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Abstract: In this paper, the chitosan-functionalized ionic liquid is modified with superparamagnetic
iron oxide nanoparticles to form a novel and reusable catalyst (SPION@CS-IL), which was carried out
using an ultrasonic promoted approach. Transmission electron microscopy (TEM), vibrating-sample
magnetometer (VSM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spec-
troscopy (FT-IR), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and
thermogravimetric analysis (TGA) are some of the techniques that are used to fully characterize
SPION@CS-IL. The created nanoparticles were discovered to be a reusable heterogeneous super-
paramagnetic catalyst for the environmentally friendly one-pot synthesis of pyrido[2,3-d]pyrimidine
derivatives using a simple three-component reaction approach involving thiobarbituric acid, 4-
hydroxy coumarin, and various aromatic aldehydes. The method is studied by performing the
reaction under ultrasonic irradiation, while the approach is a “green” method, it uses water as the
solvent. The isolated yields of the synthesized products are very advantageous. The catalyst has
outstanding reusability and is easily removed from the products via filtration (5 runs). Short reaction
times, low catalyst loadings, the nanocatalyst’s capacity to be recycled five times, and the absence of
harmful chemical reagents are all significant benefits of this environmentally benign process.

Keywords: SPION@CS-IL; superparamagnetic nanoparticle; green catalyst; Ultrasound irradiation;
pyrido[2,3-d] pyrimidine-dione; multicomponent reaction

1. Introduction

In modern synthetic chemistry, catalysis is important, whereas they are the corner-
stones of green chemistry [1–5]. In chemistry labs and on industrial scales, catalysis
is acknowledged as a crucial tool to develop a more sustainable chemical process. A
suitable catalyst should have specified characteristics, such as cheap procurement costs,
non-toxicity, outstanding activity, high stability, simple and efficient recovery, excellent
recyclability, biocompatibility, and biodegradability, in accordance with the aforementioned
reasons. Superparamagnetic iron oxide magnetic nanoparticles (MNPs) with biodegrad-
able, biocompatible, superparamagnetic features that are non-cytotoxic to humans and
other animals [6,7] have attracted great attention in various applications such as separation
technology [8], protein immobilization [9], catalysis [10–16], medical science [17], and
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environment [18,19]. However, superparamagnetic iron oxide nanoparticles are unstable in
physiological conditions and represent several disadvantages comprising easily oxidized
in air, fast biodegradation, and loss of magnetism properties [20]. In addition, Superpara-
magnetic iron oxide magnetic nanoparticles (MNPs) are prone to aggregation because of
their chemical activity, to overcome these obstacles, the modification of Superparamagnetic
iron oxide MNPs has been carried out by several materials such as precious metals, carbon,
silica, and biopolymers [21–27].

A remarkable biopolymer made from fishery wastes is chitin, which is an N-deacetylated
chitosan derivative. It is a great material for creating new kinds of green catalytic systems
because of its low cost, hydrophilicity, abundance, non-toxicity, biodegradability, and
significant heat stability [28–31].

The fact that chitosan (CS) has free primary and secondary hydroxyl, as well as amine
functional groups on its surface, is primarily responsible for the widespread use of the
material as catalyst support. Catalysts based on chitosan have drawn a lot of interest
because, in particular, the amine and hydroxyl groups provide active sites for a range of
chemical changes [27,28,30,32–36].

Chitosan that has been functionalized with ionic liquid is one of the simple and
appropriate ways to modify CS surfaces [32,35]. Due to the advantages over conventional
methods in terms of high selectivity, clearer reaction profiles, relatively benign settings, and
simplicity of handling, organic synthesis has been using a greener approach during the past
few decades [37,38]. Organic scientists are concentrating on employing ultrasonic-assisted
organic synthesis since it is a green method with numerous beneficial impacts in synthetic
organic chemistry [11,24,39–42].

Fused pyrimidine systems, especially pyridopyrimidines, attracted organic chemists
very much due to their significant biological and pharmacological activities, which in-
clude anticancer [43–45], antiviral [46], antibacterial [43,47], anti-inflammatory and anti-
oxidant [48–51], antihistaminic [52], antitumor [53–56] and antipyretic [57]. Some examples
of bioactive pyridopyrimidine compounds with pharmaceutical properties are shown in
Scheme 1.
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Because of its wide range of individual characteristics, this class of heterocycles is
therefore of great research interest, and there is an increasing need for pyridopyrimidine
nuclei to be designed and produced [14,16,58–70]. A number of approaches have been
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developed for the synthesis of pyridopyrimidines, where the products are designed in
single- or multi-component procedures (MCRs). Due to the favorable traits, simplicity, and
variety this method provides, multi-component reactions (MCRs) are more advantageous
in the synthesis of pyridopyrimidines [62,71,72].

Owing to the extension of biological and pharmacological activities of pyridopyrimidines,
the development of efficient, new, feasible, and environmentally friendly methods is still
required. In addition, biodegradable and green catalysts are essential in modern chemical
synthesis. In continuation of our previous reports with elevated interest in the heterocycle
synthesis via developing effective, green, and eco-friendly procedures [10,11,14–16,73,74], we
investigate a new strategy for the synthesis of pyrido[2,3-d] pyrimidine-dione derivatives
under ultrasonic irradiation in water via superparamagnetic nanoparticle SPION@CS-IL as
a novel and reusable nanocatalyst (Scheme 2). In addition, the structure of SPION@CS-IL is
presented in Scheme 3.
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2. Results
2.1. Characterization of SPION@CS-IL as a Heterogeneous Catalyst

In this study, a novel and reusable catalyst based on SPION@CS functionalized ionic
liquid (SPION@CS-IL) was prepared and introduced as a green and reusable nanocatalyst.
Superparamagnetic iron oxide nanoparticles (SPIONs) were originally created in order to
accomplish this goal through the co-precipitation of Fe2+ and Fe3+ ions. The SPIONs were
then functionalized with chitosan to give SPION@CS, and SPION@CS were tosylated and
then react with methyl imidazole to obtain SPION@CS-IL. According to calculations based
on energy dispersive X-ray analysis (EDX), the elemental compositions of SPION@CS-IL
nanoparticles are 74.6%, 21.94%, 2.94%, and 0.52% for Fe, O, C, and N, respectively. This
observation confirms that the chitosan was successfully modified by the superparamagnetic
iron oxide nanoparticle (Figure 1).
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Figure 1. The energy dispersive X-ray (EDX) of SPION@CS-IL.

The successful functionalization of SPION with CS-IL was investigated using FT-IR
spectroscopy. The FT-IR spectrum of SPION@CS-IL could be observed in Figure 2. Based on
the result in Figure 2, specific vibrations belonging to all of the excepted functional groups
in the structure of the SPION@CS-IL catalyst could be seen. The vibrations at 568 cm−1

could be due to the presence of Fe-O bonds in the stricture of the catalyst, which belongs to
the SPIONs. In addition, the peaks at the wavenumber of 1102 cm−1 could be correlated
to the Si-O bonds in the structure of the catalyst. Also, the vibrations of the imidazolium
functionality could be seen in 1571 cm−1. This peak is observed due to the C=N vibrations.
Also, the vibrations of the O-H bonds are presented at the wavenumber of 3409 cm−1. It
should be noted that the observed band at 2930 cm−1 could be correlated to the aliphatic
C-H vibrations that are present in the structure of the SPION@CS-IL catalyst. Regarding
the FT-IR results of the SPION@CS-IL catalyst, all the expected peaks were observed in
the spectrum, which confirms the successful synthesis of the SPION@CS-IL catalyst. The
results are in agreement with previously reported chitosan functionalized SPION [75].
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Figure 2. FT-IR spectrum of SPION@CS-IL catalyst.

The transition electron microscopy (TEM) method was used to examine the structural
details of the SPION@CS-IL catalyst. Figure 3 displays the TEM images of the SPION@CS-
IL catalyst. In the TEM image that is presented in Figure 3, superparamagnetic iron oxide
nanoparticles can be seen as black regions. The organic groups that include chitosan and
ionic liquid are shown by the lighter areas. TEM results confirm the presence of SPION on
the structure of the SPION@CS-IL catalyst.

Catalysts 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 

The transition electron microscopy (TEM) method was used to examine the structural 
details of the SPION@CS−IL catalyst. Figure 3 displays the TEM images of the 
SPION@CS−IL catalyst. In the TEM image that is presented in Figure 3, superparamag-
netic iron oxide nanoparticles can be seen as black regions. The organic groups that in-
clude chitosan and ionic liquid are shown by the lighter areas. TEM results confirm the 
presence of SPION on the structure of the SPION@CS−IL catalyst. 

 
Figure 3. TEM image of SPION@CS−IL catalyst. The arrows show the SPION. 

Thermogravimetric analysis (TGA) of the SPION@CS−IL was investigated to deter-
mine the thermal stability (Figure 4). The catalyst is stable below 300 °C. Due to the hy-
drophilic nature of ionic liquid units, the first weight loss at a low temperature of roughly 
100 °C is associated with the physical adsorption of water onto the SPION@CS−IL catalyst. 
After that, the catalyst is thermally stable up to 250 °C. The significant weight loss is visible 
above 300 °C, where the disintegration of chitosan and ionic liquid begins. 

 
Figure 4. TGA curve of SPION@CS−IL catalyst. 

The vibrating sample magnetometer (VSM) method was used to evaluate the mag-
netic performance of the SPION@CS−IL catalyst. The superparamagnetic behavior of the 
catalyst may be seen in the VSM curve, which is shown in Figure 5. These results show 
the saturation magnetization values for SPION (blue) and SPION@CS−IL (red), which 
have been 75 and 40 emu/g, respectively. These findings demonstrated that functionaliz-
ing the catalyst with CS−IL significantly reduced the magnetization of SPION. The 

Figure 3. TEM image of SPION@CS-IL catalyst. The arrows show the SPION.

Thermogravimetric analysis (TGA) of the SPION@CS-IL was investigated to determine
the thermal stability (Figure 4). The catalyst is stable below 300 ◦C. Due to the hydrophilic
nature of ionic liquid units, the first weight loss at a low temperature of roughly 100 ◦C is
associated with the physical adsorption of water onto the SPION@CS-IL catalyst. After that,
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the catalyst is thermally stable up to 250 ◦C. The significant weight loss is visible above
300 ◦C, where the disintegration of chitosan and ionic liquid begins.
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The vibrating sample magnetometer (VSM) method was used to evaluate the magnetic
performance of the SPION@CS-IL catalyst. The superparamagnetic behavior of the catalyst
may be seen in the VSM curve, which is shown in Figure 5. These results show the
saturation magnetization values for SPION (blue) and SPION@CS-IL (red), which have
been 75 and 40 emu/g, respectively. These findings demonstrated that functionalizing the
catalyst with CS-IL significantly reduced the magnetization of SPION. The SPION@CS-IL
catalyst’s magnetism is high enough to allow it to be removed from the reaction mixture
using an outside magnet, though.
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2.2. Evaluation of the Catalytic Activity of SPION@CS-IL through the Synthesis of Pyrido[2,3-d]
pyrimidine-dione

After SPION@CS-IL was characterized, its catalytic activity was tested in a model
reaction involving the multicomponent reactions of 4-hydroxy coumarin, 6-amino-4-thioxo-
3,4-dihydropyrimidin-2(1H)-one, and 4-nitro-benzaldehyde. In order to determine the best
conditions for obtaining the largest isolated yields of the products, the reaction was carried
out under a variety of reaction conditions. Table 1 displays the results of the optimization.
The reaction was carried out at room temperature under ultrasonic conditions with water
as the solvent, and the best-isolated yields were obtained. In addition, a good isolated yield
was observed for the thermal conditions, then the reaction was performed in ethanol in the
presence of 5 mg of the catalyst at 70 ◦C. However, a higher isolated yield was observed in
the case of the reactions under ultrasonic irradiation.
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Table 1. The optimization of the reaction conditions for the synthesis of 4g (R = 4-NO2).

Entry Solvent Temp (◦C) a Catalyst
Amount (mg)

Isolated Yield (%)

Thermal b Ultrasonic c

1 DMSO 70 5 31 14
2 MeOH 60 5 16 27
3 H2O/EtOH 70 5 77 60
4 CH2Cl2 Reflux 5 Trace 45
5 DMF 70 5 30 32
6 H2O 70 5 14 92
7 H2O 50 5 Trace Non
8 H2O 85 5 19 Non
9 H2O 70 Non Non Non
10 H2O 70 3 Trace 73
11 H2O 70 8 18 92
12 EtOH 70 5 89 85
13 EtOH 50 5 55 Non
14 EtOH Reflux 5 89 Non
15 EtOH 70 Non Non Non
16 EtOH 70 3 66 68
17 EtOH 70 8 89 86

a Temperature optimization is only applied for thermal conditions. In the case of ultrasonic irradiation, the
reactions were performed at room temperature. b reaction conditions: 4-hydroxycoumarin (1 mmol), benzalde-
hyde (1 mmol), 6-amino-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (1 mmol), SPION@CS-IL (5 mg), solvent
(3 mL). c reaction conditions: 4-hydroxycoumarin (1 mmol), benzaldehyde (1 mmol), 6-amino-2-thioxo-2,3-
dihydropyrimidin-4(1H)-one (1 mmol), SPION@CS-IL (5 mg), solvent (5 mL), room temperature.

The universality of this catalytic system was examined by utilizing aldehydes with
various derivatives once the reaction conditions had been optimized. The results are
presented in Table 2. For studying the generality of the method, the reaction was performed
using various substrates to synthesize different products using SPION@CS-IL catalyst.
Based on the results, all the substrates have participated in the reaction to obtain the desired
products in high isolated yields. As an advantage, this method is efficient in both thermal
and ultrasonic-promoted conditions. In both cases, very high isolated yields are obtained.
The ultrasonic reaction has the advantage of higher isolated yield and less reaction time.
However, the SPION@CS-IL showed very good efficiency in both reaction conditions.
The introduction of a catalyst, which is efficient and versatile in various conditions is the
advantage and benefit of this work. It should be noted that the catalyst is based on a highly
green and recyclable material that is achieved from shrimp shell waste.

Different aldehydes with electron withdrawing or electron donating functionalities
were chosen for the synthesis of pyrido[2,3-d] pyrimidine-dione derivatives. Both electron-
rich and electron-deficient aldehydes have given the desired products in high isolated
yields under ultrasonic irradiation in short reaction times. Moreover, a significant increase
in the rate and product yield was observed when the electron-withdrawing groups were
replaced at the para-position of aryl aldehyde.

The reusability of this catalyst is a particularly noteworthy feature. This simple
reaction approach for the separation of SPION@CS-IL has the advantage of eliminating
the time-consuming workup steps for the separation and recovery of the catalyst. The
catalyst can be removed from the reaction mixture utilizing an external magnet. As a
model reaction to assess the catalyst’s reusability, the reaction of 4-hydroxy coumarin, 6-
amino-4-thioxo-3,4-dihydropyrimidin-2(1H)-one, and 4-nitro-benzaldehyde was used. The
catalyst was separated by an external magnet after the reaction was finished and employed
in the following subsequent process. The catalyst was applied in 5 separate reactions in
order. Table 3 displays the reaction yield for each reaction. As demonstrated, no discernible
activity reduction was seen after 5 consecutive runs.
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Table 2. SPION@CS-IL -catalyzed the synthesis of pyrido[2,3-d] pyrimidine-dione derivatives.
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Entry Compound R
Isolated Yield (%)

Thermal a Ultrasonic b

1 4a H 85 91
2 4b 2-Cl 82 88
3 4c 3-Cl 84 89
4 4d 4-Cl 80 92
5 4e 2,4-Cl2 77 90
6 4f 2-NO2 88 91
7 4g 4-NO2 89 92
8 4h 3-OMe 79 85
9 4i 4-CN 84 84
10 4j 4-Br 85 89

a reaction conditions: 4-hydroxycoumarin (1 mmol), benzaldehyde (1 mmol), 6-amino-2-thioxo-2,3-
dihydropyrimidin-4(1H)-one (1 mmol), SPION@CS-IL (5 mg), ethanol (3 mL), 70 ◦C. b reaction conditions: 4-
hydroxycoumarin (1 mmol), benzaldehyde (1 mmol), 6-amino-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (1 mmol),
SPION@CS-IL (5 mg), H2O (5 mL), room temperature.

Table 3. The effect of reusability of SPION@CS-IL on the product 4g yield.

Entry Run
Isolated Yield (%)

Thermal a Ultrasonic b

1 1 89 92
2 2 87 92
3 3 86 91
4 4 84 90
5 5 83 90

a reaction conditions: 4-hydroxycoumarin (1 mmol), benzaldehyde (1 mmol), 6-amino-2-thioxo-2,3-
dihydropyrimidin-4(1H)-one (1 mmol), SPION@CS-IL (5 mg), ethanol (3 mL), 70 ◦C. b reaction conditions: 4-
hydroxycoumarin (1 mmol), benzaldehyde (1 mmol), 6-amino-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (1 mmol),
SPION@CS-IL (5 mg), H2O (5 mL), room temperature.

In reaction conditions, the catalyst must keep its chemical and physical properties.
The effectiveness and recovery of the reaction depend on the catalyst’s stability. After the
fifth reaction run, the catalyst was removed from the reaction and washed with ethanol
before being cleaned with a 0.1 M aqueous solution of hydrochloric acid to remove any
potential impurities from the catalyst’s surface. This was performed in order to study
the stability of the SPION@CS-IL catalyst. After the fifth reaction run, the SPION@CS-
IL catalyst’s microstructure was assessed by TEM analysis. Figure 6 displays the TEM
picture of SPION@CS-IL following the catalyst’s recovery. As it demonstrates, the catalyst’s
structure has been preserved under the reaction circumstances. It should be noted that the
catalyst showed very good dispersion in the reaction mixture during the reaction. On the
other hand, after the reaction completion, SPION@CS-IL was easily separated from the
reaction mixture using an external magnet.
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3. Materials and Methods
3.1. Chemical and Apparatus

All the chemicals, reagents, and solvents were purchased from Sigma, Merck, Fluka,
and Aldrich. Products were characterized by their physical constant and comparison with
authentic samples. Reaction monitoring was accomplished by TLC on silica gel polygram
SILG/UV 254 plates. FT-IR spectra were recorded on a Shimadzu FT-IR 550 spectrometer
using KBr disks to detect content variations of the functional groups. 1H and 13C NMR
spectra were recorded in DMSO-d6 on a Bruker 250 MHz spectrometer using TMS as the
internal standard. Mass spectra of the samples were recorded on an Agilent Technology
(HP) mass spectrometer operating at an ionization potential of 70 eV. Elemental analysis
was accomplished with an elementary analysen system GmbH VarioEL CHNS mode.
Thermogravimetric analysis (TGA) of nanocatalyst was performed at a heating rate of
10 ◦C min−1 over the temperature range of 40–600 ◦C under a nitrogen atmosphere ((TGA,
PerkinElmer, Pyris 1, USA). For examining the crystal structure of nanoparticles, an X-ray
powder diffraction (XRD) diffractometer (Cu Ka, radiation, λ = 1.5405 Å) was run at a
scanning speed of 2/min from 10 to 80 (2θ). To discover the magnetic properties of the
nanoparticles, a vibrating sample magnetometer. (VSM, model BHV-55, Riken, Japan) the
experiment was run with a magnetic field up to 10 kOe. The morphology and particle size
of nanoparticles were obtained via transmission electron microscopy (TEM) operating with
a Leo 912 AB at an accelerating voltage of 200 kV. Compositional analysis of nanocatalysts
was obtained by X-ray energy dispersive spectroscopy (EDX).

3.2. Synthesis of SPION@CS

For the synthesis of SPION@CS, magnetic nanoparticles coated with silica were first
prepared according to the previously reported procedure [76] SPION coated with silica
(1.0 g) were added to a round bottom flask containing 25 mL of thionyl chloride and
sonicated for 30 min. The mixture was then stirred under reflux conditions under an argon
atmosphere. After the reaction time, the mixture was cooled to room temperature and the
solid was isolated by a magnet. In a flask containing the solid product, was added 25 mL of
chloroform and sonicated for 30 min. To the above mixture was added chitosan (1.0 g) and
triethylamine (0.5 mL) and refluxed overnight. The product was separated and washed
by chloroform (3 × 10 mL) and water (3 × 10 mL) for the neutralization of any possible
unreacted chlorosilyl groups on the surface of the magnetic nanoparticles. The SPION@CS
was dried in a vacuum oven overnight.



Catalysts 2023, 13, 290 10 of 14

3.3. Synthesis of Tosylated SPION@CS

Tosylated SPION@CS was prepared by the reaction of SPION@CS and 4-toluenesulfonyl
chloride. For this purpose, SPION@CS (5.65 g, 5 mmol) was dissolved in deionized
water (30 mL) and NaOH (10 mmol) was added. The mixture was stirred for 15 min at
room temperature and then a solution of 4-toluenesulfonyl chloride (1.43 g, 7.5 mmol) in
20 mL of acetonitrile was added dropwise for 30 min. The mixture was stirred under an
argon atmosphere for 6 h. The product was separated by a magnet and washed with an
ammonium chloride solution until the pH was between 7 and 8.

3.4. Synthesis of SPION@CS-IL

Methyl imidazole (3 mmol) was added to the dispersed tosylated SPION@CS (3 mmol)
in dry DMF (20 mL) and stirred for 24 h at 80 ◦C under an argon atmosphere. The reaction
was cooled to room temperature after 24 h, and SPION@CS-IL was separated by a magnet
and washed with acetone (3 × 10 mL). The product was dried in a vacuum oven overnight.

3.5. General Procedure for the Synthesis of Pyrido[2,3-d]pyrimidine-dione Derivatives over
SPION@CS-IL Catalyst in the Solvent under Reflux

4-hydroxycoumarin (1 mmol), benzaldehyde (1 mmol), and 6-amino-2-thioxo-2,3-
dihydropyrimidin-4(1H)-one (1 mmol) were added into a flask containing ethanol (3 mL).
A total of 5 mg of SPION@CS-IL was added and the reaction mixture was stirred for
24 h at 70 ◦C. The reaction performance was followed up by thin layer chromatography,
hexane/ethyl acetate, 95:5, volume ratio and after the reaction was completed, the catalyst
was separated from the reaction mixture. The product was purified by recrystallization
from ethanol and characterized by 1H NMR, 13C NMR, MS, FTIR, and melting point.

3.6. General Procedure for the Synthesis of Pyrido[2,3-d]pyrimidine-dione Derivatives over
SPION@CS-IL Catalyst under Ultrasonic Irradiation in Water

4-hydroxycoumarin (1 mmol), benzaldehyde (1 mmol), 6-amino-2-thioxo-2,
3-dihydropyrimidin-4(1H)-one (1 mmol), and SPION@CS-IL catalyst (5 mg) were added
to a vessel containing 5 mL of distilled water. An ultrasonic probe was placed into the
reaction mixture and sonicated for an appropriate time. The catalyst was separated from
the reaction mixture and the solvent was evaporated after the completion of the reaction
(monitored by thin later chromatography, hexane/ethyl acetate, 95:5, volume ratio). The
products were recrystallized from ethanol to give the pure product and characterized by
1H NMR, 13C NMR, MS, FTIR, and melting point.

4. Conclusions

We have developed a novel and reusable superparamagnetic iron oxide nanoparti-
cles@Chitosan functionalized ionic liquid (SPION@CS-IL) as a reusable heterogeneous
superparamagnetic catalyst for green one-pot synthesis of pyrido[2,3-d]pyrimidine-dione
derivatives using a direct three-component reaction method of thiobarbituric acid, 4-
hydroxy coumarin, and different aromatic aldehydes, under ultrasonic irradiation as an
eco-friendly method in water as a “green” solvent. A variety of techniques are used to fully
characterize the catalyst, including FT-IR, XRD, EDX, TEM, VSM, and TGA. All of the prod-
ucts were successfully synthesized with excellent isolated yields. Filtration made it simple
to separate the catalyst from the products, and it also demonstrates significant reusable
activity (5 runs). Shorter reaction times, low catalyst loadings, the nanocatalyst’s capacity
to be recycled five times, and the absence of harmful chemical reagents are all significant
advantages of this environmentally benign process. As an advantage, chitosan that is used
as a support for the catalyst is obtained from a natural resource. In addition, SPION@CS-IL
catalyst shows very good separation from the reaction mixture using an external magnet
due to the magnetic properties of SPION. The high activity of SPION@CS-IL is proved in
the one-pot synthesis of pyrido[2,3-d]pyrimidinedione derivatives.
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