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Abstract: Samarium is an efficient reducing agent, a radical generator in cyclization and a cascade
addition reaction. Interestingly, samarium metal has crucial impact on numerous C-C and C-X
(X = hetero atom) bond forming transformations. It has been established as an exceptional chemo-
selective and stereoselective reagent. The reactivity of the samarium catalyst/reagent is remarkably
enhanced in the presence of various additives, ligands and solvents through effective coordination
and an increase in reduction potential. It has inherent character to act as electron donor for a
wide range of transformations including the asymmetric version of various reactions. This review
accentuates the developments in samarium-mediated/catalyzed asymmetric organic synthesis over
the past 12 years, where the chirality has been induced from ligand, a nearby asymmetric center
within the substrate or through coordination directed stereospecific reactions.
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1. Introduction

Samarium, as a lanthanide metal, prefers to form low valent complexes and is most
stable in the +3 oxidation state. It preferably acts as one electron mild reducing agent in its +2
oxidation state, which can be generated by reacting Sm(Ill) salts with metallic samarium [1-6].
Among all other salts of samarium, samarium(Il) iodide (Sml,), also known as Kagan'’s
reagent, has exclusive properties to act as a powerful but selective reagent for a wide
range of synthetic transformations following both the radical and ionic pathways [7-9].
The commercially available Sml, has been vastly utilized in organic reactions through
the in situ generation of active organosamarium by one-electron or two-electron electron
transfer pathways leading to the generation of radical or anion intermediates, mostly in
coupling reactions [10,11]. Moreover, the role of the ligand, additive and solvents are very
prominent; leading to notable enhancement in the reactivity of the samarium reagent [3,12-14].
The coordination sphere of samarium is crucial to estimate the reactivity of that catalyst.
The oxyphilic nature drives it to bind with the oxygen containing solvents and additives,
which imparts substantial impact on the coordination sphere of samarium [15-18]. Due to
the high solubility of Sml, in tetrahydrofuran (THF), it is the commonly preferred solvent in
this reaction. Sml, shows pentagonal bipyramidal geometry and possesses heptacoordination
in THF, where five oxygen lone pairs coordinate equatorially and two iodine atoms binds
axially to the samarium ion for stabilization [19]. The geometry of the samarium ion is altered
with additives or ligands [10,11]. The samarium iodide shows octahedral geometry with
the Lewis basic hexamethylphosphoramide (HMPA) in [SmI,(HMPA)4], which elevates the
reduction potential of Sml, through improved electron transfer [20]. Well-recognized proton
sources such as water and alcohols can also increase the reduction potential of Sml, [21,22].
Thus, the oxyphilic nature and enhanced reduction potential of the samarium ion is accountable
for stereoselective transformations [23].
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Sml, has been generously utilized in reductive couplings for inter- and intramolecular
carbon—carbon and carbon-heteroatom bond formation as well as functional group ma-
nipulation [24]. It is noteworthy to mention that Sml, mediated cross coupling reactions
have led to widespread applications in the direct access to diverse complex molecular
scaffolds [25]. The enhanced reduction potential of Sml, with HMPA allows the formation
of various reactive intermediates leading to the access of complex architecture [26,27].
In this context, the enormous applications of Sml; in the key reaction step during the total
synthesis of natural products is remarkable [28-32].

It is well-established that Sml, functions as mild reagent for various radical and ionic
coupling reactions through reduction and reductive annulation involving aldol [33-35],
Barbier [36,37], Grignard [38], reformats [39] and pinacol coupling [40,41] reactions as well
as Diels—Alder dipolar addition [42]. In this regard, our group has reported various Sml,
mediated reductive reactions of amines and imines [43-47].

Kagan and Molander performed pioneering research on applications of Sml; in various
coupling reactions including asymmetric transformations [36,48-51]. It can be extensively
used for generation of a chiral center, induced from an adjacent chiral auxiliary either
connected to the substrate [52] or to the ligands [53]. They can be categorized either as
enantioselective or diastereoselective asymmetric synthesis [54-56]. Moreover, being highly
oxophilic, the chelating effect of Sm(II) or Sm(III) ions to more than one Lewis basic center
in either the substrates, additives or solvents induces significant stereoselectivity in the
products through the formation of distinct transition states and intermediates [57,58].

In this regard, a fair collection of reports in the literature on samarium-mediated or-
ganic transformations has been drafted in the form of reviews in the last ten years [10,11,59],
whereas the asymmetric version [6] of these reactions has been rarely highlighted in the past
few decades. The previous compilation on asymmetric reactions using Sml, by Kagan com-
prises the reports until 2008 [54]. Therefore, the urgency to update and critically analyze the
overall asymmetric reactions has become mandatory. The present review summarizes the
asymmetric reactions with catalytic and stoichiometric use of Sml, utilizing the adjacent
chiral center in the substrate or a chiral ligand to induce asymmetry within the molecule.

2. Samarium-Mediated Ionic and Radical Asymmetric Reactions
2.1. Ketyl Radical-Olefin/Allene/Allyl Cyclization
2.1.1. Three-Membered Ring Forming Reactions

A unique example of a Sml-mediated 3-exo-trig cyclization of B,y-unsaturated ketones
and aldehydes was presented by Ortiz and Armesto in 2010 (Scheme 1) [60]. Treatment of
the precursors with Sml,-"BuOH afforded functionalized cyclopropanols in good yields.
A plausible mechanism involving the generation of a ketyl-type radical anion intermediate
was hypothesized to explain the observed diastereoselectivity.
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Scheme 1. Synthesis of cyclopropanols via 3-exo-trig cyclization and its mechanistic approach.

Furthermore, terminal alkenes substituted with activated aromatic groups, such as
fluorene, indene and 4-cyanophenyl, were proven as appropriate substrates for the reaction
(e.g., only alcohol and elimination products were observed using unsubstituted styrene),
suggesting that the alternative mechanism involving reduction of the aromatic ring might
be operative in this reaction.

2.1.2. Five-Membered Ring Forming Cyclization and Cascade Reactions

In 2017, Procter and co-workers developed an enantioselective Sml,-mediated radical
cyclization and cascade reaction via the formation of a ketyl radical with high enantio- and
diastereo-control (Scheme 2) [61]. A recyclable chiral ligand and achiral alcohol as addi-
tives were utilized that can transform the symmetrical ketoester to a complex carbocyclic
moiety with multiple stereocenters. The enantioselective desymmetrizing intramolecular
cyclization of a ketyl radical with alkene and cyclization cascades in dienyl B-ketoesters
was facilitated by an in situ-generated chiral Sm(II) reagent. Thereafter, the chelated Sm(III)
ketyl intermediates generated from Sm(II) reagents accelerated the radical cyclization
through desymmetrization of the dienyl S-ketoesters to form versatile mono- and poly-
cyclic scaffolds containing a combination of multiple chiral centers with alkenyl units for
further derivatization with excellent stereocontrol.

The dienyl -ketoesters was purposefully introduced as dual-point-linking substrates
to enhance the coordination with the Sm(II) reagent. The Lewis basic ester group in the
substrate was utilized to coordinate to Sm(II) for promoting the reduction and directing the
stereochemistry of samarium(Ill) ketyl cyclizations with the aid of chelated transition states.
Furthermore, it was assumed that a multidentate chiral diol as the ligand coordinates
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with Sm(II) to afford alteration in ionic radius for the generation of a Sm(III) intermediate,
thereby following single electron transfer (SET). It induces the chirality in the Sm(III) ketyl

radical cyclization and simultaneously serves as source of protons for the anions generated
in the reaction.
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Scheme 2. Cont.
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Scheme 2. Samarium iodide-mediated radical cyclization and cascade reaction.

In 2011, Yang and Li proposed total synthesis of pseudolaric acid A from easily available
starting compounds. The total synthesis was comprised of samarium-mediated intramolecular
alkene-ketyl radical annulation and a ring-closing metathesis reaction as the key steps to
stereoselectively form a pseudolaric acid A core, a rarely observed [5,7]-bicyclic scaffold with
transfusion (Scheme 3). The unique synthetic strategy portrays a facile access to pseudolaric
acids scaffolds, and possesses excellent potential to deliver a wide range of pseudolaric acid
analogues. Although Sml,-promoted ketyl radical cyclization had been widely utilized to
construct structurally varied natural products and polycyclic scaffolds, the stereoselective
version, however, remains less explored. The stereochemical fate of Sm-promoted cyclization
exclusively depends on the nature of the substrate, additive and solvent. Based on this survey,
the initial attempt to perform Smly-mediated alkene-ketyl radical annulation reactions in
solvents, such as THF, acetonitrile and dimethyl ether (DME), led to low yields and poor
diastereoselectivity. However, additives such as HMPA could enhance the reduction potential
of Sml, and enhance both the yield and trans selectivity of the product.

. O,
1. Sml, (2.5 equiv.) CO,Me o
CO,Me . XN 2
™ 2 N CO,Me HMPA (10 equiv.) 11 steps
THF, rt — >  MeO,C
O i L \
2. TMSOTY, DCM ™SO ‘co,me \
3a e o COxH
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Scheme 3. Samarium-mediated alkene-ketyl radical cyclization for the synthesis of pseudolaric acid A.
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In 2010, Procter et al. revealed an unprecedented cascade cyclization following a
sequence of reactions involving conjugate reduction, stereoselective aldol cyclization and
chemoselective reduction of lactone mediated by Sml, and water (Scheme 4) [62]. The logi-
cally formulated strategy leads to the facile synthesis of densely substituted cyclopentanol
derivatives with two vicinal stereoselective quaternary centers. The structurally complex
and stereoselective cyclopentanol derivative was converted to a key intermediate for the
asymmetric synthesis of stolonidiol. The reaction begins with reduction of a conjugated
electrophilic alkene and further furnish the Sm-enolate intermediate. The stereoselective
intramolecular aldol condensation with the suspended ketone furnished the spirocyclic
cyclopentanol, where the lactone ring was reduced to triol, without affecting the acetate
group. The stereochemistry of the predominant product is in synchronization with the
hypothesized transition state, where both carbonyls from ester and keto functionalities
coordinate and direct to Sm(III) in the proposed Sm(IlI)-enolate intermediate.

AcO
(0]
Sml, (12 equiv.)
T © Ho0 (1:4)
THF,0°Ctort
AcO OBn
o)
0 }o\
W T
BnO ~  OA O_ 0---Sm
= Sm12 ‘ O
‘ P OBn —  ~
0 (0) BnO

OAc

Scheme 4. Samarium-mediated cascade cyclization to cyclopentanol.

2.1.3. Seven-Membered Ring Forming Cyclization Reactions

In 2010, Reissig accentuated an important instance of Sml,-mediated 7-exo-trig cy-
clization in tert-butanol (‘BuOH) to form benzannulated carbocycles (Scheme 5) [63].
An 8-endo-trig cyclization promoted by Sml,-'BuOH between a terminal unactivated alkene
and ketone was explored initially. It was observed that the y-ketoester with substituents at
the B-styryl carbon cyclized to afford the 8-endo-trig cyclization, whereas cyclohexanone
derived 7-ketoester dominated the 7-exo-trig instead of 8-endo-trig cyclization.
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Scheme 5. Samarium iodide-mediated cyclization to benzannulated carbocycles.

2.2. Ketyl Radical-a, 3 Unsaturated Carbonyl Cyclization

In 2012, Hsu reported Sml,-mediated reductive cyclization of enones to spiranes
containing y-hydroxyketones in good yields and with diastereoselectivity (Scheme 6) [64].
The reductive cyclization was found to give the best yields when two equivalents of Sml,
were used with two equivalents of methanol as an additive in THF at 0 °C.

1) 0 Sml, ( 2 equiv.)
CH30H ( 2 equiv.)
(f, H THF -
R 0 °C, 10-30 min
R m
6a’
0
n ‘\\OH
75% 62% 53%
60:40 dr 75:25 dr 83:17 dr

Scheme 6. Synthesis of Spirocycles via 5-exo-Trig and 6-exo-Trig Cyclizations of Enones.

Englerin A is a sesquiterpene, isolated from the bark of Phyllanthus engleri. It is
an important inhibitor of the growth of human cancer cells. In 2011, Chain reported
a synthetic strategy for (-)-Englerin A, where SmlI, induced the ketone-enone 6-exo-trig
cyclization reaction in the key step to afford the tricyclic precursor for the synthesis of
the desired natural product (Scheme 7) [65]. It was realized that the SmlI, cyclization
proceeded smoothly in THF in the presence of HMPA at room temperature. The Michael
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adducts generated in the previous step produced ketoalcohol 7a in a reductive carbonyl-
alkene cyclization to afford the product in 43% yield with excellent diasteroselectivity.
The diastereoselectivity is attributed to the simultaneous coordination of oxygen atoms from
the ketyl radical and the carbonyl with Sm (II) affording the Sm(III) radical intermediate 7A.
The cross-coupling of a ketyl radical with an olefin resulting in cyclization led to another
radical intermediate, 7B, which generated product 7a in 43% yield and >95:5 diastereomeric

ratio (dr).
(@) .
O  CHO Sml, (4 equiv.) o) HO O |
HMPA (18.5 equiv.) OH H ~— ©
2 THF, 1, 3 h Prg 0 0
Pr H - Me [ Me iprg\ H
v |
7a 7a:43%, > 95:5 d.r. Me | Me
Englerin A
(b)
Il
O QHO 0--Sm . O-;Sm“l o
Smly .9 n 7 0 _ OH _H
3 —— =Pk i-Pr H Sml; iprg
) < 0 —_— N
Pr o b b H Me § Me
7a 7A 7B 7a: 43%, > 95:5 d.r.
Scheme 7. (a) Cyclization onto the enone in the total synthesis of (-)-Englerin A. (b) Proposed mecha-
nism for cyclization.

In 2012, Adachi and Nishikawa reported a Sml,-"BuOH promoted 4-exo-trig ketone-
enone cyclization to afford a highly strained cyclobutene ring as the interesting and chal-
lenging precursor (8a) for Solanoeclepin A (Scheme 8) [66]. This method can be considered
as a straightforward approach to the direct construction of tricyclo [5.2.1.01¢]-decane scaf-
folds with good yields and excellent diastereoselectivity.

o ®)
N\ OTMS Smly, 'BUOH, THF S, .OTMS -
CHO -20 °C, 30 min :
OH
8a' 8a
76%, >95:5 d.r. Solanoeclepin A

Scheme 8. 4-exo-trig cyclization for the synthesis of Solanoeclepin A.

In 2012, Zhai and coworkers executed a 15-step synthetic route to access Merrilac-
tone A through a samarium-mediated cross-coupling reaction as one of the key steps
(Scheme 9) [67]. In this synthetic method, 5-exo-trig cyclization of a ketone precursor pro-
ceeded with an excellent yield to afford the desired tetracycle precursor (9a) in 95:5 dr by
treatment with SmI,-THF at room temperature.
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Sml,(3 equiv.) O=/\ _
O
THF, rt, 2 h

9a
88%, 95:5 d.r.

Merrilactone A

Scheme 9. 5-exo-trig cyclization in the total synthesis of Merrilactone A.

(-)-GB 13, a class of alkaloid which was isolated from the bark of Galbulimima bel-
graveana, has gained enormous attention from the pharmaceutical industry. In 2010,
Ma reported the total synthesis of alkaloid (-)-GB 13 by a samarium iodide-mediated 5-
exo-trig reductive cross coupling reaction of a ketone and an enone with a good yield of
the single diastereomer [68]. The occurrence of a coupling reaction involving a radical
anion intermediate was hypothesized which might have been initiated via a single electron
transfer to the ketone by Sml, (Scheme 10).

Boc

H

1. Sml, (6 equiv.)

© THF, 66 °C

2. DMP

10a, 75%, >95:5 d.r.

Il
SmO

Sm|2

108 oM

J

Et0,c7

1a'

CHO

Scheme 10. 5-exo-Trig Cyclization in the Total Synthesis of (-)-GB 13 and the plausible mechanism.

During the formation of the [3.2.1]-bicyclic core structure, a 1,3-diaxial connection was
favored among all other possibilities. Consequently, the adversative diaxial conformation
10B was preferred over 10A for Smly-mediated carbonyl-alkene reductive coupling for the
generation of a [3.2.1]-bicyclic system. The reaction required increased temperatures to
deliver the thermodynamically less stable diaxial conformer.

The groups of Sabitha and Takahashi independently reported a cross-coupling strategy
for the synthesis of the tetrahydropyran counterpart of aspergillide A, which possesses
significant cytotoxicity [69]. One of the key steps of this synthesis included treatment of the
respective aldehydes with Sml,-MeOH, generating the tetrahydropyran ring system (11a)
with excellent yield and diastereoselectivity. The formal total synthesis of aspergillide A
was completed by Takahashi in four steps (Scheme 11).

3 equiv. Sml,
2.2 equiv. CH3;0H

THF, 0 °C, 40 min HO™
11a, 96%, 91:9 d.r.

Aspergillide A

Scheme 11. SmI;-MeOH mediated formation of the tetrahydropyran ring in aspergillide A.
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Honda et al. introduced an effective stereoselective synthesis of (-)-stemoamide
in 2011 [70]. The intramolecular cross-coupling reaction of an in situ-generated ketyl
radical intermediate from an aldehyde with the «,5-unsaturated ester by Sml,-promoted
7-exo-trig cyclization to obtain the tricyclic precursor for the alkaloid (-)-stemoamide after
lactonization (12a) in 60% yield with good diastereoselectivity (Scheme 12).

In the absence of concrete evidence clarifying the reaction mechanism, the stereoselec-
tivity obtained could be explained with the conjecture that HMPA promotes the reaction
to attain a sterically favored diradical transition state (TSA), where two substituents were
situated in a diequatorial-like orientation which is energetically favorable. The presence of
HMPA in the reaction mixture induces a strong redox potential in samarium diiodide to
generate diradicals as the key intermediate.

&O 5 Equiv. Sml,
N 5 Equiv. CH30H

S

)\ THF, 0 °C, 3 h
Et0,C

12a' OHC 12a, 60%, 53:47 dr (-)- Stemoamide

4 Steps
—_—

Scheme 12. Synthesis of (-)-stemoamide via 7-exo-trig cyclization.

2.3. Ketyl Radical-«, Unsaturated Sulfonyl Cyclization

In 2010, Nakata et al. reported the reductive 6-exo-trig cyclizations of (Z)- and
(E)-B-alkoxyvinyl sulfones with aldehydes using polycyclic ethers to afford 2,6-syn-2,3-cis-
tetrahydropyran-3-ol and 2,6-syn-2,3-trans-tetrahydropyran-3-ol (Scheme 13) [69].
These polyethers were the key intermediate in synthesis of gymnocin-A by using the
Suzuki-Miyaura reaction. The reaction of the (Z)-isomers was found to be slightly less
efficient than that of the corresponding (E)-olefins; it provided cis-fused polyethers with
excellent diastereocontrol. The authors proposed that the observed decrease in efficiency
resulted from reduced chelation to the Sm(III) ketyl in the intermediate state (Scheme 13b).

It was hypothesized that in the (E)-isomer, the Smly-mediated reduction of the alde-
hyde via single-electron transfer delivers a ketyl radical, 13A, followed by intramolecular
C-C bond formation involving chelation with Sm(III) and sulfone to give 13B. The single
electron transfer from the second equiv. of Sml; reduces the radical to an anion, which after
abstraction of a proton from MeOH, gave 2,6-syn-2,3-trans-13b. On the contrary, 2,6-syn-2,3-
cis-13b could be the predominant product from the (Z)-isomer 13a’ through the chelated
transition states 13A’ and 13B’.
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Scheme 13. (a) Reductive cyclization of (Z)-vinylsulfones and (E)-vinylsulfones with aldehydes.
(b) Mechanistic pathway for cyclization.

2.4. Amino Ketyl Radical Olefin Cyclization

In 2015, Szostak developed a new stereoselective method for the generation of five-
and six-membered imide moieties from an unactivated alkene via the chemoselective for-
mation of aminoketyl radicals, which is an important intermediate [71]. The addition of the
aminoketyl radical formed through electron transfer from the five- and six-membered imide
to the alkene was identified as the rate determining step (RDS) in the reaction (Scheme 14).
Moreover, the stability of the aminoketyl radicals due to the nyy — SOMO (singly occu-
pied molecular orbital) conjugation accounts for the excellent diastereoselectivity (>95:5).
Notably, neither the overreduction of the amide group nor the aminoketyl was observed.
This reductive desymmetrization of five- and six-membered imides is performed by
Sml, /water via a two electron transfer where the water complexes with Sm(II) and acts as
the proton source. The proposed ketyl radical anion (14A) was assumed to be possible in
the presence of water as a ligand, as it is capable of binding in the inner coordination sphere
of Sm(II) and acting as proton source, as evident from previous reports. This method opens
a new avenue in carbon-carbon coupling reactions along with an upgrade in the concept of
the ketyl radical through the generation of an umpolung aminoketyl synthon.
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Scheme 14. Samarium-mediated reductive desymmetrization of cyclic imides.

Sequential and Dearomatizing Cyclization Reactions

Sml, has been well-recognized as functioning as an electron transfer reductant.
The synthesis of quaternary stereocenters, present in biologically important natural prod-
ucts and drugs, possesses a significant challenge due to their structural complexity.
Therefore, a cascade cyclization reaction involving a selective radical reaction with SmlI has
made the generation of quaternary stereocenters feasible. In 2017, Procter et al. described
the reduction of amide type carbonyls through single electron transfer using Sml,-mediated
cascade cyclisation to construct pharmaceutically important tricyclic barbiturates with high
diastereocontrol [72]. The mechanistic interpretation of the sequential cascade radical cy-
clization leading to significant diastereoselectivity was proposed and is shown in Scheme 15.
It was hypothesized that the single electron transfer from the Sm(II) catalyst to the carbonyl
of amide resulted in a Sm(III)-coordinated radical intermediate (15A). Further ring closure
via 6-endo-trig cyclization through the formation of a stable chair conformation (15B) produced
the quarternary stereocenter of the hemiaminal intermediate (15C), which was quenched with
acid to generate the polycyclic enamine (15D) which further generated the product 15a through
rearrangement with loss of proton. The pseudoaxial orientation of the larger substituent in the
alternative chair and boat conformations disfavor product formation.
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Scheme 15. Sml,-mediated cascade cyclisation of an alkene with an amino ketyl radical.

Samarium was successfully employed for the construction of complex polycyclic
scaffolds by Procter and coworkers in 2016 [72]. The protocol utilizes dearomatizing
radical cyclization of the radical generated by the reduction of an amide type carbonyl
via single electron transfer followed by cascade annulation. Sml,—H,O-LiBr portrays a
unique and efficient reagent system for this purpose of accessing spiropolycyclic scaffolds
with multiple stereocenters possessing significant diastereoselectivity (Scheme 16). In the
dearomatizing single electron transfer radical formation and cascade cyclization, Sm(II)
undergoes transfer of an electron to afford a ketyl radical of the amide-type carbonyl
(16A). The 5-exo-trig cyclization of the ketyl radical further generates another radical
intermediate (16B). Subsequent spirocyclization of the radical intermediate occurs through
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a chair conformation, where the dipole-dipole interactions were reduced, and produces
the final product after single electron transfer reduction and protonation.

R, O
Rz Condition A: SmIy/H,0
0 N— : o
; LiBr, THF, 0 °C, 2 h

N
\ Y N
Condition B: i) Sml,/H,O
(0]

LiBr, THF, 0°C,2 h
ii) 2 M HCI, 20 min

Condition A Condition B

Condition A Condition B

R =Pr, 76%, 92:8 d.r.
R R =Me, 73%, 69:31 d.r.
0 R =Bu, 52%, 89:11 d.r.

}/-—N
I
(6]
R =Br, 73%, 93:7 d.r.

R=F, 80%, 94:6 d.r.
R =Me, 59%, 91:9 d.r.

R =Pr, 80%, 92:8 d.r
R =Me, 73%, 69:31 d.r.
o0 R=DBu,52%,89:11dr.

R =Br, 80%, 93:7 d.r.
R=F, 85%,94:6d.r.

R =Me, 65%, 91:9 d.r.
R= OM% 74%,91:9 d.r.

6-exo-tri . o
Bl I gy N
Dearomating Y, 7f N W

Spirocyclization
1e,2H"

Scheme 16. Sml;-mediated dearomatizing radical cyclization forming spiropolycycles.
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2.5. Ester Ketyl Radical-Allene/Olefin Cyclization and Cascades

In 2012, Procter exemplified a SmI,—H,O mediated reductive radical cyclization of
unsaturated lactones to afford substituted cycloheptanes with adjoining stereocenters
in high yields and diastereoselctivities [73]. The stereocontrol in product formation post-
cyclization was attained with a relay around the ring which serves as the key to the observed
high diastereoselectivities. When a combination of two alkenes, an alkene and an alkyne,
or an allene and an alkene, exists in the substrate, the probability of dual radical anion
intermediates leads to radical cascade cyclizations. This enables easy access to complex
architectures in a single pot, using an easily accessible reagent with a maximum of four
adjacent stereocenters.

The cyclizations proceeded by the trapping of radical anions formed by the electron
transfer reduction of the lactone carbonyl. It was speculated that the single electron transfer
from Sml,—HO to the ester carbonyl favors an axial radical anion (17A) which terminates
through cyclization. The ring cleavage in the hemiacetal (17B) by reduction and proton
abstraction results in an enone (17C). Thereafter, a second radical anion (17D) is gener-
ated through reduction of the enone, which gets selectively protonated at the B-position.
Samarium(IIl) enolate (17E) was produced through consecutive reduction, and that further
proceeds with diastereoselective a-protonation to produce (17F). Ultimately, the cyclohep-
tanone intermediate (17F) was reduced to access the product with high diastereocontrol via
a third radical anion (17G) (Scheme 17). Thus, the sequence of intermediates facilitates the
passing of chirality from carbon to carbon in the cyclized product.

Hr;

HO

,
‘7

0
2 1OH Smllezo R1 / SmIQ/HQO
THF o O
Ry % THF
“Ph " "
R+ = but-3-enyl . R Ry=H
R,=H 17a R, = but-3-enyl 17a

17b

R = Ph, 98%, 80:20 d.r.
R = 4-OMeCgHg, 98%, 83:17 d.r.
R = 2-CICgHg, 63%, 66:34 d.r.

R = Ph, 98%, >95:5d.r.
R = 4-OMeCgHy, 64%, 75:25 d.r.

R =2-CICgHy4, 71%, >95:5 d.r.

I
O/Sm

Scheme 17. Reductive radical cyclization of unsaturated lactone to substituted cycloheptanes.

Using Meldrum’s acid template, in 2012 Procter published a Sml,-mediated 5-exo-
trig/5-exo-trig and 5-exo-trig/6-exo-trig cascade cyclization leading to complex bicyclic
alcohols containing four adjacent stereocenters [74]. The differential activation of the olefin
acceptors allows the high chemoselectivity in the cascade sequences (Scheme 18). In one
extreme case, the olefin acceptors bearing 4-Br-C¢Hy4 and -Ph substituents participated in a



Catalysts 2023, 13, 24 16 of 26

fully chemo- and diastereoselective cyclization, which was initiated by a selective cross-
coupling of the ketyl radical with the 4-Br-C¢Hj-substituted olefin (-Ph). The cyclization
selectivity is consistent with the relative stabilization of the produced carbon-centered
radicals by these substituents. The mechanism of the reaction was predicted to proceed
with cyclization of the first radical anion (18A) to afford a ketone intermediate (18B) with
high diastereoselectivity through a preferred anti-transition state. Subsequent electron
transfer from Sml,-H,O generated another radical anion (18C), quenching the remaining
acceptor through the energetically preferred anti-transition state to deliver annulated
products with high diastereoselectivity.

R4
Yz
0 Sml, (8 equiv.)
R H,O (1:1 VIV)
n THF, rt

COQH COZH COzH
50% 44%
_ _ 63%
>95:5d.r. >95:5 d.r. >95'5 d.r.

|OH |OH C] OH
" ‘ Cl "

COLH COLH CO,H
54% 62% 67%
>95:5d.r. >905:5d.r. 57:43 d.r
91:9 E/7 91:9 £/7 o

Scheme 18. Cont.
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J

Scheme 18. Sml,-mediated 5-exo-trig/5-exo-trig and 5-exo-trig/6-exo-trig cascade cyclization.

2.6. Pinacol-Type Radical Cyclizations
2.6.1. Ketyl-Carbonyl Diradical Cyclizations

Samarium diiodide has been extensively employed to facilitate the total synthesis of
various natural products. In this context, Echinopines A and B, possessing a unique [3.5.5.7]
framework, have been produced in both racemic as well as enantiomerically pure forms.
The total synthesis of Echinopines A and B involved a novel intramolecular rhodium-
catalyzed cyclopropanation and a -Sml, mediated ring closure through pinacol coupling,
which were the key steps to produce a single diastereomer, as reported by Nicolaou and
Chen in 2010 [75]. The stereoselectivity of the product from the Sml,-promoted reaction
was supported by hypothesizing a cyclic chelated transition state with Sm(III) (Scheme 19).

Sml,(0.1 M in

THF, 5 equiv.) RO,
o0 — f
HMPAQ0 equiv.) | [/~ RO
TBSO THF, _78_25 OC, 1.5 h ISmHI Py TBSO R R' _ H’I;Barsb(gnate
19a’ 19A 19b', 50%
l Sml,(0.1 M in THEF, 2 equiv.)
l MeOH(5 equiv.),
) THEF, -78 °C, 15 min
- H,
-
o TBSO
R = H: Echinopine A le}

19a, 92%

R = Me; Echinopine B

Scheme 19. Sml,-mediated ring closure through pinacol coupling in the synthesis of Echinopine A
and B.
2.6.2. Ketyl Radical-Carbonyl Cyclizations

Wu and coworkers reported an asymmetric total synthesis of (+)-caldaphnidine J,
which is a yuzurimine-type alkaloid, in 2020 using a Sm-mediated pinacol reaction strategy
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to produce one of the key diol products (20a) [76]. The synthetic pathway consisted
of several steps including a Pd-catalyzed regioselective hydroformylation that resulted
in the critical aldehyde motif, and the construction of the 7/5 bicyclic system using a
Smlp-promoted intramolecular asymmetric pinacol coupling reaction and a one-pot Swern
oxidation/ketene dithioacetal Prins reaction (Scheme 20).

OBn
Sm]2
— . —»_»
THF, rt, 3h

(+)- Caldaphnidine J

Scheme 20. Sm-mediated pinacol reaction strategy in the synthesis of (+)-caldaphnidine J.

Burtoloso reported the Sml,-mediated coupling of x-amino aldehydes and ketones
with methyl acrylate to form y-aminomethyl-y-butyrolactones (21a) in high yields and
diastereoselectivities (Scheme 21). Extensive optimization revealed that H,O serves as the
optimal additive for this reaction, while use of MeOH and ‘BuOH afforded lower yields.
Interestingly, reductive cleavage of the C-N bond was not observed under these conditions.
The methodology provides a concise access to indolizidine and quinolizidine alkaloids
from wx-amino acids.

O Smly(2.5 equiv.)
R H,O(5 equiv.
2\HJ\R1 + /\COQMG 2 ( q ) _
R Nopg THF, 1t, 12-16 h !
3 oINS
. , Ry PG
21a 21b 21a
o :
\ 0 N
CBz CBz CBz
65% 60% 56%
75:25 dr >95:5 dr 67:33 dr

Scheme 21. Sml;-mediated coupling of a-amino aldehydes and ketones with methyl acrylate.

2.7. Barbier-Type rt-Allyl Radical Cyclizations

In a recent report by Morimioto et al. in 2022 [77] on asymmetric total synthesis of
sesquiterpenoid, toxicodenane was introduced, which has been identified as acting as
an antidiabetic. The key step in the total synthesis involved a Sml,-mediated Barbier-
type annulation reaction generating the stereoselective bicyclic product, 22a, in 99% yield
with a cis configuration (Scheme 22). The formation of the 7r-allyl samarium intermediate
with a chair conformation (22B) was responsible for dictating the diastereoselectivity
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", 0 q (+)- Toxicodenane A
Sml,-HMPA —_—
wsoz% 2 A —
z THF, -78 °C 1e)
OMOM T

22a’

SMON
222°

Smiy-HVPA
Ci/\»\\SOZPh z MEW smi,
THF, -78 °C HMPA
MOM

of the product (22a). Furthermore, stereoselective product was obtained through site
selective allylic oxidation and dehydrative cyclization. The final compounds (+)- and
(—)-toxicodenane displayed significant cell-protective effects against lipotoxicity-mediated
inflammation and fibrosis.

Barbier- type cyclization MOM o
22a, 99% H

(-)- Toxicodenane A

(HMPA), 1,Sm_

22B 22a

Me
22C MOM
Scheme 22. Sml,-mediated Barbier-type annulation.

2.8. Sm(11I) Relay Catalytic Three-Component Tandem [4 + 3]-Cycloadditions

A tandem three component reaction was introduced by Feng and coworkers via a
[4 + 3] cycloaddition reaction of carbonyl ylide generated from «-diazoacetates (23¢’) and
aldehydes (23b’) with B,y-unsaturated ketoesters to produce asymmetric 4,5-dihydro-1,3-
dioxepines in up to 97% yield, with 99% ee (Scheme 23) [78]. The asymmetric synthesis
was catalyzed by the bimetallic Rh(II) and Sm(III) salts in presence of N,N’-dioxide as the
ligand. A plausible mechanism of the stereoselective induction was predicted through
control experiments and X-ray crystal structures. The stereoselectivity induced from the
N,N’- dioxide-Sm(III) Lewis acid catalyst was demonstrated by the crystal structure of the
Sm(IIT) complexes of chiral N,N’-dioxides L4-PrPr;. A reaction sequence was proposed
based on control experiments and absolute configuration of the products. It was assumed
to proceed through the initial generation of a carbonyl ylide from «-diazoacetate and an
aldehyde with the assistance of achiral Rh(II). The possible coordination of the carbonyl
ylide intermediate 23A with chiral Sm (III)-N,N-dioxide was supported by performing an
operando IR experiment. The activation of the §,y-unsaturated a-ketoester with Sm(III) /L4-
PrPr, through bidentate binding (23C) is possible due to the properties of rare earth
elements to accommodate high coordination number.

The steric crowd of the 2,6-Pr,C¢Hjz counterpart in the chiral N,N’-dioxide is responsible
for the inaccessibility of the 5-Re face of the unsaturated ketoester, promoting facile B-Si face
attack by the keto ylide (23A) in endo fashion with its Re-Re face to yield the major enantiomer.
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Scheme 23. [4 + 3] cycloaddition reaction of carbonyl ylide generated from a-diazoacetates and aldehydes.

2.9. Stereoselective Reduction of Ketone

In 2021, Liu and Fu et al. established the asymmetric total synthesis of rumphellclo-
vane E, a clovane type sesquiterpenoid, by the several key steps including Rh-catalyzed
cyclopropanation, Fe-catalyzed intramolecular reductive aldol reaction and samarium
iodide-mediated stereoselective reduction of ketone (Scheme 24) [79]. The stereoselective
reduction of ketone was done by a solution of Sml, in THF with good yield.

The reaction was assumed to proceed through the formation of ketyl radical intermedi-
ate (24A). It was proposed that the Sml, transfer an electron to the C2 carbonyl which then
accommodates a proton from water to form the ketyl radical (24A) in which the carbon
radical was stabilized as axial position through minimization of steric interaction with
the axial methyl substitution at C4. The Sm(II) which is coordinated to C12 ketone might
approach ketyl radical from axial position to form organosamarium(III) (23B), inspite of
the steric hindrance of the axial methyl group at C4. The organosamarium(III) intermediate
(23B) prefers Re face to accept proton and generate the desired product 24a.
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Scheme 24. SmI, mediated stereoselective reduction of ketone.

2.10. Chiral Ligand Promoted Hydroamination of Cyclopropene

Sm-catalyzed reactions could also be extended for stereoselective hydroaminations to
generate chiral aminocyclopropanes. The existence of the aminocyclopropanes in pharma-
ceutically active natural products has led to the investigation of efficient synthetic route in
the formation of this class of compounds. In 2016, Hou and co-workers established an atom
economic synthetic strategy for the successful generation of chiral aminocyclopropanes
(25a) via Sm-catalyzed intermolecular hydroamination reaction of cyclopropene derivatives
with various substituted amines (Scheme 25) [80]. A chiral half sandwiched Sm-catalyst
successfully delivered the enantioenriched addition products in high yields. The catalytic
activity was found to be directly proportional to the impact of metal ion and the binding
ligand where the perfect combination of these two can lead to fine selectivity and enhanced
efficiency of catalyst and modify the reaction environment.

Sm Catalyst
R{R
1 5 mol%
+ Ry SRR
Toluene, rt, 12 h R4 | '
25b’ 252 ' '

R = -CH,CgH4NMe,-0

Chiral half-sandwich
Samarium Catalyst

Scheme 25. Cont.
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Scheme 25. Synthesis of chiral aminocyclopropanes by hydroamination of cyclopropenes.

3. Conclusions

In conclusion samarium-mediated /catalyzed asymmetric synthesis has widespread
applications in organic transformations. It embraces facile access to complex architec-
ture occurring in synthetic and natural products. The user-friendly nature of samarium
reagents has led to their wide applicability. It possesses moderate to high chemo-, regio,
enantio- and diastereoselectivity in various reactions through ionic and radical mechanisms.
Samarium reagents have been employed as one and two electron transfer agents for the
generation of radical or anions in various asymmetric synthesis. The erratic role of additive,
ligand, and solvents in providing extra stability to the samarium for generation of reactive
intermediates through effective coordination, efficiently dictates the selectivity of the products.
Further, substantial exploration of catalytic activity of new samarium reagents needs to be
done to establish effective reaction protocols since the catalytic reactions of samarium has been
less documented till date. Samarium reagent system has been extensively employed in several
cyclization and complex cascades along with reduction and intermolecular coupling reactions
while the asymmetric transformations are yet to be epitomized the development of robust and
efficient catalytic systems with samarium for intra and intermolecular asymmetric coupling
reactions are the major challenges to be addressed.

Undoubtedly, the versatility and broad-spectrum applicability of Samarium reagents
will continue to attract and indulge the scientific community to unveil several mysteries of
impending synthetic transformations in coming years.
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