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Abstract: Halogenating enzymes have evolved in considerable mechanistic diversity. The apparent 
need for secondary metabolism coincides with the current need to introduce halogens in synthetic 
products. The potential of halogenating enzymes and, especially, vanadate-dependent 
haloperoxidases has been insufficiently exploited for synthetic purposes. In this work, we identified 
potential halogenase sequences by screening algal, fungal, and protobacterial sequence databases, 
structural modeling of putative halogenases, and mapping and comparing active sites. In a final 
step, individual haloperoxidases were expressed and kinetically characterized. A vanadate-
dependent haloperoxidase from Rhodoplanes roseus was heterologously expressible by E. coli and 
could be purified to homogeneity. The kinetic data revealed a higher turnover number than the 
known VClPO-CI and no inhibitory effect from bromide, rendering this enzyme a promising 
biocatalyst. Other predicted haloperoxidases were not expressed successfully yet but these enzymes 
were predicted to be present in a wide taxonomic variety. 

Keywords: sequence comparison; clustering; structural modeling; molecular recognition; 
biochemical assay 
 

1. Introduction 
Halogens can have a tremendous impact on the physicochemical properties of 

chemical compounds. The heavier halogens chlorine, bromine, and iodine are large and 
electron-withdrawing substituents and can form halogen bonds via their σ-hole [1–6]. On 
the one hand, introducing halogens is an important lever for chemical transformations 
such as substitutions, metal-halogen exchanges, or eliminations. On the other hand, these 
properties can have a considerable impact on the biological activity of an active 
compound. Therefore, halogens are a component of many active substances or their 
synthesis intermediates and taxonomically broad secondary metabolites [7–9]. 
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Consequently, several halogenating enzymes have evolved in nature [9,10]. The most 
prominent halogenating enzymes are the flavin-dependent halogenases [11,12] and 
haloperoxidases [13–15]. Here, we focus on the enzyme family forming hypohalides from 
hydrogen peroxide and the respective halides. For catalytic activity, either a heme 
[13,16,17] or vanadate needs to be bound. It was hypothesized that the electrophilic 
hypohalide species reacts remotely from the active site and, thus, the regioselectivity 
depends exclusively on the reaction partners. 

However, the number of halogenating enzymes studied is rather limited [9], 
although these enzymes can be synthetically valuable tools for synthesis, as precise doses 
of hypohalides can be used during the reaction to avoid over-halogenation. From a 
synthetic point of view, it is also problematic that, for example, in the case of the best-
described haloperoxidase from Curvularia inaequalis, there is an evident substrate excess 
inhibition by chloride [18]. 

Here, we searched for novel haloperoxidases that are not catalytically inhibited at a 
substrate excess and do not release hypohalide from the active center such that the 
reaction takes place selectively in the active center. Initially, we analyzed sequence 
databases with algal, fungal, and proteobacterial sequences, thus focusing on a large 
taxonomic breadth. Representatives identified in this step as haloperoxidases with only 
moderate sequence similarity to known haloperoxidases were subjected to structure 
predictions and binding site comparisons to identify active sites with new structural 
characteristics. Selected candidates were subjected to expression studies and biochemical 
analyses (see Figure 1). 

 
Figure 1. A priori mining approach. 

2. Results 
2.1. Identification of Haloperoxidases from Sequence Databases 

To obtain potential halogenase sequences, GenBank was screened for sequences from 
the Phaeophyceae (brown algae) using simple similarity searches on published sequences, 
e.g., from Ascophyllum nodosum [19]. The GenBank search yielded several sequences from 
Laminaria digitata, Saccharina japonica, and one from Fucus distichus (AAC35279.1). For 
further analysis, one sequence was chosen for Laminaria digitata (CAQ51446.1), which was 
found after stress elicitation and described as a vanadium-dependent haloperoxidase 
potentially involved in iodation. Additionally, one sequence was selected for Saccharina 
japonica (AYP65253.1)[20]. To extend the coverage, the transcriptome shotgun assembly 
database of NCBI was searched, which yielded multiple sequence candidates for Sagassum 
spp. (S. fusiforme GFKJ01014004.1, S. muticum GFKI01033812, and S. vulgare 
GEHA01064915) [21] and an additional sequence for Fucus ceranoides (HACY01003800.1). 
After comparison with the published sequences, the most likely reading frames were 
identified and potential frameshifts were corrected. 
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Similarly, to identify non-algal sequences, the sequence underlying the 
chloroperoxidase structure PDB ID 1IDQ_A from Curvularia inaequalis [22] was used as 
bait. The most similar fungal sequences not stemming from Curvularia (with a sequence 
similarity between 81 and 84%) were picked for further analysis and represented 
sequences from several Bipolaris species as well as one each from Stemphylium lycopersici 
and Exserohilum turcica. All species stem from the fungal Pleosporaceae family and mostly 
represent plant pathogens. 

In addition, sequences were selected from proteobacteria (a sequence similarity 
between 43 and 49%) and from the cyanobacterium Nostoc minutum (a sequence similarity 
of 37%) for further analysis. 

2.2. Clustering of Sequences of Selected Haloperoxidases 
To visualize relative distances between sequences, a cladogram was constructed 

(Figure 2, left) based on a multiple sequence alignment (MSA, Figure S1). Brown algae 
sequences are clearly separate from those of bacteria and fungi, whereas the latter two are 
more similar to each other. This corresponds to a higher sequence identity (Figure S2) 
between bacteria and fungi sequences, mostly ~45%, with the exceptions of Luteitalea 
pratensis (~20–25%) and Deltaproteobacterium bacterium (~50%). By contrast, the sequence 
identity of algae sequences is in the range of 15–20%. 

 
Figure 2. Comparison of sequences and model quality of haloperoxidases. Cladogram of the 
selected haloperoxidases (left). The sequences are color-coded according to the taxonomy (center): 
algae in brown, bacteria in magenta, cyanobacteria in cyan, and fungi in grey. The tree is calculated 
based on the distances generated from the pairwise scores (numbers in the middle column). The 
quality of the structural models is expressed by TopScore (second right column) and 
TopScoreSingle values (right column) [23], where lower values and blue color indicate better 
quality. 

Among algae, the separation corresponds to the species tree, separating the order 
Laminariales (Laminaria digitata and Saccharina japonica) from the Fucales order. Within the 
Fucales order, the Fucaceae family sequences (Fucus spp. and Ascophyllum nodosum) are 
separated from the Sargassaceae family (Sargassum spp.). Consequently, L. digitata and S. 
japonica are the most diverse in the group and form a separate cluster (identity range of 
51.6–58.8% to all other algae sequences, and 63.50% between the two). The other two main 
clusters are either formed by the sequences from the genus Sargassum (identity ~90% 
within the cluster) and the order Fucales (identity of 95.8% between F. distichus and F. 
ceranoides) together with A. nodosum (identity range of 62.3–66.9% in the group, and 86.2–
95.8% in the cluster). Among bacteria, L. pratensis and N. minutum are the most divergent 
in the group (identity range of 21.5–22.9% and 43.0–45.4%, respectively, in the group, and 
28.0% between the two). R. roseus and Methylobacter sp. form another cluster (identity 
between the two of 55.3%), whereas the sequence from Deltaproteobacteria bacterium is 
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separated and has a higher similarity to the group of fungi (identity range of 22.2–43.5% 
and 50.6–52.1%, respectively, for the bacteria and fungi groups). Among fungi, S. 
lycopersici and E. turcica are branching out and are separated from the sequences of the 
genus Bipolaris (identity range of 82.4–86.1% in the group, and 83.9% between the two). In 
the Bipolaris cluster, B. victoriae and B. zeicola are the most similar (identity of 99.3%), while 
B. sorokiniana, B. maydis, and B. orizae show, respectively, increasing diversity. 

2.3. Structural Modeling of Selected Haloperoxidases 
As no experimentally derived structures were available for the 20 selected 

haloperoxidase enzymes, a structural model for each sequence was constructed. In 
general, the models from fungi and some algae sequences are of very good quality 
(TopScore [23] values ~0.15; TopScore values are bounded between 0 (very good) and 1 
(bad)), and for other algal and bacteria sequences, the models are of lower, albeit still good 
quality (TopScore values ~0.25–0.3) [24] (Figures 2, 3 and S3–S5). This is due to different 
template availabilities and differences in the sequence identities to the templates used for 
modeling (see Table S1 for details). Interestingly, the Ascophyllum sequence, which is very 
similar to the known structure from A. crysall (PDB ID 1QI9_B), had a similar TopScore 
value as the more distant sequence from S. fusiforme (Tables S1), indicating a good 
modeling performance of TopModel [25]. The high-quality structural models (Figures 2 
and S2) allow for the inference of the location of the catalytic residues after alignment as 
well as the probable functional assembly. 

 
Figure 3. Examples of high-quality structural models of haloperoxidases. One example for each 
taxonomic group is reported with Sargassum fusiforme for algae (A), Luteitalea pratensis for bacteria 
(B), and Exserohilum turcica for fungi (C). The local quality of the models is assessed with TopScore 
where darker blue color indicates better quality (left). The best template selected for each example 
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is also reported for comparison as white colored structure (right). The vanadium cofactor is shown 
as spheres and residues located ≤5 Å from it are reported as sticks. 

2.3.1. Structural Models of Haloperoxidases from Algae 
For models from algae, the best templates generally have a sequence identity of ~55–

65% to the target sequences (Table S1). Exceptions include sequences of the genus Fucus, 
where the best templates have an identity of ~85% and A. nodosum, for which a structure 
with an identical sequence was deposited (PDB ID: 1QI9, 100% identity and 99.6% 
coverage). Most algae sequences were modeled based on templates in multimeric 
functional assembly. Since the interface is close to the catalytic pocket, generating at least 
a dimeric structural model is required. The regions modeled with lower quality (Table S4) 
include unstructured N- and C-termini and some short loop regions located mostly at a 
large distance (>20 Å) from the catalytic pocket. Notably, the N-terminus is placed right 
before a helix involved in dimerization (~23 residues long, Table S4), which is pointing 
out and oriented towards the putative dimerization interface. To make constructing a 
dimeric model easier, a truncated model without the low-quality N-terminus, thus, 
starting from the dimerization helix, was considered instead for the next steps. 

2.3.2. Structural Models of Haloperoxidases from Bacteria 
For models from bacteria, the best templates available have an identity of ~45–50% 

to the target sequences (Table S2), indicating that less well-suited templates are available 
for the selected sequences. Compared to models from algae, the catalytic pocket is less 
exposed due to a more compact helical bundle, which is generally modeled with high 
quality. Additionally, in most models, a β-hairpin located on top of the pocket can be 
found, likely acting as a lid. Exceptions include the cases of L. pratensis and N. minutum, 
where this region is mostly unfolded but still of good quality (TopScore < 0.5). Other than 
unstructured N- and C-termini, low-quality regions (Table S5) include some loop regions 
located mostly at a large distance (>25–30 Å) from the catalytic pocket. In the case of 
Methylobacterium sp., while the folding of the β-hairpin lid is conserved, its quality is low 
(TopScore > 0.5), especially in the first β-strand. 

2.3.3. Structural Models of Haloperoxidases from Fungi 
For models from fungi, the best templates available have a very high sequence 

identity of ~85% to the target sequence (Table S3). Structurally, these resemble the models 
from bacteria due to a very compact helical bundle supporting the catalytic pocket and 
the presence of a β-hairpin lid. The sequence conservation of this lid is very high, with 
only one position not fully conserved (M, K, and R, respectively, for S. lycopersici, E. turcica, 
and models from the genus Bipolaris) and three positions with “strongly similar 
properties” (indicated with a colon in the MSA; Table S6 and Figure S1). In these models, 
low-quality regions (Table S6) are located in unstructured N- and C-termini and in 
extremely short loop regions located mostly at a large distance (>25–30 Å) from the 
catalytic pocket. 

2.4. Mapping and Comparison of the Catalytic Sites 
For the structural models, including dimeric models for algae, molecular interaction 

fields (MIF) were calculated with DrugScore2018 [26,27] and represented with Zernike 
descriptors [28]. In doing so, the description of the molecular recognition properties of the 
binding sites was compressed, allowing an alignment-independent pairwise comparison 
using the Manhattan distance as a measure. That way, proteins with similar molecular 
recognition properties can be identified, likely interacting and reacting with similar 
substrates. 

L. pratensis and B. sorokiniana are branching out (Figure 4 and Figure S6) and have the 
most diverse binding sites in the set. For the latter, this result is surprising given the high 
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identity (82.4–86.1%) with the other members of the Bipolaris group. These are mainly 
part of one cluster, with subclusters by E. turcica and R. roseus (normalized distance of 
0.57), and B. oryzae (normalized distance within the cluster of 0.50–0.55), as well as B. 
victoriae and B. zeicola (normalized distance of 0.43). Therefore, interestingly, the model 
from the bacterium R. roseus displays molecular recognition similarities to some other 
models from fungi. Instead, a bacterial model that differs from other examples is the one 
of Deltaproteobacteria bacterium. This result is expected, given the low to average sequence 
identity of 22.2–43.5% and 50.6–52.1% for the bacteria and fungi models, respectively.  

 
Figure 4. Clustering of the molecular recognition properties of the selected haloperoxidase 
structural models. Hierarchical clustering was performed for 20 haloperoxidase binding sites. The 
binding sites were encoded as DrugScore2018 MIFs and compressed using Zernike descriptors. 
Manhattan distances between the Zernike descriptors were used for similarity assessment. The 
sequences are color-coded according to the taxonomy: algae in brown circles, bacteria in magenta 
triangles, cyanobacteria in cyan squares, and fungi in grey diamond shapes. The tree is drawn to 
scale with branch lengths in the same units as those of the distances used to infer the tree. Cyan 
concentric lines represent 25%, 50%, and 75% from the center of the maximum distance, 
respectively. 

All the other examples form two main clusters, one formed by models from fungi 
and bacteria and another one entirely formed by models from algae. In the first, 
apparently unrelated systems are clustered together, including Methylobacter sp. 
(normalized distance within the cluster of 0.54–0.66), B. maydis (normalized distance 
within the cluster of 0.55–0.66), N. minutum and S. lycopersici (normalized distance of 0.52). 
In the second, S. japonica is branching out and has the most different binding site 
(normalized distance within the cluster of 0.58–0.68). Interestingly, S. fusiforme is 
separated from the other models from the Sargassum genus and is instead part of a 
subcluster with F. distichus (normalized distance of 0.39), which are separated from the 
other examples (normalized distance within the cluster of 0.44–0.63 and 0.59–0.70, 
respectively). Then, S. vulgare and S. muticum form a subcluster (normalized distance of 
0.49) and are separated from the other examples (normalized distance within the cluster 
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of 0.46–0.54 and 0.46–0.51, respectively). Finally, L. digitata, F. ceranoides, and A. nodosum 
form a subcluster, with the first being the most different (normalized distance within the 
cluster of 0.43–0.52) of the subcluster and the last two the most similar (normalized 
distance of 0.36) of the entire set. Other highly similar binding sites include S. fusiforme 
and F. distichus (normalized distance of 0.39), and B. victoriae and B. zeicola (normalized 
distance of 0.43). 

2.5. Expression of Four Putative Haloperoxidase Sequences 
To confirm the bioinformatics results achieved for this group of genes and putative 

enzymes, four sequences were chosen from A. nodosum, F. ceranoides, S. fusiforme, and R. 
roseus to test for haloperoxidase activity. These cases include algae sequences with similar 
binding sites from A. nodosum and F. ceranoides, as shown in the previous analysis of the 
predicted structural models, but also algae sequences with a more diverse binding site 
from S. fusiforme. Finally, a more divergent example from the bacteria R. roseus was also 
included. The expression system was based on a previously established expression 
platform using E. coli BL21 Arctic Express (DE3) as the heterologous expression host [16]. 

SDS-PAGE analysis following expression of all four constructs in 50 mL cultures 
using the optimized haloperoxidase expression system showed a high amount of 
inclusion body formation visible for all constructs except that from R. roseus (see Figure 
S7). However, all four proteins seemed to be produced in E. coli to a certain extent. 
Following these first small-scale attempts, large-scale expression of all genes was tested 
using 500 mL cultures. After cell disruption via ultrasonication, the integrated N-terminal 
His-Tag was used to perform an affinity chromatography-based isolation on an Ni-
column (see Section 4 for details). Due to scale-up problems for the constructs of A. 
nodosum, S. fusiforme and F. ceranoides, all three proteins did not show the desired purity 
required for biochemical characterization and no haloperoxidase activity was found in 
initial activity tests. Only the construct of R. roseus showed sufficient purity (Figure 5) and 
detectable haloperoxidase activity. Therefore, all further experiments focused on this 
enzyme, which will be referred to as VPO-RR from now on. 

 
Figure 5. SDS-PAGE analysis of the chromatographic isolation of VPO-RR using an Ni-column. 
Chaperone (implemented in E. coli ArcticExpress (DE3) (Agilent Technologies)) size of Cpn60: ~60 
kDa; Cpn10: ~10 kDa. US: cell debris after ultrasonication; CFE: cell-free extract; FT: flow-through 
of Ni-NTA column; Fr.: fractions collected during Ni-NTA isolation; conc.: concentrated fractions 
after pooling; S: Standard; ctrl: empty-vector control of E. coli ArcticExpress (DE3). 
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2.6. Biochemical Characterization of VPO-RR 
In the first step, the kinetics of the enzyme was determined using a two-dimensional 

Michaelis–Menten function as previously reported [16]. For this experiment, potassium 
bromide was chosen as the halide source (Figure 6). 

 
Figure 6. Two-dimensional kinetics of VPO-RR with hydrogen peroxide and potassium bromide 
as substrates. The activity was determined using the MeDAC assay with triplicates for each 
concentration pair. The volumetric activities were plotted against concentrations (black and white 
dots) and fitted using the substrate-excess inhibition term by Murray [29] in Origin (surface and 
contour plot). 

𝑣𝑣0 =
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

�1 + 𝐾𝐾𝑀𝑀(𝐾𝐾𝐾𝐾𝐾𝐾)
𝑐𝑐(𝐾𝐾𝐾𝐾𝐾𝐾) + 𝑐𝑐(𝐾𝐾𝐾𝐾𝐾𝐾)

𝐾𝐾𝑖𝑖(𝐾𝐾𝐾𝐾𝐾𝐾)� ⋅ �1 + 𝐾𝐾𝑀𝑀(𝐻𝐻2𝑂𝑂2)
𝑐𝑐(𝐻𝐻2𝑂𝑂2) + 𝑐𝑐(𝐻𝐻2𝑂𝑂2)

𝐾𝐾𝑖𝑖(𝐻𝐻2𝑂𝑂2)�

=
(1.14 ± 0.05) 𝑈𝑈

𝑚𝑚𝑚𝑚

�1 + (0.87±0.11)𝑚𝑚𝑚𝑚
𝑐𝑐(𝐾𝐾𝐾𝐾𝐾𝐾) + 𝑐𝑐(𝐾𝐾𝐾𝐾𝐾𝐾)

(405.3±55.1)𝑚𝑚𝑚𝑚� ⋅ �1 + (0.43±0.12)𝑚𝑚𝑚𝑚
𝑐𝑐(𝐻𝐻2𝑂𝑂2) + 𝑐𝑐(𝐻𝐻2𝑂𝑂2)

(177.8±46.6)𝑚𝑚𝑚𝑚�
 

(1) 

where v0 is the initial activity; vmax the maximal activity; KM a Michaelis constant; c a molar 
concentration; and Ki an inhibitory constant. 

The turnover number kcat was determined using the given values of vmax and each 
affinity constant (KM), respectively, and compared to the parameters of a literature-known 
enzyme, the vanadium-dependent chloroperoxidase (VClPO) from Curvularia inaequalis, 
short VClPO-CI (Table 1). 
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Table 1. Kinetic parameters of VPO-RR compared to parameters of VClPO-CI from previous work 
[16] [a]. 

Enzyme vmax  
[U mL−1] 

KM (KBr) 
[mM] 

Ki (KBr) 
[mM] 

KM (H2O2) 
[mM] 

Ki (H2O2) 
[mM] 

kcat 
[s−1] 

VPO-RR 1.14 0.872 405 0.433 178 1304 
VClPO-CI 8.40 0.19 56.8 1.48 - 9.8 

[a] The parameters were determined using a two-dimensional Michaelis–Menten fit with an 
included substrate-excess inhibition term by Murray using Origin [29]. 

The kinetic profile of VPO-RR shows some remarkable differences compared to 
known homologs. The so-far generally assumed substrate-excess inhibition by halides is 
not as pronounced as with VClPO-CI (405 mM compared to 56.8 mM) [30,31]. However, 
hydrogen peroxide inhibits the enzyme with Ki = 178 mM, in contrast to VClPO-CI, which 
is not inhibited. The overall turnover number of VPO-RR exceeds the one of VClPO-CI by 
a hundred-fold (1304 s−1 compared to 9.8 s−1). In conclusion, VPO-RR shows several 
advantages in regard to kinetic properties compared to literature-known haloperoxidases. 
Alternately, the apparent inhibition by hydrogen peroxide may be a lack of stability 
against the strongly oxidizing effect of the peroxide rather than a molecular excess 
inhibition, which are virtually indistinguishable in this experiment. The overall higher 
turnover number and lower inhibitory effect of bromide compared to VClPO-CI may allow 
for biotransformations with higher efficiency. 

As reaction temperatures are a frequent optimization parameter in synthetic 
applications, the overall temperature stability of VPO-RR was investigated. Over a period 
of three hours, the enzyme was incubated at different temperatures ranging from 25 to 85 
°C. After the incubation, the samples were centrifuged at maximum speed and the 
supernatant was measured using the MeDAC assay. All activities determined were 
normalized to the activity at room temperature (here 25 °C) and compared (Figure 7). 

 
Figure 7. Relative activity of VPO-RR after incubation at different temperatures for three hours. 
The activity of each sample was normalized to the activity of the sample incubated at 25 °C. The 
uncertainties indicate the standard deviation of triplicate measurements. 

Although the temperature stability measurements suffer from large variations, 
principal information can be drawn from this series. Similar to VClPO-CI, VPO-RR exhibits 
good stability against higher temperatures, e.g., with a loss in the relative activity of 28.2% 
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after incubation at 60.1 °C. Comparing slightly elevated temperatures such as 40 °C to 
high temperatures such as 70 °C showed a behavioral change. In several attempts, the 
activity of VPO-RR dropped drastically after incubation at 40 °C (60% decrease), whereas 
no such significant decrease in activity was observed for samples incubated at 45 °C (13% 
decrease) to 60 °C (28% decrease). It might be possible that an energetically favored 
structure is reached at elevated temperatures compared to the structure of VPO-RR at 25 
°C. Failure to reach this state due to insufficiently high temperatures, such as 35 or 40 °C, 
might lead to an undesirable or partially undesirable state where enzymatic activity is 
severely affected. Whether the nature of this phenomenon is generally attributable to the 
tertiary structure of the enzyme or the ortho-vanadate cofactor itself has to be elucidated 
further. 

Another important aspect of haloperoxidases is the selectivity for the corresponding 
halide. Here, one needs to differentiate between a preferred halide, i.e., one that leads to 
a higher turnover number, and the enzyme’s general acceptance of a halide. Using the 
MeDAC assay, bromination and chlorination experiments were performed under the 
same conditions. As a reference, the bromination and chlorination using the MeDAC 
assay with VClPO-CI, similar to recent work, were included in the SI to illustrate the 
applicability of the assay for this purpose (see Table S7) [16]. In direct comparison, no 
chlorination activity could be measured for VPO-RR, while bromination occurred with a 
volumetric activity of 1.34 U ml−1 (Table 2). Hence, VPO-RR does not accept chloride as a 
halide source under these conditions. 

Table 2. Halide acceptance of VPO-RR [a].. 

Halide Source Activity [U mL−1] 
KBr 1.34 ± 0.148 
KCl 0 

[a] The activity was determined in triplicates using different halide sources for halogenation using 
the MeDAC assay. Given is the mean ± standard deviation. 

3. Discussion 
Halogenating enzymes do not yet have anywhere near the potential to overtake 

mega-ton processes such as chlor-alkali electrolysis, on which the entire production of 
halogenating reagents is based. Here, we identified potential halogenase sequences by 
screening algal, fungal, and protobacterial sequence databases, structural modeling of 
putative halogenases, and mapping and comparing active sites. After test expressions of 
four putative halogenase sequences, the vanadium-dependent haloperoxidase VPO-RR 
was biochemically characterized, which showed beneficial kinetic properties, including 
an overall higher turnover number and lower inhibitory effect of bromide compared to 
VClPO-CI. 

At present, there is a gap in the scope of known halogenating enzymes. On the one 
hand, some enzymes are involved in the biosynthesis of a particular natural compound, 
such as many flavin-dependent halogenases (e.g., Chl from Streptomyces aureofaciens [32] 
or CmdE from Chondromyces crocatus Cm c5 [33]), but their high substrate selectivity 
renders these enzymes unsuitable as general synthetic tools. On the other hand, the 
vanadate-dependent haloperoxidases only produce hypohalous acid rather than provide 
an enzyme-substrate complex and, thus, lack an enzyme-driven substrate selectivity 
[14,34,35]. Furthermore, vanadate-dependent haloperoxidases are still underrepresented 
in the set of halogenases used for synthetic purposes. Accordingly, predominantly VClPO-
CI from Curvularia inaequalis [14] and VBrPO-CO from Corallina officinalis [36] were 
extensively described. Identifying and characterizing VPO-RR here thus provides a 
valuable expansion of the known set of vanadate-dependent haloperoxidases. 

The pipeline for halogenase identification applied here, including structural 
characterization and comparison of molecular recognition properties of active sites, is 
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unique because it benefited from screening taxonomically wide sequence databases at the 
beginning. The structural modeling resulted in overall very good to good models as 
predicted by TopScore [25,37] based on good available templates, such that the structural 
quality of the active site should also be high. Recently, we compared the quality of 10,336 
enzyme structural models generated with TopModel [25,37] used here and AlphaFold2 
[38] and found that the average scores differed only by ~5% [24]. Particularly, if good 
templates are available, as was the case here, the comparative modeling approach by 
TopModel resulted in very good models [24]. For binding site comparison, MIFs based on 
the established knowledge-based potentials for scoring protein–ligand interactions, 
DrugScore2018 [27,39] were used. This provides a balanced description of enthalpic and 
entropic interaction contributions and also allows for the consideration of metal ions in 
the recognition process. Finally, compressing this information as Zernike descriptors [28] 
yields an alignment-independent way of comparing active sites, which is advantageous 
in view of the identities of the selected halogenase sequences down to ~20% and, hence, 
the resulting variability of the overall enzyme structure. 

Our analyses show that this group of haloperoxidases is taxonomically widespread, 
although they must be assigned to secondary metabolism. The sequences chosen here for 
further analysis are representatives of the Phaeophyta and thus still closely related to the 
described Rhodophyta C. officinalis, Ascomycota as well as Curvularia inaequalis, but also 
cyanobacteria and bacteria. Both the phylogenetic tree and cladogram build upon the 
haloperoxidase sequences and the clustering of the active site geometry (see Figure 4) 
represents the approximate taxonomic relation. They also underline the variety in the 
assumed structures indicating different physicochemical properties. 

Four sequences (from A. nodosum, F. ceranoides, S. fusiforme, and R. roseus,) were 
selected for test expressions. These organisms are representatives of the Phaeophyta and 
thus still closely related to the described Rhodophyta C. officinalis, Ascomycota, and 
Curvularia inaequalis, but also cyanobacteria and bacteria. However, only the bacterial 
sequence from R. roseus was expressible within E. coli. The kinetic data revealed that VPO-
RR is not strongly inhibited by halides, in contrast to what was described for VClPO-CI 
[18,31,40]. Furthermore, its 100-fold higher catalytic turnover number renders this enzyme 
a potential advancement over literature-known haloperoxidases for biocatalytic 
processes. The temperature stability of VClPO-CI could be observed for VPO-RR; for 
temperatures up to 85 °C, a remaining activity of well over 60% was observed. Regarding 
its halide selectivity, only bromide was found to be an accepted halide source, whereas 
chloride showed no measurable activity. Whether the enzyme is capable of selective 
halogenations or possesses substrate binding properties is the focus of current 
investigations. 

In summary, we present a structure-based pipeline to identify new halogenases and 
characterize VPO-RR as a new member of vanadium-dependent haloperoxidases. Its 
beneficial kinetic properties might allow for biotransformations with higher efficiency. 
Therefore, a more detailed biochemical characterization will be essential. 

4. Materials and Methods 
4.1. Structural Modeling of Selected Haloperoxidases 

As no experimentally derived structures were available for the 20 selected 
haloperoxidase sequences, a homology model was constructed for each. To do so, the 
template-based structure prediction program TopModel [25,37] was applied using the 
“normal run” mode. In order to build models from algae arranged in a dimeric assembly, 
a monomer was first built, taking into account the best dimeric template selected by 
TopModel (Table S1, PDB ID: 1QI9). Next, the low-quality N-terminus was truncated as 
no dimeric template information is available for this region, meaning a clash might occur 
at the interface. Since for algae the functional assembly is consistent and involves the 
interaction between dimerization helices, the model was duplicated, superimposed to the 
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reference template structure, and minimized. Both monomer and dimer structures were 
preprocessed with the Protein Preparation Wizard [41] of Schrödinger’s Maestro Suite. 
The truncated dimeric models were energy-minimized using the OPLS 2005 force field 
[42] with standard cutoff values for van der Waals, electrostatic, and H-bond interactions 
until the average RMSD of non-hydrogen atoms reached 0.30 Å. Bond orders and missing 
hydrogen atoms were assigned, and the H-bond network was optimized. 

4.2. Calculation of DrugScore2018 Potential Fields 
Binding sites were characterized and represented with descriptors based on 

DrugScore2018 [27,39] potential fields. Potential fields of six different probe atoms were 
considered: C_ar (aromatic interactions), C_3 (aliphatic interactions), O_2 (H-bond 
acceptor), N_3 (H-bond donor), O_3 (H-bond donor and acceptor), Cl (representative for 
halogens). For all computed DrugScore2018 potential fields, a grid spacing of 0.375 Å was 
used. Since the vanadate cofactor was a constant in all models for the classification, it was 
not considered for potential field generation. 

4.3. Calculation of Zernike Descriptors and Clustering 
The DrugScore2018 potential interaction fields were transformed to a set of descriptors 

using a series expansion in 3D Zernike polynomials as described by Nisius et al.[28]. First, 
different descriptors for one individual protein and different probe atoms were merged. 
Second, the pairwise distances between all proteins (Manhattan distance) of the stacked 
Zernike descriptors were calculated. A matrix of normalized distance values is reported 
in Figure S6. These distances were then used for clustering. The UPGMA (unweighted 
pair group method with arithmetic mean) agglomerative bottom-up hierarchical 
clustering method as implemented in the MEGA (Molecular Evolutionary Genetics 
Analysis) software [43] was applied to generate the tree reported in Figure 4 from the 
distance matrix in Figure S6. 

4.4. Expression and Isolation of Haloperoxidases 
The expression and isolation procedure was established according to recent work 

[16]. The platform for expression of the haloperoxidase genes consisted of E. coli 
ArcticExpress (DE3) as the heterologous host and a pET21-vector backbone, using N-
terminal His-Tags for later isolation. 

For small-scale test expressions, 50 mL cultures in TB-media were inoculated with a 
cell amount that corresponded to a starting OD600 of 0.05 in 250 mL flasks. Then, 0.05% 
glucose and 0.2% lactose were supplemented to enable autoinduction later on, with 100 
µg mL−1 ampicillin as the antibiotic. After an incubation period of 3 h at 37 °C, 2% ethanol 
(v/v) was added and the temperature decreased to 13 °C. The cultivation was continued 
for 72 h before the cells were centrifuged and the dry pellets stored at −20 °C. 

The isolation was performed on ice with resuspended pellets in lysis buffer (20%, Bis-
TRIS acetate, 100 mM, pH 7 with 12.5 mM imidazole) using ultrasonication for 5 min, 
cooling for 5 min, and an additional ultrasonication step. The lysate was centrifuged for 1 
h at 10.000× g and the supernatant separated from the cell debris. SDS samples were 
prepared according to the final OD600 values of the culture, aiming for a final OD600 in the 
SDS sample of 1 for SDS-GEL analysis using the NuPage system. For cell debris samples, 
the pellet was resuspended with the same amount of lysis buffer (20%) as before. 

For large-scale expression, 500 mL cultures were used with the exact same 
concentrations of supplements. For isolation, an EDTA-free protease inhibitor tablet 
(cOmplete Tablet, Mini, EASYpack, Roche) was added to the resuspended pellet in lysis 
buffer and stirred for 20 min. For cell disruption, the ultrasonication steps were increased 
to 10 min each. After centrifugation, the cleared lysate was loaded onto a 5 mL Ni-NTA 
Superflow Cartridge (Qiagen). Initial experiments were carried out on an ÄKTA prime 
system using a linear elution gradient with Bis-TRIS acetate (BTA) buffer 100 mM at pH 7 
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and BTA with 250 mM imidazole included. Peak fractions were collected and analyzed 
via SDS-PAGE, and fractions containing the target protein were pooled and dialyzed 
overnight in assay buffer (BTA 100 mM pH 6) in the presence of 100 µM sodium ortho-
vanadate. The dialysate was concentrated using PALL concentrators with a molecular 
cutoff of 10 kDa. Final protein concentrations were measured using molecular extinction 
coefficients for absorption at 280 nm for each individual protein calculated by ExpPASy 
assuming oxidative conditions (εox (VPO-RR) = 100,730 mM−1 cm−1). 

4.5. Activity Measurement and Kinetics of VPO-RR 
Activity of haloperoxidases was measured using the MeDAC assay [18]. A 1 µL of 

enzyme solution was added to 249 µL of assay buffer, containing 5 mM of potassium 
bromide, 3 mM of hydrogen peroxide, 30 µM MeDAC (in DMSO) with 0.4% v/v DMSO 
(as the final concentration) in BTA 100 mM pH 6. The fluorescence was measured over 10 
min at an excitation wavelength of 425 nm and emission wavelengths of 450 and 550 nm. 
Using a calibration function included in a calculation sheet, the activity was determined 
by plotting the concentration of BrMeDAC against time and determining the slope of the 
linear fit. Multiplying with corresponding dilution factors yielded the final volumetric 
activities in U mL−1. 

For the two-dimensional Michaelis–Menten kinetics, the substrate-inhibition term by 
Murray [29] was used as a fit function in OriginPro 2018. The enzyme was mixed with 
MeDAC and added to the wells filled with predefined concentrations of hydrogen 
peroxide and potassium bromide. Measurement and evaluation were performed 
according to the general activity measurements. The resulting volumetric activities were 
plotted in Origin and fitted with the custom Michaelis–Menten function. The complete 
function is accessible in the Supplementary Materials (see Equation (S4)). 

4.6. Temperature Stability 
To test the thermal stability of VPO-RR, 20 µL of enzyme solution was placed in a 

PCR tube and incubated for 3 h at the given temperatures. The samples were centrifuged 
for 5 min at maximum speed, and 1 µL of the solution was used according to the activity 
assay mentioned before (vide supra). The experiments were performed in biological 
triplicates. The averaged 25 °C sample was used as a reference and set to 100% of relative 
activity. 

4.7. Halide Selectivity 
For the halide selectivity test, the assay was performed under normal conditions 

using potassium bromide and potassium chloride, respectively. After the determination 
of activity, the values were directly compared to each other. For samples where no linear 
area could be determined, the values were set to zero. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/catal12101195/s1; Supplemental Methods; Figure S1:  
Multiple sequence alignment for the selected haloperoxidases; Figure S2: Percent identity matrix for 
the selected haloperoxidases; Figure S3: Structural models of haloperoxidases from algae sequences; 
Figure S4: Structural models of haloperoxidases from bacteria sequences; Figure S5: Structural 
models of haloperoxidases from fungi sequences; Figure S6: Matrix of normalized pairwise 
Manhattan distances between all proteins of the stacked Zernike descriptors; Figure S7: SDS‐PAGE 
analysis of the test expression of all four putative VPO constructs; Figure S8: SDS‐PAGE of samples 
obtained during isolation procedures for the enzymes VPO‐SF, VPO‐FC, and VPO‐AN; Figure S9: 
Example measurement of chlorinating activity for VClPO‐CI using the MeDAC assay; Table S1: 
Threading information; Table S2: Threading information; Table S3: Threading information; Table 
S4: Critical evaluation of algae structural models; Table S5: Critical evaluation of bacteria structural 
models; Table S6: Critical evaluation of fungi structural models; Table S7: Comparison between 
bromination and chlorination of MeDAC using VClPO‐CI; Supplemental References.. 
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