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Abstract: Acetonitrile is commonly used as an organic solvent and can also be used as an important
intermediate in organic synthesis. Its widespread use has led to the development of new methods for
the synthesis of a variety of important compounds. In the past decades, the conversion reactions of
acetonitrile as a building block have become one of the most-attractive fields in organic synthesis.
Especially in the field of electrochemical conversions involving acetonitrile, due to its good con-
ductivity and environmentally friendly features, it has become a powerful and compelling tool to
afford nitrogen-containing compounds or nitrile-containing compounds. In this review, we mainly
discuss the research progress involving acetonitrile in the past five years, covering both conventional
synthesis methods and electrochemical synthesis. Besides, a detailed discussion of the substrate
scope and mechanistic pathways is provided.
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1. Introduction

Acetonitrile as a small polar molecule and has a high relative permittivity (εr = 36),
which is conducive to the dissociation of ion pairs into free ions [1]. The bond dissociation
energy D (H-CH2CN) equals 4.03 ± 0.09 eV, and D (CH3-CN) equals 5.36 ± 0.03 eV [2,3].
Furthermore, the methyl proton of acetonitrile is faintly acidic with pKa = 31.3 in DMSO.
This means that acetonitrile can be deprotonated to form nucleophile, and the nitrogen
with lone pair electrons can also act as a nucleophile. Additionally, the cleavage of the
H3C-CN bond or H-CH2CN in CH3CN generates •CN or •CH2CN radicals. Therefore,
acetonitrile can be used as an important synthon in many types of organic reactions.

Because of its enrichment, low price, and excellent solvent properties, acetonitrile has
been widely applied as a common solvent in organic synthesis [4–8]. Acetonitrile is also an
important synthetic intermediate and often used as a source of nitrogen for the preparation
of typical nitrogen-containing compounds. For example, nitrile-containing compounds
are widely used in medicines [9] and materials [10]. Acetonitrile has been reported as a
reliable source of cyanide in chemical compounds [11–14]. On the other hand, heterocyclic
structures are widely present in various natural products or synthetic compounds and
are used in organic synthesis, agriculture, animal husbandry, and other fields. Some
heterocyclic compounds are also used in medicine due to their biological activity [15,16].
Acetonitrile can also be utilized in the construction of a variety of heterocyclic compounds.
Examples include the synthesis of pyridine, oxazole, and tetrazole [17–20].

Acetonitrile as a building block typically provides three active sites: two carbons and
one nitrogen. Up to now, scientists have developed a variety of methodologies with regard
to the transformation of acetonitrile, for example cyanomethylation, the Ritter reaction, cya-
nation, the cyclization reaction, etc. In 2018, Hoff’s group [21] comprehensively reviewed
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the multifarious reactions using acetonitrile before 2018, including classical approaches
and modern strategies. Subsequently, Sawant and colleagues [22] showed that various
reaction solvents, such as DMF, DMSO, DMA, MeCN, CHCl3, and DCM, all can serve as a
polyfunctional building block for the organic synthesis reaction, which mainly covers work
prior to 2019. Although these reviews have been reported, a comprehensive summary of the
reaction development, scope, and mechanism of electrochemical transformations involving
acetonitrile is still absent. Moreover, in the past five years, many great advances have been
developed in this field, especially in electrochemical synthesis. Therefore, this review sum-
marizes the research progress of acetonitrile as a reagent, including cyanomethylation, the
electrochemical oxidative cross-coupling reaction, the heterocyclic reaction, and amidation
since 2018. We mainly focused on recent reports (2018 onwards), and previous reports were
not included here.

2. Cyanomethylation Reaction

Cyanomethylation is very useful in organic synthesis because the cyano groups can be
hydrolyzed to carboxylic acids and reduced to amines, from which other functional groups
can be derived [23–26]. In addition, the cyano group is the structural unit of many drugs,
such as piritramide, diphenozlate, and gallopamil [27], while acetonitrile is an ideal source
of the cyanomethyl functional group due to the difficulty in breaking the C-CN bond.

2.1. Metal-Catalyzed Cyanomethylation

Transition metal catalysts have been widely used in various reactions. In 2020, Zhu’s
group developed the cyanoalkylative aziridination of N-sulfonyl allylamines 1 with alkyl
nitriles using Cu catalysts and 2,2’-bipyridine (Scheme 1) [28]. Many N-sulfonyl allylamine
derivatives 1 and alkyl nitriles derivative were tolerated, affording the corresponding
products 2 in 43–86% yields. Furthermore, enantioenriched N-tosyl-allylamines could
also be utilized as substrates, giving the enantioenriched aziridines in moderate to good
diastereoselectivity. Five-membered heterocycles including isoindoline and pyrrolidine 2d
could be synthetized in yields of 85% and 90%, respectively.
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Scheme 1. Cu-catalyzed cyanoalkylative aziridination of N-sulfonyl allylamines.

In 2021, Ahmad et al. [29] reported the Cu-catalyzed cyanomethylation of various
imines 3 with acetonitrile (Scheme 2). In this process, Cu(OAc)2 is used as the catalyst,
and acetonitrile is used as the solvent and the CN source to synthesize arylacrylonitriles 4.
The reaction conditions can tolerate a variety of substrates, including electron-donating
groups, strong electron-withdrawing groups, and sterically bulky groups. However, the
reaction conditions are harsh, requiring high temperatures and long reaction times. In
addition, under conditions where CuCl acts as a catalyst and K2CO3 acts as a base, styrene
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derivatives can react with haloacetonitrile to form β,γ-unsaturated nitriles in 70–94%
yields. Ahmad et al. also proposed a possible reaction mechanism (Scheme 2). First, the
cyanide group of acetonitrile coordinates with copper. The complex is then attacked by
(E)-N-benzylidene-4-Methylbenzenesulfonamide 3a to give intermediate 5. Elimination of
methylbenzenesulfonamide 6 from 5 gives phenylacrylonitrile 4.
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Scheme 2. Cu-catalyzed cyanomethylation.

Iron catalysts have also been used in cyanomethylation. Recently, Yao et al. [30] de-
veloped a FeCl2-catalyzed method for the cyanomethylation of amino-substituted arenes
7, using acetonitrile as the cyanomethyl source and DTBP as the oxidant (Scheme 3). Sub-
strate adaptation studies have shown that yields are higher when substituents on the
aminopyridines or anilines have an electron-withdrawing character; conversely, lower
yields are obtained with electron-donating groups. In addition, the steric hindrance of
the substituents greatly affects the product yields. It is noteworthy that this scheme is the
amine-directed cyanomethylation reaction, and the directed amino group plays a decisive
role in this reaction. When -NH2 is replaced by other groups, the cyanomethylation reac-
tion cannot proceed. In addition, the combinations of adjacent amino and cyanomethyl
groups can synthesize some valuable nitrogen-containing heterocyclic compounds, which
indicates the potential practicability of this reaction. In the control experiments, when
2,2,6,6-tetramethylpiperidine-1-oxyl and butylated hydroxytoluene were added, the corre-
sponding cyanidation products were not generated. These results indicated that a radical
process is possibly involved in the reaction. Based on controlled experiments and previous
literature, the authors proposed a possible reaction mechanism (Scheme 3). First, DTBP
forms a tert-butoxy radical and tert-butoxy anion in the presence of iron. A proton of
acetonitrile is removed by the tert-butoxy radical to form cyanomethyl radical 9. Next, the
reaction can proceed via one of two ways: (a) 9 attacks the ortho-site of the amino group to
afford the free radical 10, from which a proton is subsequently abstracted by the tert-butoxy
anion to give 11 and t-BuOH. Finally, 11 is oxidized by Fe(III) to product 8a regenerating
Fe(II). (b) FeCl2 reacts with the amino group to form 12, and 12 reacts with the cyanomethyl
radical to give 13. FeCl2 is then released, and the cyanomethyl group is transferred to
the aromatic ring to obtain 10. Finally, product 8a is formed through the same steps as
Route (a).
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Scheme 3. Fe-catalyzed cyanomethylation.

Ni-catalyzed cyanomethylation is also important for the construction of nitrile-con-
taining compounds. The enantioselective cyanomethylation catalyzed by Ni(II) was de-
veloped by Shibasaki and Kumagai [31,32]. Very recently, Oudeyer and co-workers estab-
lished a Ni-catalyzed cyanoalkylation of ketone derivatives 14 and acetonitrile derivatives
(Scheme 4) [33]. Acetonitrile was added to various isatins or activated ketones with the
Ni catalyst C1, affording products 15 in up to a 99% yield. Additionally, the addition of
acetonitrile derivatives to ketones required the presence of nBu4NBF4 in THF to give good
product yields. Preliminary mechanistic studies showed that the Tolman-type complex,
NiII-complex C1, is the key to the cyanomethylation.
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2.2. Transition Metal-Free Cyanomethylation

Transition metal catalysts, which are widely used in organic synthesis, are usually
expensive, pollute the environment, and add difficulties to post-treatment. In some areas,
such as the pharmaceutical industry, even trace metals are not tolerated in the end prod-
uct [34]. Developing environmentally friendly and economical synthetic methods is the
trend of future development. As a result, metal-free catalyzed reactions have become a
popular research topic in organic chemistry.

In the last few years, metal-free catalyzed direct cyanomethylation of C-H bonds,
including C(sp2)-H bonds [35,36] and C(sp3)-H bonds [37], has emerged as a powerful tool
in organic synthesis, which has the advantages of atom economy. In 2018, Zhang et al. [35]
reported the synthesis of cyanomethylcoumarin via a cross-dehydrogenation coupling
reaction between coumarin 16 and acetonitrile (Scheme 5). This reaction uses tert-butyl
benzoperoxoate (TBPB) as the oxidant and potassium fluoride (KF) as the base over 16 h
under a nitrogen atmosphere, with acetonitrile as both the reactant and solvent. The
substrates for this methodology are broad, but require an excessive amount of solvent.
Zhang et al. also proposed a reasonable mechanism for this reaction. Initially, TBPB is
heated to form a benzoate radical and tert-butoxy radical. Next, cyanomethyl radical
18 is formed by abstraction of the acetonitrile proton from either the benzoate radical or
the tert-butoxy radical, releasing benzoic acid or tert-butanol. Cyanomethyl radical 18
attacks coumarin 16a to give intermediate 19, which is then deprotonated to produce target
product 17a.
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Cyanomethylation can also occur in the absence of a base. In 2021, Liu et al. [36]
developed a method for the cyanomethylation of 8-aminoquinoline amides 20 (Scheme 6).
This method uses only TBPB as an oxidant in the absence of metal catalysts and bases.
Under these conditions, a wide range of substituents on the 8-aminoquinoline amides are
tolerated, and the electronic effects and steric hindrance of the substituents have little effect
on the product yields. The yields of the target products are 50–84%. It is important to note
that amide’s functionality is crucial to the smooth progress of the reaction. When simple
quinoline or 8-amino quinoline is used in place of 8-aminoquinoline amide, the reaction
does not occur smoothly. The possible reaction mechanism proposed by Liu et al. is similar
to that proposed by Zhang et al. At first, the tert-butoxy radical and benzoate radical are
transferred through the thermal homolytic scission of TBPB. Subsequently, the cyanomethyl
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radical is generated by the hydrogen abstraction of acetonitrile by the tert-butoxy radical
or benzoate radical releasing tert-butanol or benzoic acid. Thereafter, cyanomethyl radical
attacks 20a to produce intermediate 22, which further reacts with the tert-butoxy radical or
benzoate radical to produce required product 21a. This suggests that cyanomethylation in
the absence of metal catalysis may proceed via the same reaction process.
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The metal-free catalyzed functionalization of unsaturated hydrocarbons involving ace-
tonitrile is another application of cyanomethylation. Several interesting methods have been
developed to provide nitrile-containing products, including the hydrofunctionalization of
alkynes [38], cascade radical cyclization of alkynes [39,40], cascade radical cyclization of
alkenes [41], etc. A free radical addition of acetonitrile to alkynes was developed by Liu’s
group in 2019 (Scheme 7) [38]. In the presence of TBPB, alkynes 23 and acetonitrile reacted
in CH3CN at 130 ◦C for 3 h, providing β,γ-unsaturated nitriles 24 with up to an 80% yield.
The alkynes bearing aryl, alkyl, heteroaryl, cyclopropane, cyclopropane, amide, etc., units
showed high compatibility with the addition reaction, affording desired products 24 in
moderate to good efficiency.
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Scheme 7. Addition of acetonitrile to alkynes.

In 2020, Gao and co-workers reported an efficient cascade radical cyclization of 2-
alkynylthio(seleno)anisoles 25 with acetonitrile for the construction of 3-cyanomethylated
benzothio(seleno)phenes 26 (Scheme 8) [40]. Under the optimal reaction conditions, a series
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of desired compounds could be achieved in 45–70% yields. The author proposed a possible
reaction mechanism. The DTBP first is heated to give tert-butoxy radical, which assimilates
the α-H of acetonitrile to form radical I. Subsequently, generated radical I attacks the
α-position of C-C triple bond of 25a to afford vinyl radical II. Finally, target product 26a is
formed through a radical 5-exo-trig cyclization with the sulfur atom.

Catalysts 2023, 13, x FOR PEER REVIEW 7 of 24 
 

 

series of desired compounds could be achieved in 45–70% yields. The author proposed a 

possible reaction mechanism. The DTBP first is heated to give tert-butoxy radical, which 

assimilates the α-H of acetonitrile to form radical I. Subsequently, generated radical I at-

tacks the α-position of C-C triple bond of 25a to afford vinyl radical II. Finally, target 

product 26a is formed through a radical 5-exo-trig cyclization with the sulfur atom. 

 

Scheme 8. Cascade radical cyclization of alkynes with acetonitrile. 

In addition, Lee’s group recently reported an elegant metal-free catalyzed cy-

anomethylation of acetonitrile with both activated and unactivated amides 27 to afford 

diversified β-ketonitriles 28 with up to a 99% yield (Scheme 9) [42]. This reaction exhibits 

high functional group compatibility in the presence of LiHMDS. Benzamides 27 bearing 

not only electron-donating groups, but also electron-withdrawing groups could be uti-

lized as substrates, giving corresponding β-ketonitriles 28 in moderate to excellent yields. 

Furthermore, heterocyclic acylamide, such as furan-2-carboxamide 27b and thiophene-2-

carboxamide, undergo the reaction smoothly, giving the desired products in an 89% yield 

and 80% yield, respectively. Notably, alkyl amides 27 also display good tolerance to this 

method. Under the optimized conditions, benzamides 27 involving various N-substitu-

ents react well with acetonitrile and provide corresponding 28 with 25–99% yields. 

 

Scheme 9. Cyanomethylation of acetonitrile with amides. 

  

Scheme 8. Cascade radical cyclization of alkynes with acetonitrile.

In addition, Lee’s group recently reported an elegant metal-free catalyzed cyanomethy-
lation of acetonitrile with both activated and unactivated amides 27 to afford diversified
β-ketonitriles 28 with up to a 99% yield (Scheme 9) [42]. This reaction exhibits high func-
tional group compatibility in the presence of LiHMDS. Benzamides 27 bearing not only
electron-donating groups, but also electron-withdrawing groups could be utilized as sub-
strates, giving corresponding β-ketonitriles 28 in moderate to excellent yields. Furthermore,
heterocyclic acylamide, such as furan-2-carboxamide 27b and thiophene-2-carboxamide,
undergo the reaction smoothly, giving the desired products in an 89% yield and 80% yield,
respectively. Notably, alkyl amides 27 also display good tolerance to this method. Under
the optimized conditions, benzamides 27 involving various N-substituents react well with
acetonitrile and provide corresponding 28 with 25–99% yields.
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3. Electrochemical Oxidative Cross-Coupling Reaction

In order to activate the Csp3-H bond of acetonitrile, transition metal catalysts, oxi-
dants, or strong bases and high reaction temperatures are usually required. The harsh
reaction conditions not only inconvenience the operation, but also limit the application of
the reaction. Therefore, it is urgent to develop an efficient and gentle catalyst-free method
to activate the Csp3-H bond of acetonitrile. Electrochemical synthesis has attracted the
interest of scientific research workers due to its high efficiency and environmental creden-
tials [43–48]. Tetrasubstituted olefins are not only the structural units of many drugs [49],
but also important precursors for organic synthesis [50]. Therefore, the electrochemical
synthesis of tetrasubstituted olefins has also become a popular topic in recent years.

In 2019, Lu et al. [51] reported the electrochemical oxidative Csp3-H/S-H cross-
coupling reaction of acetonitrile and thiophenol 29 to form tetrasubstituted olefins 30
(Scheme 10). In this protocol, KI is used as the electrolyte and medium, cyclohexanecar-
boxylic is used as the additive, and a series of tetra-substituted alkenes can be obtained
in 25–95% yields by reaction under a 12 mA constant current. The results of the substrate
range test showed that the reactivity of the thiophenols with electron-neutral substituents
(such as methyl, ethyl, isopropyl, or tertiary butyl group) and electron-withdrawing sub-
stituents (such as F, Cl, Br, or trifluoromethyl group) substituents is smooth (20a, 82%
yield; 20b, 95% yield), but the yields of the thiophenols with strong electron-donating
substituent are significantly reduced (20c, 25% yield). Moreover, under standard condi-
tions, the diphenyl disulfide and diphenyl diselenide can also generate the corresponding
tetrasubstituted olefins.
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In the same year, He et al. [52] also reported a method for the synthesis of tetrasubsti-
tuted olefins 32 using thiophenol 31 and acetonitrile (Scheme 11). The reaction was carried
out with KI as the electrolyte and citric acid and 1,2-bis(diphenylphosphino)ethane (DPPE)
as the additives at a current of 10 mA. This method has excellent substrate tolerance and can
be applied to a variety of substituent phenylthiols/thiols to obtain products at moderate to
high yields. Moreover, oxidatively labile functional groups such as amino (32a, 24% yield)
and hydroxy (32b, 47% yield) can also tolerate this reaction and obtain the corresponding
products. In addition, diphenyl diselenide (32c) and dimethyldiselenide (32d) can also be
applied to this condition, and tetrasubstituted olefins can be obtained in high yields. Under
this condition, the reaction at the gram-scale is also tolerated, and the product is obtained
with good yields. In addition, He et al. further cyclized some of the products to obtain
4H-1,4-benzothiazine scaffolds, which are widely used in pharmaceutical chemistry. This
result suggested that the reaction has potential applications in industry.
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Organic catalysts have also been used in electrochemical reactions. In 2022, Wan
et al. [53] reported the electrochemical synthesis of tetrasubstituted olefins 34 with ace-
tonitrile and heteroaryl thiols 33 catalyzed by a bromide salt (Scheme 12). The reaction is
performed with nBu4NPF6 as the electrolyte solution, Me4NBr as the catalyst, and trifluo-
roacetic acid (TFA) as the additive at a constant current of 10 mA. A series of heteroaryl
vinyl sulfides 34 was synthesized using acetonitrile and 2-mercaptobenzoxazoles 33 as sub-
strates. The results showed that the proposed method has wide adaptability. Substitution of
2-mercaptobenzoxazole derivatives by various electron-donating or electron-withdrawing
substituents can obtain the corresponding products in high yields. Pyridine rings are
also tolerated in this reaction. The same conditions can also be applied to converting the
1,3,4-oxadiazole moiety into heteroaryl vinyl sulfides. The corresponding products can
be obtained from substrates with different substituents (electron-donating substituents
and electron-withdrawing substituents) on the benzene ring on the C5-benzene ring of
the 1,3,4-oxadiazole moiety. In addition, the benzene ring can also be substituted by other
aromatic moieties or alkyl substituents, and tetrasubstituted olefins can also be obtained
with excellent yields.
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The approaches presented all pass through a similar reaction path, on which we
propose a possible mechanism for the synthesis of tetrasubstituted olefins 40 by electro-
chemical oxidation of acetonitrile and thiophenols/thiols (Scheme 13). First, halogen ions
(X-) are anodized to form radicals, which then abstract the hydrogen atoms of acetonitrile to
form cyanomethyl radicals. The addition of the cyanomethyl radical to another acetonitrile
produces iminoradical 35. Intermediate 36 is then obtained by 1,3-hydrogen transfer. At
the same time, the halogen radical attacks the S-H bond to produce the sulfur radical 37,
which then dimerizes to form disulfide 38. Finally, intermediate 36 may couple with sulfur
radicals 37 to afford tetrasubstituted olefins 40 or it may undergo a substitution reaction
with disulfide 38 to give tetrasubstituted olefins 40. Simultaneously, the cathode-reduced
proton releases H2.
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4. Cyclization Reaction
4.1. Synthesis of Oxazole

Nitrogen-heterocyclic compounds exist widely in daily life. A considerable number
of materials, pesticides, and drug molecules contain nitrogen-heterocyclic structural units.
As a result, the development of novel strategies for heterocycle synthesis of nitrogen has
been a hot area of organic synthesis. As an ideal nitrogen source, acetonitrile has also been
widely used in the synthesis of nitrogen-heterocycles [54].

Oxazole is an important nitrogen-heterocyclic compound. A large number of oxazole
compounds and their derivatives are used as drugs to treat various types of diseases. In
recent years, a variety of electrochemical synthesis methods of oxazole compounds have
been developed. In 2021, Sattler et al. [55] reported the electrochemical synthesis of 1,3-
oxazoles 42 from alkynes 41 and acetonitrile (Scheme 14). The good reactivity relies on the
symmetric of the substrates. The methodology can tolerate most electron-donating and
-withdrawing groups. The yields are reduced when unsymmetrical alkyl-aryl alkynes are
used. When dialkyl-substituted alkynes are employed, the yields of the desired products
are further lowered. This synthetic method is suitable for symmetric alkynes, but not
for unsymmetrical alkyl-aryl alkynes. Sattler et al. proposed a reaction mechanism for
this protocol. At the positive electrode, intermediate 43 is formed, which then attacks the
Diphenylacetylene 41a to form the nitrile ion 44. Intermediate 45 or intermediate 47 may
then be generated. Intermediate 45/47 is then deprotonated with water to give 46/48, and
further protons and iodine molecules are removed by 43 to obtain target product 42a.

Inspired by Sattler’s work, Bao et al. [56] proposed an electrochemical synthesis of
poly-substituted oxazoles 50 from ketones 49 and acetonitrile in 2022. With TFAA as the
ketone activator and Ar3N as the catalyst, high yields of the desired products can be
obtained and a variety of functional groups can be tolerated. Scheme 15 shows the possible
mechanism of this reaction. In the presence of anhydride, ketones form vinyl ester 51.
Then acid-promoted addition to vinyl ester A and a subsequent Ritter-type reaction deliver
intermediate 52. Intermediate 52 is attacked by the carboxylate, and then, the anhydride
is removed to afford amide 54. The radical cation produced by Ar3N at the anode attacks
54 through a single electron transfer (SET) process to give radical cation 55, which is then
directly oxidized (a) or undergoes mediated oxidation (b) to form cation 56. Finally, desired
product 50a is obtained by intramolecular cyclization and deprotonation, releasing H2 at
the cathode.
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4.2. Synthesize Dihydroimidazole and 2-Oxazoline

In addition to the simple photochemical reaction or electrochemical reaction, elec-
trophotocatalysis (EPC) combining the energy of light and electrons has also been devel-
oped in recent years. In 2021, Shen et al. [57] reported the electrophotocatalytic diami-
nation of vicinal C-H bonds (Scheme 16). Using alkyl aromatics 59 as the raw materials
and acetonitrile as the solvent and nitrogen source, 1,2-diamine derivatives were syn-
thesized via an electrophotocatalytic strategy. Depending on the electrolyte used, either
3,4-dihydroimidazole or 2-oxazoline products can be obtained, of which the yields are
moderate to good. Shen et al. also successfully synthesized a series of biologically active
molecules such as a 5,7-dibromoisatin analogue (60a, 42% yield) and a celebrex analogue
(60b, 56% yield) with pharmacological activity using this method. In addition, this scheme
can be used to obtain valuable 1,2-diamines or the free dihydroimidazole adducts after a
slight modification of the reaction procedure. Shen et al. also proposed a possible mecha-
nism for the synthesis of 3,4-dihydroimidazoles, which is shown in Scheme 11. First, the
trisaminocyclopropenium (TAC) ion acts as a catalyst and undergoes radical attack of 59a,
forming radical cation 62 under illumination. Radical cation 62 is then deprotonated and
oxidized to give cation 63, which is then converted into amide 64 by the Ritter reaction.
The mechanism of the formation of product 60a from amide 64 is not clear. The authors
suggested that an elimination reaction of amide 64 produces α-methylstyrene 65, which
is then converted into either 3,4-dihydroimidazole or 2-oxazoline by solvent capture and
oxidation under the influence of the electrolyte.
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4.3. Synthesis of Cyclobutenone

In 2021, Qin et al. [58] reported the first synthesis of cyclobutenone 70 by [2+2] cy-
clization using acetonitrile as a raw material for C2 cyclization (Scheme 17). The first
step of the reaction uses acetonitrile as the raw material and solvent and a proton sponge
(PS) as the base, in the presence of catalytic triflic anhydride (Tf2O); the reaction with an
alkyne 69 affords cyclobutene amines 71. Subsequently, H2O was added to the reaction
mixture in order to form cyclobutenone 70. This method is capable of tolerating alkyl-
and aryl-substituted alkynes. However, terminal alkynes are not amenable to the reaction
conditions. The reaction with enyne substrates proceeds normally without being affected
by the C=C bond. A mechanism for this reaction has also been proposed. First, acetonitrile
is activated by Tf2O to form intermediate 72, then 72 is converted to cyclobutene 71 by a
[2+2] cyclization reaction. Finally, cyclobutene 71 is hydrolyzed to cyclobutenyl ketone 70.
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4.4. Synthesis of 3-Cyanopyridine

3-Cyanopyridines are ubiquitous motifs in pharmaceuticals, natural products, and
bioactive molecules. Acetonitrile is a common and abundant precursor for the synthesis
of 3-cyanopyridines. In 2019, Doyle and colleagues used α-peroxy-γ,γ-dichloropropanes
as the substrate and acetonitrile as the nitrogen source in the presence of KOtBu to give
3-cyanopyridines in 54–69% yields [59]. Subsequently, Trofimov reported the cyclization
of available acylethynylpyrroles with acetonitrile to provide a series of pyrrolyl-pyridines
in 63–87% yields [60]. In 2022, Duan et al. reported a new strategy for the synthesis of
2-methylnicotinonitriles 74 through the degenerate ring transformation of N-substituted
pyridinium salts 73 (Scheme 18) [61]. The reaction was carried out using potassium hex-
amethyldisilazide (KHMDS), benzoic acid (BA), and benzyl triethyl ammonium chloride
(TEBA) as additives in acetonitrile at 90 ◦C for 20 h. This reaction is applicable to vari-
ous phenyl-substituted 4-phenyl-1-vinylpyridin-1-ium tetrafluoroborates and 3-aryl pyri-
dinium salts, while 4-alkyl-substituted pyridinium salts are limited. This strategy may
react through the following pathways: First, acetonitrile forms the 3-ACN anion in situ
under the action of the base and then conducts nucleophilic attack on the ortho-carbon of
pyridinium salt to obtain intermediates (E)-B and (Z)-B. Then, the ring opening of adduct B
is triggered by electron transfer to give azapolyenes D1 and D2. Subsequently, dihydropy-
ridine intermediate E is formed via a 6π-aza electrocyclization with the assistance of the
CN group. Finally, intermediate E is aromatized to corresponding product 74a.
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5. Amidation Reaction

Amide bonds are the structural units of many bioactive molecules and play a crucial
role not only in maintaining the life activity of various organisms, but are also widely
present in pharmacologically active compounds and organic materials. According to the
statistics, about 25% of drugs on the market contain amide bonds, and the construction of
amide bonds has become an important link in drug development [62–66].

In recent years, the method of constructing the C-N bond to synthesize amide from
acetonitrile by the Ritter reaction has also been developed. In 2021, Shen et al. [67] reported
a method for C-H amination via an electrophotocatalytic Ritter-type reaction (Scheme 19).
Using trisaminocyclopropenium C7 as a catalyst, acetonitrile was used to attack the benzyl
C-H bond of 75, giving corresponding acetamide 76 following irradiation with a compact
fluorescent light (CFL) and a 2.2 V current. The yields of the desired products range
from 36–88%. Additionally, the reaction can be used to modify complex molecules. For
example, sertraline derivatives can be obtained in a 40% yield, and retinoic acid receptor
agonist derivatives can be obtained in a 63% yield. In addition, compound 76 was also
synthesized on a gram-scale with a yield of 50%. This result further demonstrated the
potential use of this reaction in industry. The process of this reaction involves oxidation
of C7 to radical 77, which is then irradiated to form intermediate 78. This intermediate
attacks the aromatics to form radical cation 80, which is subsequently deprotonated and
oxidized to form carbocation 82. Dehydration leads to the formation of an amide through a
Ritter-type reaction.
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Scheme 19. Synthesis of amide by electrophotocatalytic reaction.

In 2022, our group reported a reaction of aryl isothiocyanate with acetonitrile to form
amides 86 (Scheme 20) [68]. This method uses acetonitrile as the raw material and solvent
and KOH as the base. The reaction with phenyl isothiocyanate 85 at 120 ◦C provides a
series of acetamides 86 without additional additives. When an aryl isothiocyanate bearing
an electron-donating group is used, the yields of the corresponding products are 51–75%.
This scheme also tolerates the substitution of aryl isothiocyanates with halogen atoms, but
the yields are lower. In addition, when benzonitrile is used instead of acetonitrile, the
corresponding amides can also be obtained. For example, N-(4-methylphenyl)benzamide
86c was easily prepared from benzonitrile in a 70% yield. In order to explore the reaction
mechanism, a series of control tests was completed. First, deuterated acetonitrile is also
suitable for this method to obtain the product deuterated acetanilide (Scheme 20a), which
indicates that acetonitrile is involved in this reaction. It also provides a convenient way to
synthesize deuterated acetanilide. Second, model reactions of MeCN/H2O18 also demon-
strate that the carbonyl oxygen atoms may originate from H2O (Scheme 20b). Through
a series of controlled experiments, we proposed possible mechanisms for this reaction
(Scheme 20). Acetonitrile is hydrolyzed to the carboxylic acid under basic conditions.
Then, the carboxylic acid is added to the phenyl isothiocyanate to form intermediate 87.
Next, generated intermediate 87 undergoes the loss of carbonyl sulfide (COS) to give final
product 86a.
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The difunctionalization of alkenes involving acetonitrile can synchronously form two
new chemical bonds. This strategy usually starts with the addition of a radical to an
alkene, which then undergo a single electron transfer, affording the carbocation. Finally,
the Ritter-type amination of the carbocation and acetonitrile gives the desired difunctional-
ization product. As far as we know, a variety of reaction systems have been developed in
recent years, including Selectfluor and benzoyl peroxide (BPO) as a radical initiator [69–71],
photocatalysts [72], and electrochemistry [73]. The regioselective aminofluorination of
α,β-unsaturated ketones was developed by Li’s group in 2019 (Scheme 21) [69]. Selectfluor
as the oxidant and fluorine source could work well in CH3CN/H2O to give α-fluoroamides
90 in 37–74% yields. The reaction has a relatively wide substrate scope, and most products
have been synthesized without diastereomers. In addition, when the loading of Selectfluor
was increased from 1.2 equivalent to 3.0 equivalent, the α-difluoro-β-amidation was ob-
tained in a 55% yield. In 2022, Zhang et al. reported a tandem fluorination/Ritter reaction
of α-diazo 2H-benzopyran-4-one compounds using Selectfluor as the fluoride source in
MeCN to synthesize β-fluoramides with moderate yields [74].
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Scheme 21. Aminofluorination of α,β-unsaturated ketones.

In 2023, Yu et al. [73] reported the electrochemical synthesis of vicinal azidoacetamides
92 (Scheme 22). The reaction uses substituted styrenes/tetrasubstituted alkenes 91 and
TMSN3 as raw materials. In the MeCN/nBuOH system, the amides can be obtained in
35–63% yields using constant-current electrolysis with nBu4NHSO4 as the electrolyte. This
approach can tolerate both electron-donating and electron-withdrawing group substitutions
of styrene. In addition to acetonitrile, azide amides can also be obtained by this method
from other aliphatic nitriles. Possible mechanisms for this reaction have been proposed.
Styrene 91a is first oxidized at the anode to form intermediate 93, which is then trapped by
TMSN3 to form radical 94. Radical 94 is then further oxidized at the anode to form benzyl
cationic intermediate 95, which undergoes nucleophilic addition with acetonitrile to yield
intermediate 96. Finally, 96 is hydrolyzed to form vicinal azidoacetamides 92a. Additionally,
benzyl cation 95 can also be trapped by water to generate undesired azidohydroxylation
product 97.
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Amination between C-H bond activation on the benzene ring has also been realized.
Strekalova et al. [75] reported the synthesis of N-phenylacetamide 99 by electrochemical
oxidation of aromatic compounds 98 under the catalysis of copper salts (Scheme 23). This
method uses Cu(OAc)2 as the catalyst, with no other additives, and reacts for 2–4 h at
an 80 mA current to obtain the amides. However, this reaction requires large amounts
of acetonitrile as the solvent and reactant (40 mL). The presence of a substituent on the
benzene ring will lead to the production of the isomeric amide. When bromobenzene
is used, the product is predominantly N-(4-bromophenyl)acetamide (99a), while using
trifluoromethylbenzene as the substrate causes N-(2-(triuoromethyl)phenyl)acetamide to be
the main product (99b). When the aromatic ring contains a methyl group, the reaction takes
place on the methyl fragment. Even if the aromatic ring is substituted by multiple methyl
groups (xylene, mesitylene), amidation will also occur on one of the methyl groups, and
amidation products with one substituted methyl group are obtained as the main product
(85c). Moreover, when benzonitrile is used instead of acetonitrile, the corresponding
benzamides can also be obtained with moderate yields (up to 69% yield). The author
proposed the possible reaction mechanism of the amidation of benzene (Scheme 16). In
addition, according to the nature of the substrate (aromatic or heteroaromatic, presence
of methyl or other substituents) and the oxidation potential of the aromatic, the reaction
is carried out in different ways under the same conditions. The presence of a methyl
substituent on the benzene ring leads to selective amidation of the benzyl fragment, and
the reaction has been carried out through the oxidation of the methyl group. However,
in the process of the electrooxidation of heteroarenes (e.g., 2-phenylpyridine), dimers are
formed instead of acetylamides because heteroarenes can coordinate with metals. Similar
to Strekalova’s work, Song’s group developed an electrophilic amidomethylation of the
aromatic C-H bond. This strategy using acetonitrile as the NHAc source and DMSO as the
CH2 source could provide various N-benzylic amide derivatives in 31–82% yields [76].

Catalysts 2023, 13, x FOR PEER REVIEW 19 of 24 
 

 

Amination between C-H bond activation on the benzene ring has also been realized. 

Strekalova et al. [75] reported the synthesis of N-phenylacetamide 99 by electrochemical 

oxidation of aromatic compounds 98 under the catalysis of copper salts (Scheme 23). This 

method uses Cu(OAc)2 as the catalyst, with no other additives, and reacts for 2–4 h at an 

80 mA current to obtain the amides. However, this reaction requires large amounts of 

acetonitrile as the solvent and reactant (40 mL). The presence of a substituent on the ben-

zene ring will lead to the production of the isomeric amide. When bromobenzene is used, 

the product is predominantly N-(4-bromophenyl)acetamide (99a), while using trifluoro-

methylbenzene as the substrate causes N-(2-(triuoromethyl)phenyl)acetamide to be the 

main product (99b). When the aromatic ring contains a methyl group, the reaction takes 

place on the methyl fragment. Even if the aromatic ring is substituted by multiple methyl 

groups (xylene, mesitylene), amidation will also occur on one of the methyl groups, and 

amidation products with one substituted methyl group are obtained as the main product 

(85c). Moreover, when benzonitrile is used instead of acetonitrile, the corresponding ben-

zamides can also be obtained with moderate yields (up to 69% yield). The author pro-

posed the possible reaction mechanism of the amidation of benzene (Scheme 16). In addi-

tion, according to the nature of the substrate (aromatic or heteroaromatic, presence of me-

thyl or other substituents) and the oxidation potential of the aromatic, the reaction is car-

ried out in different ways under the same conditions. The presence of a methyl substituent 

on the benzene ring leads to selective amidation of the benzyl fragment, and the reaction 

has been carried out through the oxidation of the methyl group. However, in the process 

of the electrooxidation of heteroarenes (e.g., 2-phenylpyridine), dimers are formed instead 

of acetylamides because heteroarenes can coordinate with metals. Similar to Strekalova’s 

work, Song’s group developed an electrophilic amidomethylation of the aromatic C-H 

bond. This strategy using acetonitrile as the NHAc source and DMSO as the CH2 source 

could provide various N-benzylic amide derivatives in 31–82% yields [76]. 

 

Scheme 23. Electrochemical synthesis of amides catalyzed by copper. 

The photocatalytic amidation reaction has also been reported. In 2023, Bao et al. [77] 

developed a photocatalytic dehydration of alcohol 102 to synthesize amides 103 (Scheme 

24). The reaction uses 2,4,6-triphenylpyrylium tetrafluoroborate (PC1) as a catalyst, and 

Scheme 23. Electrochemical synthesis of amides catalyzed by copper.

The photocatalytic amidation reaction has also been reported. In 2023, Bao et al. [77]
developed a photocatalytic dehydration of alcohol 102 to synthesize amides 103 (Scheme 24).
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The reaction uses 2,4,6-triphenylpyrylium tetrafluoroborate (PC1) as a catalyst, and benzyl
alcohol and acetonitrile can produce amide after 16 h of blue light irradiation in a nitrogen
atmosphere. Benzyl alcohols containing electron-donating groups respond well, with
yields ranging from 50 to 63%. Substituting benzyl alcohol with an electron-withdrawing
group yields a lower-yielding amide. Ortho-, meta-, and, polysubstituted groups in the
phenyl ring of benzyl alcohols also react smoothly. Naphthyl methanol can provide amide
with a higher yield (103a, 83% yield). The amide can also be obtained from secondary
alcohols by this method (103b, 72% yield). This method is also applicable to other alkyl
nitriles (103c, 51% yield), but increasing the alkyl chain reduces the activity of the nitriles,
resulting in lower yields. Through control experiments and DFT calculations, Bao et al.
proposed the possible mechanism of the reaction. The photocatalyst is first excited under
light to the excited state (1TP+). The SET process between 102d and 1TP+ then takes
place. The resultant 102d+ can be used as a Brønsted acid to protonate another 102d to
obtain protonated benzyl alcohol 105 and α-hydroxybenzyl radical 104. Subsequently, the
protonated 105 undergoes dehydration to obtain the benzyl carbocation (106). Then, the
nucleophilic attack of MeCN on 106 occurs, producing iminium carbocation 107. After
the generation of 107, the following steps are similar to those of the conventional Ritter
reaction. First, H2O produced from the dehydration step attacks 107 with the support of
solvent molecules (MeCN). Finally, obtained imide alcohol intermediate 108 gives rise to
product 103d by tautomerism. The intermediates, 104 and MeCNH+, participate in the
catalytic regeneration of PC1 from 2TP• and are converted to 102d and MeCN.
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6. Conclusions

Acetonitrile has been widely used in organic synthesis and is an important organic
substance. This review described the recent synthesis of cyanides, tetrasubstituted olefins,
heterocyclic compounds, and amides from acetonitrile, with methodologies involving
conventional metal catalysis and electrochemical reactions. It is worth noting that the
conditions for the amidation reaction involving acetonitrile are generally applicable to
other nitriles. However, some of the new methods require the consumption of large
amounts of acetonitrile, which undoubtedly increases the cost of the reaction and also
causes a waste of resources. If this problem can be solved, these new methods will be more
practical. It is worth noting that electrochemical reactions have the advantage of being
mild, having short reaction times, and being more environmentally benign compared with
conventional metal catalysis and oxidation reactions. Acetonitrile is well suited for use as a
solvent and reactant in electrochemical reactions due to its unique properties. Therefore,
more applications that utilize acetonitrile in electrochemistry are worth developing.
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