flask, dimethyl itaconate (4) (3.16 g, 400 mM), NADP+ (0.5 mM,
0.39 g/L), DMSO (1.6% v/v), sodium formate (520 mM), Af ER wet cells (2.5 g, 50 g/L)
and LbFDH (2 U/mL) in potassium phosphate (100 mM, pH 7.0) were added. The total
volume was 50 mL, and the reaction was shaken at 30 ◦C for 27 h. The reaction mixture
was adjusted to pH 7.0 with 1 M HCl at intervals, and monitored by TLC and GC. After
complete conversion, the reaction was quenched using 1 M HCl. The reaction mixture was
extracted three times with equal volumes of petroleum ether and ethyl acetate (v/v = 4/1),
and dried over anhydrous Na2SO4. The product was obtained by removal of the solvent
under reduced pressure and characterized by 1H NMR and 13C NMR. The product was
obtained as colorless oil (2.45 g, 77%, yield, 99% ee). 1H NMR (400 MHz, CDCl3) δ = 3.69 (d,
J = 6.97 Hz, 6 H), 2.86–3.02 (m, 1 H), 2.68–2.81 (m, 1 H), 2.41 (dd, J = 16.50, 5.99 Hz, 1 H),
1.23 (d, J = 7.09 Hz, 3 H). 13C NMR (100 MHz, CDCl3) δ = 175.73, 172.32, 51.96, 51.75, 37.43,
35.73, 17.04. [α]D

20 = 5.670 (c = 1.0, CHCl3, for (R)-1 with ee = 99%) [lit. [35] [α]D
20 = 5.8

(c = 1.0, CHCl3) with 98% ee for (R)].

4. Conclusions

In summary, through evaluation of a large collection of ERs, three ERs with high
substrate tolerance, and high enantioselectivity towards 2, 3 and 4 have been identified
and applied for the synthesis of optically pure dimethyl 2-methylsuccinate. In particu-
lar, SeER efficiently converted 3 into (S)-dimethyl 2-methylsuccinate ((S)-1) in high yields
(80%) and enantioselectivity (98% ee), the first example of the preparative-scale synthesis of
(S)-dimethyl 2-methylsuccinate ((S)-1) via ER-catalyzed reduction. In addition, Bac-OYE1
or Af ER catalyzed the reduction of 2 or 4 at high substrate concentration (700 mM or
400 mM, respectively) affording (R)-dimethyl 2-methylsuccinate ((R)-1) in high yields and
enantioselectivity. Meanwhile, diethyl citraconate (5, 500 mM) could also be completely
converted to (R)-diethyl 2-methylsuccinate ((R)-8) by Bac-OYE1 with excellent enantiose-
lectivity (99% ee). These results lay a foundation for the development of a commercially
feasible biotransformation process for the efficient production of optically pure dimethyl 2-
methylsuccinate from dimethyl itaconate, its isomers or a mixture of these isomers. Further
protein engineering of these enzymes in our laboratory is underway to shed light on the
substrate-binding and stereoselective mechanisms, and to obtain mutants of enzyme with
higher activity and enantioselectivity for industrial application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12101133/s1, Table S1: Ene reductases (ERs) used in this
study; Table S2: GC conditions for ERs-catalyzed reduction; Table S3: Screening results of sub-
strates 2, 3 and 4 for ERs library; Table S4: Analytical scale reaction results of ERs towards 2 with
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500 mM substrate concentration; Table S5: Reaction results of Bac-OYE1 and BzER with increasing
substrate concentration; Table S6: Conversion and ee for screening with increasing substrate concen-
tration of 3; Table S7: Conversion and ee for screening with increasing substrate concentration of 4;
Table S8: Specific activity of ERs towards 2; Table S9: Specific activity of ERs towards 3; Table S10:
Specific activity of ERs towards 4; Table S11: Asymmetric reduction of 5, 6 and 7 catalyzed by
3 ERs; Table S12: Analytical scale reaction results of Bac-OYE1, Af ER and SeER towards 5 with
different concentration; Figure S1: SDS-PAGE analysis of the selected ERs recombinantly expressed
in E. coli BL21 (DE3); Figure S2: Effects of pH and temperature on the activity and stability of
purified Af ER; Figure S3: Effects of pH and temperature on the activity and stability of purified
SeER; Figure S4: Non-linear regression analysis of ERs towards 2, 3 and 4; Figure S5: 1H-NMR
(400 MHz) spectra of substrate dimethyl mesaconate (3) in CDCl3; Figure S6: 13C-NMR (100 MHz)
spectra of substrate methyl dimethyl mesaconate (3) in CDCl3; Figure S7: GC chromatograms of
substrate dimethyl citraconate (a), dimethyl mesaconate (b) and dimethyl itaconate (c); Figure S8: GC
chromatograms of racemic dimethyl 2-methylsuccinate (a), (R)-dimethyl 2-methylsuccinate (b) and
products of Bac-OYE1 (c). Figure S9: 1H-NMR (400 MHz) spectra of biocatalytic products catalyzed
by Bac-OYE1 in CDCl3; Figure S10: 13C-NMR (100 MHz) spectra of biocatalytic products catalyzed
by Bac-OYE1 in CDCl3; Figure S11: GC chromatograms of racemic dimethyl 2-methylsuccinate (a),
(R)-dimethyl 2-methylsuccinate (b) and products of SeER (c); Figure S12: 1H-NMR (400 MHz) spectra
of biocatalytic products catalyzed by SeER in CDCl3; Figure S13: 13C-NMR (100 MHz) spectra of bio-
catalytic products catalyzed by SeER in CDCl3; Figure S14: GC chromatograms of racemic dimethyl
2-methylsuccinate (a), (R)-dimethyl 2-methylsuccinate (b) and products of Af ER (c); Figure S15:
1H-NMR (400 MHz) spectra of biocatalytic products catalyzed by Af ER in CDCl3; Figure S16: 13C-
NMR (100 MHz) spectra of biocatalytic products catalyzed by Af ER in CDCl3; Figure S17: 1H-NMR
(400 MHz) spectra of substrate diethyl citraconate in CDCl3; Figure S18: 13C-NMR (100 MHz) spectra
of substrate diethyl citraconate in CDCl3; Figure S19: 1H-NMR (400 MHz) spectra of substrate diethyl
mesaconate in CDCl3; Figure S20: 13C-NMR (100 MHz) spectra of substrate diethyl mesaconate
in CDCl3; Figure S21: 1H-NMR (400 MHz) spectra of products diethyl methylsuccinate in CDCl3;
Figure S22: 13C-NMR (100 MHz) spectra of products diethyl methylsuccinate in CDCl3; Figure S23:
GC chromatograms of substrate diethyl citraconate; Figure S24: GC chromatograms of substrate
diethyl mesaconate; Figure S25: GC chromatograms of substrate diethyl itaconate; Figure S26: GC
chromatograms of racemic diethyl 2-methylsuccinate; Figure S27: GC chromatograms of the analyti-
cal reaction product of Bac-OYE1 towards diethyl citraconate; Figure S28: GC chromatograms of the
analytical reaction product of Af ER towards diethyl mesaconate; Figure S29: GC chromatograms of
the analytical reaction product of Af ER towards diethyl itaconate; Figure S30. GC chromatograms of
racemic dimethyl 2-methylsuccinate (a), analytical reaction products of Bac-OYE1 (b) and Af ER (c)
towards diethyl citraconate after hydrolysis and esterification to the corresponding dimethyl esters;
Figure S31: GC chromatograms of racemic dimethyl 2-methylsuccinate (a), analytical reaction prod-
ucts of Af ER towards diethyl mesaconate after hydrolysis and esterification to the corresponding
dimethyl esters (b); References [29,31,38–48] are cited in the supplementary materials.
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