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Abstract: This paper proposes an eco-efficient treatment technology for removing phenanthrene
(PHE) from kaolinite soil, incorporating a permeable reactive barrier (PRB) in an electrokinetic
(EK) remediation system, which was made by modifying the granulated cork (GC) with Fe@Fe2O3,
identified as EK/Fe@Fe2O3/GC. The novel product Fe@Fe2O3/GC was characterized by X-ray
diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and element mapping.
EK tests were conducted to investigate the performance of the EK/Fe@Fe2O3/GC for removal of PHE
from soil. The results showed that PHE was driven by the electro-osmotic flow toward the cathode
and reacted with the EK/Fe@Fe2O3/GC. Further, the removal efficiency of PHE in the soil was higher
in the presence of H2O2 due to the additional reactions achieved. The results were discussed in light
of the existing literature.

Keywords: electrokinetic remediation; cork; permeable reactive barrier; phenanthrene; zero-valent iron

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic, teratogenic, and muta-
genic [1–3]. PAHs occur in the environment primarily as a result of human activities, such
as coking and steelmaking, automobile exhaust emissions, and incomplete combustion of
fossil fuels [4]. PAHs not only enter into the soil directly but are also transferred to the soil
through the atmosphere and water ecosystems. Phenanthrene (PHE) is commonly found
in soil near industrial areas, and it is well-known for its carcinogenicity, teratogenicity,
and mutagenicity [2]. Several approaches have been used to treat polluted soils, such as
physical [4–6], biological [7,8] and chemical [9,10] processes.

Electrokinetic remediation (EK) is an old technology for soil decontamination that
has undergone a renaissance in the last years, in which contaminants are removed by
electro-osmosis, electromigration, and electrophoresis when a low-intensity direct current
is applied between electrodes inserted into the soil, and the contaminants mainly migrate
through electro-osmotic flow (EOF) [11–13]. Previous research has shown that EK is
effective, especially for the remediation of contaminated soil with low permeability [14].
However, there is a real resurgence of EK where it can only transfer organic compounds to
a certain area within a limited duration, and most of the contaminants accumulate in that
area without further removal [15,16]. The EK approach has been also combined with other
procedures such as permeable reactive barriers (PRBs) to further increase the effectiveness
of pollutant removal in low-permeability soils [11,17–19].

A PRB is used to mitigate groundwater pollution due to contamination with reactive
material. It is oriented vertically in the direction of groundwater flow, intercepting the
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pollution plume and eliminating pollutants through physicochemical reactions [20–25]. Un-
derstanding the interaction between contaminants and reactive materials, the effectiveness
of the process can be enhanced, and the operating conditions can be accomplished. Several
reactive materials are currently available, including zero-valent iron, activated carbon,
zeolites, peat, and sawdust [11,16,17]. Based on the existing literature, cork emerges as a
novel and sustainable solution as an adsorbent material, and it has been investigated as an
alternative for hydrocarbon removal [23].

Cork, often used to seal wine bottles, is a low-cost natural organic substance produced
from the bark of cork oak trees (Quercus suber L.) [13,24–26]. It has a macroporous honey-
comb structure and is mostly composed of biopolymers such as suberin, lignin, cellulose,
and hemicelluloses, making it a hydrophobic substance with a high affinity for the retention
of fundamentally hydrophobic organic contaminants [27–29]. Low-cost waste in the cork
industry has been used as surface material for insulation purposes [30,31]. Granulated cork
(GC) is a byproduct of the industrial crumbling process, and it has been used for water
remediation because of their physical and chemical stability [32]. Their uses became even
more important after modification in the form of iron-coated cork granules [21,33].

In the present investigation, for first time, the direct use of Fe@Fe2O3-coated cork gran-
ules as a PRB, integrated with EK remediation, is proposed to remove PHE from a model
soil. From the aforementioned cork material features and advantages, no information has
been published yet regarding the iron impregnation on cork surface to remove hydrocarbon.
In this work, cork is added to the synthesis process of Fe@Fe2O3-GC by the traditional
liquid-phase reduction method using sodium borohydride. Cork was selected because it is
biodegradable and used for environmental remediation. PHE was chosen as an organic
model compound due to its toxic features, as described above. Meanwhile, kaolinite was
used as the soil model, comparing EK (electrokinetic alone), PRB-GC/EK (electrokinetic
using GC as PRB), and EK/Fe@Fe2O3/GC (electrokinetic using Fe@Fe2O3/GC as PRB) for
PHE removal, and establishing the most suitable operating conditions to maximize the
removal efficiency.

2. Results
2.1. Soil Characterization

The elemental and chemical compositions were in good agreement with the miner-
alogical composition determined by powder X-ray diffraction (XRD) analysis (see Table 1).
The X-ray diffractograms revealed a heterogeneous material, in which the most dominant
chemical constituents were kaolinite (Al2(Si2O5)(OH)4) and quartz (α-SiO2) (see Figure 1).
The major characteristic peak at 2θ = 12.5◦ was associated with the aluminosilicate plates,
corresponding to the basal spacing of kaolinite. Another peak, at 2θ = 25◦, was associated
with the quartz crystalline phase [20]. Elemental analysis of the kaolinite-based soil sample
showed a predominance of SiO2 (63.06 wt.%) and Al2O3 (35.6 wt.%), with Fe2O3 (0.76 wt.%),
K2O (0.57 wt.%), and MgO (0.02 wt.%).

The specific functional groups of the soil sample were analyzed by Fourier-transform
infrared (FTIR) spectroscopy (Figure 2) and the spectrum presented intense bands at
3689 and 3631 cm−1, which correspond to the vibration of -OH bound to octahedral alu-
minum atoms both on the surface and between the silicate layers, confirming its crystalline
structure. Meanwhile, the intense bands that appear at wavenumbers of about 1117, 1001,
and 911 cm−1 correspond to the Si-O- planar elongation, whereas the band at 799 cm−1

corresponds to the Si-O- deformation. Conclusively, the 763 cm−1 band corresponds to the
Al-OH deformation on the interplanar surfaces [18,19,34,35].
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Table 1. Properties of kaolinite.

Chemical Composition

SiO2 63.06
Al2O3 35.60
Fe2O3 0.76
K2O 0.56
MgO 0.02

Mineralogical composition

Kaolinite (%) 95
Quartz 5
pH 4.8
Conductivity (µS cm−1) 470
PHE/mg kg−1 50
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2.2. Regranulated Cork and Fe@Fe2O3/GC Characterization

XRD analyses were carried out to characterize the granuled cork used as well as to
evaluate the structure of the iron-supported cork after the reduction procedure by using
borohydride. Figure 3 shows the diffractogram of pure GC, with the presence of low-
intensity peaks at 2θ = 20◦, corresponding to the crystalline organic material that is typical
of the cork [33], and high-intensity peaks at 37◦ and 45◦, corresponding to calcium and
silicon oxides, respectively. In the diffractogram shown in Figure 3, obtained from the
modified GC, an intense peak was observed at 2θ = 45◦, corresponding to the (110) planes
of iron in its zero-valence state. The peaks in the region of 25◦ to 35◦ can be attributed to
the formation of maghemite (γ-Fe2O3), as well as to magnetite (Fe3O4), respectively. The
differences between these results cannot be clearly distinguished due to the amorphous
area. In fact, XRF analysis of this sample showed 98.28% iron in its complete composition.
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Scanning electron microscopy (SEM) analyses were performed on granulated cork
(GC) and Fe@Fe2O3/GC, and the images and elemental mapping of the Fe@Fe2O3/GC
catalyst are shown in Figure 4. Morphological characterization revealed that the GC images
correspond to the hexagonal/pentagonal prisms observed in the cork microstructure,
associated with honeycomb-like or rectangular (brick wall-like) patterns (Figure 4a) [21].
As observed in Figure 4b, Fe@Fe2O3/GC exhibited a collapse of the cork structure, turning
into asymmetric sheets with iron oxides supported on their surfaces. It can be observed that
the coating is not fixed as a homogeneous, thin layer on the material surface but rather forms
deposits inside the macropores, taking advantage of the stacked cell structure. The iron
oxide coating distribution formed an irregular surface structure as well as the development
of numerous pores, and the iron coating distribution may be uneven between granules,
contributing toward heterogeneity in the final material. As observed in Figure 4c,d, EDS
elemental mapping further revealed prominent iron, carbon, and oxygen peaks. Carbon
and oxygen are present in combination with Fe as can be observed in Figure 4d.
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as-fabricated Fe@Fe2O3/GC.

Figure 5 shows the FTIR spectra of GC and Fe@Fe2O3/GC materials, respectively.
The band around 3400 cm−1 is related to the elongation and flexing vibrational modes of
H–O–H, which is attributed to adsorbed or free water molecules [22]. The double bands at
2928 and 2857 cm−1 are associated with the stretching vibrations of the C–H bonds, typical
of -CH2 and -CH3 methyl groups. The 1738, 1274, and 1175 cm−1 bands are attributed to
the symmetric and asymmetric stretching vibrations of C=O, respectively, and are typical
of aliphatic fatty esters [22,23]. These groups are present in the organic chains that make up
cork. The bands at 1627 and 1509 cm−1 correspond to C=C-C stretching vibrations of the
aromatic ring [24]. On the other hand, the bands in the region of 2928 and 2857 cm−1 and
the band at 1738 cm−1 were not present in the iron-supported cork, while the bands in the
region of 1274 and 1175 cm−1 appeared with reduced intensity, indicating the collapse of
the structure.
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2.3. pH and Conductivity

Figure 6 shows the variation in pH and conductivity conditions with the change in
elapsed time for all remediation tests (trials 2–4). At the beginning of the experiment, the
pH and conductivity values of the fluid present in the reservoir (tap water) were 7.48 and
249 µS cm−1, respectively. Overall, the pH in all tests firstly increased after 25 h in the
cathodic reservoir at 12.5, 11,4 and 12.56 for trials 2, 3, and 4, respectively. Meanwhile, in
the anodic reservoir, the pH conditions decreased achieving values of about 1.70, 1.12, and
1.54, respectively. This behavior occurs because of the application of the electric field, which
causes electrolysis reactions, and results in the oxidation reaction (anode), generating H+

ions and oxygen gas, and the reduction reaction (cathode), which produces OH− ions and
hydrogen gas, as shown in Equations (1) and (2) [13,25–27].

Anode (oxidation): 2H2O(l) → O2(g) + 4 H+
(aq) + 4e− E0 = −1.229 V (1)

Cathode (reduction): 4H2O(l) + 4e− → 2H2(g) + 4 OH− (aq) E0 = −0.828 V (2)
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The electrical conductivity (EC) behavior in the anode and cathode reservoirs over
seven days of EK remediation is shown in Figure 6. The conductivity of the anodic
reservoir is superior to that in the cathodic compartment, in all cases. In all experiments,
high conductivity values were obtained when the electroosmotic flux reached its maximum
performance (after 25 h).

Figure 7a–d illustrates the pH values in the soil portions after seven days of treatment.
As shown, an acidic front was generated in the soil samples in the anodic regions for all
tests. Meanwhile, an increase in pH values (3.0–5.5) in the cathodic regions is observed for
these same experiments. This behavior is due to the application of the electric field, which
generates H+ ions, resulting in a decrease in the pH conditions of the soil near the anode and
promoting the formation of an acidic front, which moves towards the cathodic compartment.
At the same time, the OH− ions raise the pH of the soil near the cathode, generating an
alkaline front with an opposite direction to the acidic front [28,29]. Comparing the pH
values in trial 2 with those achieved in the other experiments, it is possible to observe that
the use of GC-PRB as well as EK/Fe@Fe2O3/GC did not significantly influence the soil pH
variations obtained during EK.
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GC-PRB, and (d) EK/Fe@Fe2O3/GC treatment.

2.4. Cumulative EOF

The application of an electric field to the soil results in the transport of water from the
anodic to the cathodic reservoir, a process well-known as electroosmosis. The electroos-
mosis promotes liquid flux that contributes to improve the pollutant removal efficiency,
as well as increases the interaction of the soil with the contaminant [14,30–32]. For soil
contaminated with organic compounds, this is the most significant mechanism for decon-
tamination effects [10], and it is also the main mechanism that determines the kinetics of
electrokinetic remediation.

In all experiments, the anodic reservoir volume level decreased during the treatment,
while the cathodic reservoir increased its volume level, indicating that EOF occurred from
the anodic to the cathodic compartments (Figure 8). When the PRB was introduced in
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the soil, the EOF rate increased, promoting the migration of contaminants. This phe-
nomenon indicates that the EK/Fe@Fe2O3/GC as a microelectrolysis system can partially
increase the zeta potential of the soil close to the PRB and improving the pore-water flow
behavior [36,37].
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2.5. Distribution of PHE in the Soil after Treatment

Figure 9 shows the concentrations of PHE distributed in the soil fractions after the
EK process. The control experiment without PRB and EK remediation (Trial 1) demon-
strated that a limited capability of removing PHE is achieved by evaporation. As shown
in Figure 9a, only 10% of the PHE was effectively evaporated. Figure 9b–d show the
concentration distribution of the remaining PHE in different sections (P1-P5, as described in
Section 3) across the soil treatments (Trials 1–4). In general, in all four tests, the remaining
PHE showed an increasing pattern from the anodic to the cathodic reservoir, indicating
that the occurrence of electroosmosis is the main transport mechanism removing the target
pollutant in the EK process [16]. This behavior was due to the migration of hydrophobic
organic matter (PHE) caused by the movement of EOF toward the cathodic reservoir during
EK remediation. Soil acidification could simultaneously promote both organic pollutant
desorption from soil EOF particles and pollutant migration. The general removal efficiency
in all the tests with GC or EK/Fe@Fe2O3/GC was higher than that achieved in Test 1,
indicating that the inclusion of EK/Fe@Fe2O3/GC enhanced the migration and removal of
PHE in contaminated soil. As shown in Figure 9b, EK remediation removed 40% of the PHE.
Instead, the adsorption capacity effect integrated with EK remediation was intensified,
achieving approximately 48% (Test 3).

Another important feature that should be indicated is that microelectrolysis is the
main mechanism via which Fe@Fe2O3/GC effectively removes and degrades PHE [34].
Fe@Fe2O3/GC microelectrolysis is an integrated process involving oxidation, reduction,
flocculation, and adsorption, in which a large number of microscopic galvanic cells are
formed, and it is due to the structure of the modified GC catalyst coupled with the current
applied. The high efficiency of PHE removal in Trial 4 is attributed to the reduced diffu-
sion of ferrous ions produced by microelectrolysis of the Fe@Fe2O3/GC, into the nearby
soil solution, which promoted the desorption and removal of PHE. In the mechanism of
Fe@Fe2O3/GC microelectrolysis for PHE degradation, illustrated in Figure 10, microscopic
galvanic cells are formed. In these cells, Fe0 acts as an anode and loses 2e− to form Fe2+,
whereas C acts as a cathode, accelerating the reduction reaction by accepting electrons and
transferring the electrons to organic compounds or oxygen [11,34]. The hydrolysis of Fe2+

and Fe3+ ions form ferrous and ferric hydroxides, favoring the flocculants formation to
achieve the adsorption and removal of the organic pollutants.
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Figure 10. Mechanism of Fe@Fe2O3/GC microelectrolysis for degradation of PHE.

3. Materials

Sodium sulfate anhydrous, ferric chloride, sodium borohydride, iron sulfate, and
acetone 99.5% were purchased from Neon Comercial (São Paulo, Brazil) and HPLC grade
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acetronitrile 99% from JT Baker. GC was purchased from Corksorb (Portugal) and was
used as a permeable reactive barrier. Phenanthrene (98%, Sigma-Aldrich, Prague, Czech
Republic) was used as the target contaminant. High-purity water was obtained from a
Millipore Milli-Q system (Millipore, Bedford, MA, USA) with resistivity >18 MΩ at 25 ◦C
and used to prepare most model solutions.

3.1. Preparation of the Fe@Fe2O3/BC Catalyst

The catalyst was prepared by loading Fe@Fe2O3 on GC by the procedure reported by
Li, Ai, and Zhang [37], as follows. A 0.3 g portion of FeCl3·6H2O was dissolved in 100 mL
of distilled water, and 0.6 g of NaBH4 was dissolved in 40 mL of distilled water. GC was
suspended in in the FeCl3 solution, and after 30 min of sonication of the suspension, the
NaBH4 solution was slowly added dropwise to reduce the ferric ions to metallic iron on the
GC. The resulting Fe@Fe2O3/GC catalyst was thoroughly washed with deionized water
and dried in an oven for further use.

3.2. Characterization of the Fe@Fe2O3/GC Catalyst

The morphological characteristics of the Fe@Fe2O3/GC catalyst were analyzed using
scanning electron microscopy (SEM; Carl Zeiss, Auriga, Oberkochen, Germany). The XRD
patterns of Fe@Fe2O3/BC and soil were measured using an X-ray powder diffractometer
with Cu radiation (Shimadzu, XRD-7000, Kyoto, Japan). X-ray fluorescence spectroscopy
(Shimadzu, XRF-1800, Kyoto, Japan) was employed to analyze the surface compositions
of Fe@Fe2O3/GC and soil. FTIR spectroscopy images of Fe@Fe2O3/GC and soil were
obtained using an infrared spectrometer (Shimadzu, IRAffnity-1, Kyoto, Japan). Energy
dispersive spectroscopy was performed using a scanning electron microscope (EDS, Bruker,
XFlash detector, Billerica, MA, USA).

3.3. Preparation of Spiked Soil

Kaolinite was selected as a model of low-permeability soil based previous works [14].
Such soil is characterized by inertness, low hydraulic conductivity, lack of organic content,
and low cation exchange capacity [35]. The commercial kaolinite used in this study was
purchased from Armil Mineração do Nordeste Ltd.a., Brazil. The main physical and
chemical properties of the soil were measured according to standard methods and are
summarized in Table 2. The soil was then homogeneously polluted with PHE dissolved in
acetone, up to a pollution level of approximately 50 mg kg−1 dry soil (this concentration
was chosen to simulate an oil spill, based on previous studies). The polluted soil was
aerated in a fume hood for one day to ensure evaporation of the acetone, as described in
the literature [8,38]. Approximately 200 g of dry soil was used for each test.

Table 2. Main operating conditions for each PHE-contaminated soil remediation trial.

Trial
Supporting Electrolyte/Reservoir Electric Field

(V cm−1)
Time

(Days)# Anodic Cathodic

1 Without EK and PRB - - - 7
2 EK without PRB Tap water Tap water 1 7
3 EK with GC-PRB Tap water Tap water 1 7
4 EK/Fe@Fe2O3/GC Tap water Tap water 1 7

3.4. Cell Configuration

The EK experiments were carried out in a laboratory-scale prototype cell (see Figure 10)
mainly composed of: (i) a transparent methacrylate EK cell (8 × 5 × 5 cm); (ii) a constant
electric potential of 1 V cm−1 provided by a power supply (MPL-3505 M, Minipa) and ap-
plied between the electrodes for seven days; and (iii) two graphite electrodes (5 × 3 × 1 cm),
connected to the power supply, so that one worked as a cathode and the other as an anode.
The EK cell was divided into five sections: (i) one central compartment, where the polluted-
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soil, polluted-soil/GC, or polluted-soil/Fe@Fe2O3/GC was loaded; (ii) two electrodic
(anodic and cathodic) compartments (5 × 3 × 1 cm), adjacent to the central compartment,
in which the graphite electrodes were assembled and tap water (ca. 75 mL) was added;
and (iii) two collector compartments, located at the EK cell extremes, into which the EOF
overflowed from the electrodic compartments. The anodic/cathodic compartments were
separated (i) from the soil-containing section by 0.5 mm nylon meshes and five 13 µm filter
papers [25] and (ii) from the collector compartment by an 8.5 cm high methacrylate wall.
Five experiments were conducted, as listed in Table 2. The initial water content of the soil
was 30% [14,35]. The pH, total organic carbon (TOC), conductivity, and PHE concentration
were measured, and after seven days of treatment, the treated soil was divided into 10 por-
tions, and each portion was homogenized and analyzed. The portions P were subdivided
and labeled, with P1 nearest the anode and P5 nearest the cathode. In the GC-PRB and
Fe@Fe2O3/GC experiments, 1 g of the barrier was inserted in the central portion (P3) of the
contaminated soil, as shown in Figure 11.
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Analytical Methods

PHE was identified and quantified using high-performance liquid chromatography
(HPLC), based on EPA 8310 [39]. To determine the PHE concentration in the soil samples,
extraction was carried out based on EPA 3550C [40]. First, 3 g of the contaminated soil was
extracted with 25 mL of acetonitrile. The samples were mixed with anhydrous sodium
sulfate (3 g) to form a free-flowing powder. They were then extracted with the solvent
for 15 min using ultrasonication. The subsequent phase separation was accelerated by
the use of an angular centrifuge (Centrifuga Excelsa® II Modelo 206-BL, Fanem) for 4 min
at 3000 rpm. A portion of the extract was collected and filtered through 0.45 µm nylon
filters (CHROMAFIL® Xtrata, MachereyNagel, Düren, Germany) for HPLC analysis. No
extraction was required for the liquid samples. The samples were analyzed by HPLC
(Ultimate 3000, Dionex, Sunnyvale, CA, USA) equipped with an autosampler, quaternary
gradient pump, and diode-array detector. The analysis was performed using a C18 Acclaim
Polar Advantage II column (2 mm × 100 mm, 3 µm, Thermo Fischer Scientific, Waltham,
MA, USA) with 10 µL sample injection. The mobile phase consisted of a mixture of
deionized water (eluent A) and acetonitrile (eluent B), first using an isocratic elution with A:
B = 50:50 v/v for 7 min, followed by a gradual decrease to A: B = 10:90 v/v for 9 min. Finally,
the mobile phase was restored to the initial proportions and maintained constant for up to
12 min to balance the column for the next injection. The column and the autosampler were
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maintained at temperatures of 30 and 5 ◦C, respectively. The flow rate was 0.350 mL min−1

and the wavelength used for detection was 254 nm. Data were acquired and processed
using Chromeleon 6.8 software. The quantification limit was 0.1 mg L−1. The percentage
of PHE removal was estimated using Equation (3).

PHE removal (%) =
PHE0 − PHEfinal

PHE0
× 100 (3)

Percentage of PHE in soil after treatment for experiments using cork-based PRB and
Fe@Fe2O3/GC was estimated taking into account the amount reactive barrier (1 g).

PHE adsorbed in PRB (%) =
m0 −m f inal

m0
× 100 (4)

where and m0 and mfinal are the total pollutant mass (mg) at the beginning and the end of
the test, respectively.

The soil pH and conductivity were measured using the standard EPA 9045C method [40].
This method involves mixing 10 g of soil with 25 mL of distilled water, followed by vortex
agitation for 10 min. The humidity measurement was carried out by drying the soil at
105 ◦C for 24 h.

4. Conclusions

In this study, the performance of EK remediation coupled with PRB of GC and mod-
ified CG was investigated for the treatment of soil contaminated with PHE. The main
conclusions are as follows:

- The combination of EK-PRB using GC as a reactive barrier over a period of seven days
seems to be an innovative alternative for the treatment of soils polluted with PHE
because the contaminants were significantly removed from the samples.

- The inclusion of PRB in the polluted soil increased the EOF rate, promoting PHE
migration, and electroosmosis was the main transport mechanism in the EK process,
favoring the elimination of PHE.

- The use of a reactive barrier formed from GC increased the efficiency of PHE removal
by the EK process by 5%, whereas the EK/Fe@Fe2O3/GC process increased the
efficiency of this process by 14%, indicating the degradation of PHE by the micro-
electrolysis mechanism is feasible and a mechanism was proposed.

- The modification of GC with Fe@Fe2O3 is not an expensive process that requires a
reduced number of steps, avoiding the use of several reagents, which fits the principles
of green chemistry well. The alternative use of biomass similarly connects with the
goals of circular economy.

Finally, further preparation methods and characterization procedures are being evalu-
ated to demonstrate the efficiency of this modified GC material with Fe@Fe2O3 and these
results will be reported in a separate paper.
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