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Abstract: Generally, our ecosystem is continuously contaminated as a result of anthropogenic activi-
ties that form the basis of our comfort in our routine life. Thus, most scientists are engaged in the
development of new technologies that can be used in environmental remediation. Herein, highly
calcined binary metal oxide (Er2O3@NiO) semiconductor nanocomposite (NC) was synthesized using
a classical wet chemical process with the intention to both detect and degrade the toxic chemicals
in an aqueous medium using a novel electrochemical current–potential (I–V) approach for the first
time. Optical, morphological, and structural properties of the newly synthesized semiconductor NC
were also studied in detail using FT-IR, UV/Vis., FESEM-EDS, XPS, BET, EIS, and XRD techniques.
Then, a modified glassy carbon electrode (GCE) based on the newly synthesized semiconductor
nanocomposite (Er2O3@NiO-NC/Nafion/GCE) as a selective electrochemical sensor was fabricated
with the help of 5% ethanolic-Nafion as the conducting polymer binder in order to both detect
and electro-hydrolyze toxic chemicals in an aqueous medium. Comparative study showed that
this newly developed Er2O3@NiO-NC/Nafion/GCE was found to be very selective against m-tolyl
hydrazine (m-Tolyl HDZN) and to have good affinity in the presence of other interfering toxic
chemicals. Analytical parameters were also studied in this approach to optimize the newly designed
Er2O3@NiO-NC/Nafion/GCE as an efficient and selective m-Tolyl HDZN sensor. Its limit of de-
tection (LOD) at an SNR of 3 was calculated as 0.066 pM over the linear dynamic range (LDR) of
our target analyte concentration (0.1 pM–0.1 mM). The limit of quantification (LOQ) and sensitivity
were also calculated as 0.22 pM and 14.50 µAµM−1cm−2, respectively. m-Tolyl HDZN is among
the toxic chemicals in our ecosystem that have lethal effects in living beings. Therefore, this newly
designed electrochemical sensor based on semiconductor nanostructure material offers, for the first
time, a cost-effective technique, in addition to long-term stability, that can be used as an alternative
for efficiently probing other toxic chemicals in real samples.

Keywords: binary metal oxide nanocomposite; Er2O3@NiO; electrocatalytic degradation; m-tolyl
hydrazine detection; electrochemical method; current–potential (I–V) approach; glassy carbon electrode;
real sample analyses

1. Introduction

Recently, the advancement in nanoscience and nanotechnology has attained the im-
pressive attention of many scientists owing to the significant impact of these technologies
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on the growth in this modern era of science. These technologies have a wide range of
commercial applications in food industries [1], pharmaceutical industries [2], chemical
industries [3], energy conversion and storage devices [4–6], and many other domains of life,
in addition to toxic chemical sensing in our ecosystem [7–9]. Their advancement relies on
the production of semiconductor nanostructure materials of different kinds of metal oxides,
along with their unique morphologies at nano scales. Compared to their bulk substances,
semiconductor nanostructure materials of different metal oxides have highly impressive
physio-chemical properties, such as electrical, optical, mechanical, and magnetic proper-
ties, besides catalytic and thermal stability, and can be used for various purposes [10,11].
Similarly, advanced research on semiconductor nanostructure materials has also shown
that doped semiconductor nanostructure metal oxides have gained popularity in the field
of nanoscience as they have impressive and excellent enhanced physio-chemical proper-
ties [12–14]. Moreover, these physio-chemical properties can also be modulated according
to our requirements by doping or co-doping of inner or outer transition metal oxides in
different proportions into pure intrinsic semiconductor nanostructure metal oxides [15].

Recently, many researchers have focused their research on the field of advanced
materials by developing different kinds of doped/undoped semiconductor nanostruc-
ture materials, with the aim of environmental remediation, for the detection, removal,
and degradation of ubiquitous contaminants via different analytical approaches [16–20].
Among these various analytical approaches, different electro-analytical approaches based
on doped or undoped semiconductor nanostructure materials, as well as on heteronuclear
nanostructure composites, have been also reported in the literature for the detection of toxic
chemicals in our ecosystem [21–23]. Subsequently, the good electron communication feature
of semiconductor nanostructure materials form the basis of electrochemical sensing of toxic
chemicals, in addition to their electrocatalytic degradation by advanced oxidation processes
(AOPs). Although rare earth elements are not too much efficient in electrical conductivity
but their electrochemical performance can be further enhanced by doping, in a very minute
quantity, or mixing, in bulk with semiconductor transition metal oxides [7,24]. Thus, in
this work, a binary metal oxide semiconductor nanostructure composite of erbium oxide in
combination with nickel oxide (Er2O3@NiO) was synthesized with the intention to evaluate
its electrocatalytic behavior against various toxic chemicals in an aqueous system. Results
showed it to be both selective and effective against m-Tolyl HDZN. Moreover, the nano-
materials Er2O3 and NiO are individually thought to be multifunctional because of their
prestigious physio-chemical properties [25–34], and have a wide range of applications in
biomedical [34–37], chemical [38,39], thermal conductivity [40,41], pharmaceutical [42–45],
sensing [15,24,46,47], electrochromic [48,49], energy storage [50–52], agri-science [53–55],
and catalysis fields [56–62].

Hydrazine and its derivatives are used as raw materials that are involved in dif-
ferent kinds of chemical reactions during the production of final products in different
domains of chemical industries, such as in the manufacture of pesticides, plant-growth
regulators, dyes, paint, pharmaceuticals, and polymers [63–67]. Moreover, unprocessed
effluents from these industries also contain traces of respective hydrazine compounds
that are continuously contaminating our ecosystem. Our newly designed non-reported
binary metal oxide(Er2O3@NiO) semiconductor nanocomposite (NC) was found to be
effective against m-Tolyl HDZN, which is a derivative of hydrazine that has been de-
clared toxic and carcinogenic in nature by the National Institute for Occupational Safety
and Health (NIOISH) and the US Environmental Protection Agency (EPA) [68]. It is also
known as a nephrotoxic and cynogenic chemical. It causes cancer and chronic damage
to the kidney, and for this reason is known as being a nephrotoxic chemical. Similarly,
it also causes hazardous effects in the liver, lungs, and central nervous system (CNS),
in addition to headaches, dizziness, vomiting, and some allergic reactions in the skin,
eyes, and respiratory tract if exposed to it for a long time [68–71]. So, various research
techniques, such as ultra-high-performance liquid chromatography–tandem mass spec-
trometry [72], high-performance liquid chromatography coupled with a UV detector [73],
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ion-exclusion chromatography [74], spectrophotometry [75,76], flow injection chemilumi-
nescence [77], chemiluminescence [78], gas chromatography–mass spectrometry [73,79,80],
fluorimetry [81], colorimetry [82], microchip capillary electrophoresis/electrochemical
detection [83], capillary electrophoresis [84,85], and solid phase extraction [86,87], in addi-
tion to electrochemical techniques [88–92], have been cited in the literature for the detection
of hydrazine itself and its derivatives. Most of the reported methods are not very sensitive,
and those that are sensitive are very expensive and complicated to understand. Hence, it is
necessary to develop a cheap, reliable, and efficient method for the sensitive and selective
determination of m-Tolyl HDZN, both qualitatively and quantitatively, in addition to its
electrocatalytic degradation by advanced oxidation processes (AOPs).

In this study, for the first time, binary metal oxide Er2O3@NiO NC was synthesized
using a classical wet chemical method to assess its electrocatalytic performance against toxic
chemicals in an aqueous system. A glassy carbon electrode (GCE) modified by the newly
synthesized non-reported binary metal oxide Er2O3@NiO NC was fabricated as an efficient
and selective electrochemical probe and was found to be effective against m-Tolyl HDZN,
qualitatively and quantitatively. For this purpose, a novel, cost-effective, and reliable elec-
trochemical, current–potential (I–V), approach was employed using a Keithley electrometer
and the current response of newly modified GCE was observed in the presence of m-Tolyl
HDZN against applied potential ranging from 0.0 to +1.5 V. This I–V approach is considered
as being more efficient than other electrochemical approaches such as CV, DPV, and LSV. It
uses a two-electrode system (counter electrode and working electrode) instead of three elec-
trodes (counter electrode, working electrode, and reference electrode) as is needed in CV,
DPV, and LSV. Moreover, the response obtained by this novel current–potential approach is
known as the I–V curve or I–V response and is very easy to understand as it follows Ohm’s
law. In this technique, current is measured against the potential applied in the two-electrode
system, where one electrode is the counter electrode (Pt-wire) and the other is the working
electrode (newly developed/designed electrode based on semiconductor materials),which
measures the current against the potential applied in an aqueous system. Furthermore,
this effort presents a very impressive initiative for the determination and electrocatalytic
degradation of toxic chemicals in an aqueous system via advanced oxidation processes
(AOPs) based on newly designed non-reported semiconductor nanostructure materials
applied using a reliable electrochemical (I–V) approach.

2. Results and Discussion
2.1. Optical and Structural Characterization of Er2O3@NiO NC

The newly synthesized non-reported binary metal oxide (Er2O3@NiO) semiconductor
NC was subjected to UV/Vis, PL, FTIR, powder XRD, XPS, BET, EIS, and FESEM equipped
with EDS analysis for the elucidation of its optical and structural characteristics.

The UV/Vis spectrum of our newly synthesized Er2O3@NiO NC was recorded in
the range of 200 nm to 800 nm. From the UV/Vis absorption spectrum (Figure 1a), it
was found that maximum absorption occurred at λmax = 291 nm. Similarly, band gap
energy was also ascertained from a Tauc plot (direct band gap rule) and was found to be
2.58 eV, which indicates that our newly synthesized Er2O3@NiO NC falls in the domain
of semiconductors [93]; Figure 1b. For intrinsic erbium oxide, two band gap values, one
at 3.0 eV and the second at 3.5 eV, corresponding to an absorption edge position around
354 nm, have been reported in the literature [94]. These values indicate that intrinsic erbium
oxide has a very poor semiconductor property as the band gap size for semiconductors is
in the range of 2–3 eV. Moreover, variations in the positions of peaks are very common in
nanocomposite materials, which vary from one derivative of nanocomposite to another.
Herein, variation in maximum absorption from 354 nm to 291 nm is mainly considered due
to the mixed energy levels of binary metal oxides (Er2O3@NiO) because nanocomposites
are considered as mixtures of materials or different metal oxides. Thus, it is not possible
for two derivatives to show peaks at the same position as slight or greater variations may
exist. The shifting of the band gap value from 3.5 eV to 2.58 eV indicates that our newly
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synthesized Er2O3@NiO NC developed the semiconductor property because the band gap
size for insulators is in the range of 3–4 eV. Similarly, the optical properties with respect
to crystal defects, and transfer, migration, and recombination of photo-generated electron
hole pairs, were also studied using PL spectroscopy and found to be in good concurrence
with the results previously reported in the literature. The PL emission spectrum was
recorded at the excitation wavelength of 200 nm, yielding three emission peaks at 357 nm,
466 nm, and 577 nm; Figure 1c. The UV emission peak at 357 nm is associated with intrinsic
transmission of excitation from conduction to the valance band and related to transition
of 3d8electrons of Ni2+ [95]. Similarly, the emission peak at 466 nm (blue region) is due
to transition vacancies of oxygen and interstitial oxygen [12]. Moreover, the peak at the
shoulder at 577 nm may have appeared because of bond-to-bond transition as well as
oxygen-related defects due to the calcination temperature, i.e., 650 ◦C [95].
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Figure 1. UV/Vis and PL characterization of Er2O3@NiO NC; (a) UV spectrum; (b) bandgap energy
plot; (c) PL emission spectrum.

The functional and structural nature of the newly synthesized semiconductor NC
were analyzed using FTIR spectroscopy and FTIR spectra were recorded in the range of
400 cm−1 to 4000 cm−1, before and after calcination at 650 ◦C; Figure 2a,b. After calcination,
very sharp and prominent peaks and their displacement from their original positions
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indicate the formation of Er2O3@NiO NC. The broad absorption bands appearing in the
range from 3360 to 3410 cm−1, 1640 cm−1, and 995 cm−1 are attributed to O-H stretching
owing to moisture absorption on the surface of metal oxide NC [15,96,97]. Moreover, the
absorption bands appearing in the finger print region lower than 1100 cm−1 or 1000 cm−1

correspond to the vibration modes of M-O or M-O-M. The stretching vibrations of Er-O
appeared at 1440 cm−1 and 1125 cm−1 in addition to its bending vibrations at 625 cm−1 and
515 cm−1 [12,24]. The band at 460 cm−1belongs to the characteristic peak of Ni-O which
confirms the assimilation of the binary metal oxide(Er2O3@NiO)semiconductor NC [98].
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tionat 650 ◦C; (c) comparison of (a,b).

Because crystalline nature is a good indication of the metal oxygen framework, powder
XRD analysis was carried out before and after calcination in the range of (2θ) of 10–80◦

to examine the crystallinity of the newly synthesized semiconductor NC; Figure 3. The
strong and sharp diffraction peaks indexed as (222), (400), (440), (622), and (311) at 2θ
values were assumed to be of Er2O3 and they were in good agreement with the values
reported in the literature for erbium oxide [JCPDS file No. 77-0464 and 77-0777] [99,100].
Similarly, weak and broad diffraction peaks at (200) and (220) besides Er2O3occurred
because of small-grain-size or disordered NiO and they were also in good agreement with
the previously reported values for nickel oxide [JCPDF file No. 04-0835] [96,101,102]. Sharp
peak intensities after calcination indicate that its crystallinity increased with heating at
650 ◦C for 6 h. Moreover, mixed diffraction plans for both metal oxides also affirm the
formation of the newly synthesized semiconductor NC. The Scherrer equation was also
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used to calculate the average diameter of the crystalline nanomaterial as an individual
particle,which was found to be 23.84 ± 2.0 nm.

D =
0.94 λ

(βcosθ)
(1)

where λ = wavelength of X-ray radiation; β = full width at half maximum (FWHM) of the
peaks at diffracting angle; and θ = Bragg angle.
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The chemical composition and the electronic states of elements present in our newly
synthesized semiconductor NC were confirmed by XPS analysis. The full spectrum of XPS
analysis of Er2O3@NiO NC is shown in Figure 4a. The broad peak centered at 169.0 eV is
attributed to the Er 4d spin orbit; Figure 4b [12,103]. In the same way, the peak at 531.5 eV
is associated with the oxygen lattice, i.e., O 1s; Figure 4d [7,104]. Moreover, peaks of
nickel appeared in the range of 850 eV to 880.0 eV; Figure 4c. The peaks at 856.0 eV and
861.2 eV are related to Ni 2p3/2 spin orbit levels. Meanwhile, peaks at 871.3 eV, 874.8 eV,
and 879.0 eV are associated with Ni 2P1/2 spin orbit levels [105–107]. All these values were
in good agreement with the values reported previously for Er 4d and Ni 2p spin orbitals
in addition to O 1s. Sometimes, the strongest peaks around 500 and 1100 eV, as can also
be observed in Figure 4a, arise because the sodium moiety as its hydroxide is used to
maintain the alkaline pH in the wet chemical process during the hydrolysis of precursor
ions (Er3+and Ni2+) in order to form their respective nanocomposites. Consequently, this
analysis affirms the formation of Er2O3@NiO NC by the classical wet chemical method,
which accommodates the two different species, Er2O3 and NiO, in its chemical composition.

FESEM-equipped EDS analysis was also carried out to examine the morphology of
the newly synthesized semiconductor Er2O3@NiO NC in addition to its elemental ratio.
FESEM images of newly synthesized Er2O3@NiO NC were recorded from low to high
resolution; Figure 5a,b. Tiny aggregates of NC as a cumulative structure of our newly
synthesized Er2O3@NiO NC can also be easily observed in the collected FESEM images.
These tiny aggregates provide a large surface for the semiconductor NC in addition to its
enhanced electron communication feature. Moreover, EDS analysis reflects that our newly
synthesized NC accommodates the nickel (Ni), erbium (Er), and oxygen (O) at 20.95%,
34.22%, and 44.83% by weight, respectively; Figure 5c,d. It is concluded that information
collected from FESEM-EDS analysis is in parallel agreement with the results of XPS analysis.
Accordingly, no other peak related to any impurity was observed by EDS, thus confirming
that our newly synthesized NC is composed only of Er, Ni, and O.
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In this approach, to measure the active surface area of Er2O3@NiO NC, the BET
(Brunauer–Emmett–Teller) theory analysis was also undertaken, as presented in Figure 6a.
Here, the characteristics of the prepared NC are clarified through a nitrogen adsorp-
tion/desorption isotherm, known as BET analysis. Generally, a plot of relative pressure
versus the adsorption of nitrogen gas was drawn to calculate the relative surface area
of the prepared Er2O3@NiO NC material, which was found to be 9.58 m2/g. Therefore,
the morphological and textural studies of the Er2O3@NiO NC showed values favorable
to electro-catalytic performance in the chemical sensor application. Additionally, the EIS
(electrochemical impedance spectroscopy) test was carried out for further clarification of
the electrochemical characterization of bare GCE and Er2O3@NiO NC modified GCE. Faster
electron mobility on the Er2O3@NiO NC modified GCE is expected if the fabrication of
Er2O3@NiO0-NC/GCE is successful. In EIS, the diameter of the semicircle denotes the
charge-transfer resistance (RCT) at the surface of the modified electrode. As presented in
Figure 6b, the bare GCE electrode showed the higher resistance (406 Ω) as compared to the
fabricated Er2O3@NiO-NC/GCE electrode (112 Ω) in a solution containing 0.1 mM ferri-
cyanide (in 0.1 M KCl). This shows that Er2O3@NiO-NC/GCE has significantly enhanced
the charge-transfer ability of the modified sensor surface, by three-fold. This is also an
indication that the conductivity of the GCE has greatly increased due to the enhancement
of the electron transfer properties of the fabricated Er2O3@NiO NC on the GCE, and that
the GCE is fit for electrochemical sensing as an application.
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(electrochemical impedance spectroscopy) test was carried out for further clarification of 
the electrochemical characterization of bare GCE and Er2O3@NiO NC modified GCE. 
Faster electron mobility on the Er2O3@NiO NC modified GCE is expected if the fabrica-
tion of Er2O3@NiO0-NC/GCE is successful. In EIS, the diameter of the semicircle denotes 
the charge-transfer resistance (RCT) at the surface of the modified electrode. As presented 
in Figure 6b, the bare GCE electrode showed the higher resistance (406 Ω) as compared to 
the fabricated Er2O3@NiO-NC/GCE electrode (112 Ω) in a solution containing 0.1 mM 
ferricyanide (in 0.1 M KCl). This shows that Er2O3@NiO-NC/GCE has significantly en-
hanced the charge-transfer ability of the modified sensor surface, by three-fold. This is 
also an indication that the conductivity of the GCE has greatly increased due to the en-

Figure 5. Morphological and elemental analysis of Er2O3@NiO NC: (a,b) low-to high-magnification
FESEM images; (c,d) EDS spectrum for the calcined Er2O3@NiO NC.
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2.2. Applications: m-Tolylhydrazine Detection Using an I–V Approach

Herein, the main aim of the newly synthesized non-reported Er2O3@NiO NC was the
detection, qualitatively and quantitatively, and the electrocatalytic degradation, of harmful
chemicals in an aqueous system through an I–V approach via a Keithley electrometer.
For this purpose, an Er2O3@NiO NC modified GCE was employed as selective electro-
chemical sensor in an I–V approach. The fabrication of the modified GCE, Er2O3@NiO-
NC/Nafion/GCE, is discussed in detail in the Section 3. In any electrochemical approaches,
electrode fabrication/preparation is a crucial step that can appreciably impact the reliability
and reproducibility of the results. So, at this stage it is also very important to discuss the
reproducibility of electrode preparation in order to ensure that results of the study are
reliable and can be replicated by other researchers in the same or different laboratories. The
same, very simple protocol is always adopted for the preparation of the different electrodes
by keeping all conditions the same, as discussed in the Section 3. It was previously noted
that the results for our target analyte, m-Tolyl HDZN, were positive in terms of the I–V
comparison of the bare and coated GCE in the presence of m-Tolyl HDZN, the interference
study, and repeatability and reproducibility testing, in addition to the control experiment.

Therefore, in order to gauge the sensitivity of the newly fabricated Er2O3@NiO-
NC/Nafion/GCE, the current response of bare, Nafion-coated, and coated GCEs against
the applied potential (0.0 V–+1.5 V) was initially measured in 0.1 M PBS of pH = 7. It was
observed that the current responsiveness of the GCE coated with the newly synthesized NC
increased significantly due to the enhanced electron communication feature between active
sites of the Er2O3@NiO NC and the surface of the GCE; Figure 7a. Then, a selectivity study
was conducted of various toxic chemicals, namely, 2-AP, 2-NP, 2,4-DNP, 3-Mph HDZN, BPA,
m-Tolyl HDZN, and Zimt-ALD, in an aqueous system for the development of an efficient
and selective electrochemical sensor. In spite of being exposed to various toxic chemicals
in an aqueous system, the newly fabricated Er2O3@NiO-NC/Nafion/GCE was observed
to be extremely sensitive and selective against m-Tolyl HDZN (m-Tolylhydrazine). From
Figure 7b, it can be easily observed that the newly fabricated Er2O3@NiO-NC/Nafion/GCE
shows a high current against m-Tolyl HDZN in the presence of other toxic chemicals. The
concentration of 25.0 µL of each toxic chemical was taken as 0.1 µM in this study. Thus, we
can say that the usage of the newly synthesized NC in the form of a sensor offers a num-
ber of characteristic features, such as ease of assembly and usage, good current response,
large surface area, non-toxicity, air stability, and biosafety, in addition to selectivity with
electro-catalytic behavior.

In order to further confirm the sensitivity of the newly fabricated Er2O3@NiO-NC/Nafion/
GCE against m-Tolyl HDZN, the current response with and without m-Tolyl HDZN was
observed. A positive current response in response to the applied potential was noticed
before and after the injection of 25.0 µL of 0.1 µM m-Tolyl HDZN in 5.0 mL PBS of pH = 7.0;
Figure 7c. Moreover, for our convenience and in order to understand the sensitivity of
the newly fabricated Er2O3@NiO-NC/Nafion/GCE towards m-Tolyl HDZN, an overall
I–V comparison of bare and NC-coated GCEs with and without m-Tolyl HDZN is also
shown in Figure 7d; this comparison was positive. Similarly, we can also say that our newly
synthesized NC exhibits excellent adsorption and absorption properties on its large, porous
surface area.

A statistical approach was also used in order to check the affinity of our newly fab-
ricated Er2O3@NiO-NC/Nafion/GCE for m-Tolyl HDZN at +1.5 V in addition to the
interference impact of toxic chemicals (2-AP, 2-NP, 2,4-DNP, 3-Mph HDZN, BPA, and
Zimt-ALD) in PBS of pH = 7.0. In this investigation, the concentration of each interfering
toxic chemical was also taken as 0.1 µM and the volume was taken as 25.0 µL. In this
investigation, the current response of Er2O3@NiO-NC/Nafion/GCE to m-Tolyl HDZN
was deemed to be 100% and did not show any remarkable change in the presence of other
toxic chemicals; Figure 8 and Table 1. From this study, it was concluded that our newly
fabricated Er2O3@NiO-NC/Nafion/GCE is only selective, reliable, and sensitive to m-Tolyl
HDZN in the presence of other interfering toxic chemicals.
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Table 1. Interference effect of various toxic chemicals on the Er2O3@NiO-NC/Nafion/GCE sensor.

Metal Ions
Observed Current (µA)

Interference Effect (%) SD (n = 3) RSD (%) (n = 3)
R1 R2 R3 Average

M-Tolyl HDZN 8.0729 8.1304 7.9506 8.0513 100 0.0918 1.14
2-AP 3.1867 3.264 3.152 3.2009 39.75 0.0573 1.79
2-NP 3.6934 3.6552 3.6572 3.6686 45.56 0.0215 0.59

2,4-DNP 3.5891 3.6593 3.6056 3.618 44.93 0.0367 1.01
3MPh HDZN 3.2793 3.4273 3.2978 3.3348 41.41 0.0806 2.42

BPA 2.3591 2.3937 2.3536 2.3688 29.42 0.0217 0.92
Zimt-ALD 2.6387 2.6341 2.5998 2.6242 32.59 0.0213 0.81

Interference effect of m-Tolyl HDZN is considered to be 100%; R = reading; SD = standard deviation; and
RSD = relative standard deviation.

2.3. Electrocatalytic Degradation of m-Tolyl HDZN

The proposed mechanism for trace detection as well as electrocatalytic degradation of
m-Tolyl HDZN by the newly designed Er2O3@NiO-NC/Nafion/GCE as a selective m-Tolyl
HDZN sensor is shown in Scheme 1 with I–V graphical representation. The sensitivity
in terms of the current response of the Er2O3@NiO-NC/Nafion/GCE, in the absence and
presence of our target analyte, is shown in Scheme 1a,b, respectively, with their comparisons
shown in Scheme 1c.
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Scheme 1. (a) I–V response of coated GCE without m-Tolyl HDZN; (b) I–V response of coated GCE
with m-Tolyl HDZN; (c) comparison of (a,b); (d) probable electrocatalytic degradation mechanism of
m-Tolyl HDZN on Er2O3@NiO-NC/Nafion/GCE.

It is assumed that oxidation/reduction of the newly synthesized non-reported binary
metal oxide (Er2O3@NiO)semiconductor NC deposited onto the flat surface of the GCE is
responsible for the detection and the electrocatalytic degradation of m-Tolyl HDZN, even in
trace amounts. When the Er2O3@NiO NC modified GCE was plunged into PBS of pH = 7.0,
the semiconductor Er2O3@NiO NC chemisorbed the dissolved oxygen (O2) present in the
solution onto its porous surface. As a consequence, ionic species such as (O2

−) and (O−)
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were created by acquiring electrons from their conduction bands [108–110]. As a result, the
coated GCE’s I–V response rose.

e− (Er2O3@NiO NC/GCE) + O2→ O2− (2)

e−(Er2O3@NiO NC/GCE)+O2
−→ 2O− (3)

Owing to the presence of surface-adsorbed water, the above-mentioned reactions do
not stop here, but persist, and result in the production of excessive free hydroxyl radicals
in the system [111]. The overall reaction is as follows:

e− + O2→ O2
− + e−→ 2O− + H2O→ H2O2→•OH (4)

These free hydroxyl radicals, which are present in excess in our system, attack m-Tolyl
HDZN and cause the cleavage of the carbon-nitrogen bond with the release of electrons,
thereby enhancing the current response. This attack leads to the formation of m-Tolylphenyl
radicals and organic nitrogen containing the hydrazine moiety. The former moiety is
transferred into NO3

–, NO2
–, and NH4

+ ions by further attack of the free hydroxyl radicals
in the system. Moreover, m-Tolyl phenyl radicals are also converted into methyl phenol
followed by methylhydroquinone with the release of free electrons in the conduction band.
This results in the further increment in the current response during the I–V measurement
of the Er2O3@NiO-NC/Nafion/GCE in the presence of m-Tolyl HDZN under normal
conditions, as shown in Scheme 1a–c. Similarly, methylhydroquinone is further oxidized
into methyl-p-benzoquinon by the action of free hydroxyl radicals. This chain of attack of
free hydroxyl radicals does not stop here but yields aliphatic carboxylic acids followed by
carbon dioxide and water as end products in our system; Schemes 1d and 2. These kinds
of mechanism have been cited in the literature for degradation of hydrazine and phenolic
compounds by advanced oxidation processes (AOPs) [112–114].
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In order to ensure the electrocatalytic degradation of m-Tolyl HDZN, the chemical
oxygen demand (COD) test before and after the I–V response was also conducted in the
laboratory. Using this investigation, we analyzed the presence of m-Tolyl HDZN in the
context of the total amount of required oxygen for the oxidation of m-Tolyl HDZN to
carbon dioxide and water. The COD of m-Tolyl HDZN before and after the I–V response
was evaluated. The initial COD before the I–V response was found to be 1291.0 mgL−1 and
decreased to 467.0 mgL−1(average of three) after the I–V response under normal conditions.
On the porous surface of the newly designed semiconductor nanocomposite, the afore-
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mentioned reactions took place in bulk. The oxygen that was adsorbed on the porous
surface of the Er2O3@NiO NC coated on the GCE makes the Er2O3@NiO-NC/Nafion/GCE
sensitive to m-Tolyl HDZN and electro-catalytically degrades it by AOPs. The oxidizing
capacity of the newly synthesized NC, as well as the rate of m-Tolylhydrazine’s oxidation,
is increased with the increase in the amount of oxygen adsorbed.

2.4. Optimization of Newly Designed m-Tolylhydrazine Sensor

Many analytical parameters, such as linear dynamic range (LDR), coefficient of corre-
lation (r)/r2 square value, sensitivity, LOD (limit of detection), and LOQ (limit of quantifi-
cation), were determined from the calibration curve plotted at the potential of +1.0 V in
order to optimize our newly designed Er2O3@NiO-NC/Nafion/GCE as a selective m-Tolyl
HDZN electrochemical sensor.

In the context of these parameters, I–V responses of the Er2O3@NiO-NC/Nafion/GCE
as an efficient and sensitive sensor, even at very low concentrations, were examined at
varied concentrations of m-Tolyl HDZN ranging from 1.0 pM to 1.0 mM in an aqueous
solution of pH = 7.0. Under these circumstances, a consistent rise in current responsive-
ness was seen as a function of m-Tolyl HDZN concentration increasing from a lower to a
higher value, as shown in Figure 9a. Then, the calibration curve from the m-Tolyl HDZN
concentration variation plot was drawn at +1.5 V so as to calculate the optimal values
of the above parameters, as shown in Figure 9b. The results for LDR, coefficient of cor-
relation (r)/r2square value, and sensitivity were determined to be (1.0 pM to 0.1 mM),
r = 0.9115/r2 = 0.8308 and 14.50 µAµM−1cm−2, respectively. Moreover, LOD and LOQ
were found to be 0.066 ± 0.002 pM and 0.22 ± 0.02 pM, respectively.

Catalysts 2023, 13, x FOR PEER REVIEW 14 of 25 
 

 

concentration variation plot was drawn at +1.5 V so as to calculate the optimal values of 
the above parameters, as shown in Figure 9b. The results for LDR, coefficient of correla-
tion (r)/r2square value, and sensitivity were determined to be (1.0 pM to 0.1 mM), r = 
0.9115/r2 = 0.8308 and 14.50 µAµM−1cm−2, respectively. Moreover, LOD and LOQ were 
found to be 0.066 ±0.002 pM and 0.22 ± 0.02 pM, respectively. 

 
Figure 9. Optimization of m-Tolyl HDZN sensor; (a) concentration variation plot of m-Tolyl HDZN 
ranging from 1.0 mM to 1.0 pM; (b) calibration plot of Er2O3@NiO-NC/Nafion/GCE. 

The response time of Er2O3@NiO-NC/Nafion/GCE in the context of the sensing of 
m-Tolyl HDZN was also investigated in addition to all of the above-mentioned parame-
ters, and was observed to be around 5 to 10 s to establish a saturated constant state, as 
shown in Figure 10a,b. Similarly, in order to further demonstrate the validity of the I–V 
approach, a repeatability test at 0.1 µM was also conducted under similar circumstances 
as those used in the previous experiments. In this regard, the results of ten to twelve 
subsequent measurements were checked during the repeatability test after predeter-
mined intervals. It was observed that after washing with deionized water for each trial, 
the response of the newly designed Er2O3@NiO-NC/Nafion/GCE towards m-Tolyl HDZN 
was still repeatable and showed no signs of substantial alteration, as shown in Figure 11a. 
After this, I–V response of this newly non-reported m-Tolyl HDZN sensor was also 
monitored for up to 16 days in the context of its stability and reproducibility towards 
m-Tolylhydrazine and it was determined to be stable and reproducible with no discerni-
ble change in the current response after washing for each experiment, as shown in Figure 
11b. It is also pertinent to mention here that when m-Tolyl HDZN was detected 
throughout these stability trials, there was no electrode contamination or poisoning, and 
the sensitivity was nearly identical to that of the original response. 

 

Figure 9. Optimization of m-Tolyl HDZN sensor; (a) concentration variation plot of m-Tolyl HDZN
ranging from 1.0 mM to 1.0 pM; (b) calibration plot of Er2O3@NiO-NC/Nafion/GCE.

The response time of Er2O3@NiO-NC/Nafion/GCE in the context of the sensing of
m-Tolyl HDZN was also investigated in addition to all of the above-mentioned parameters,
and was observed to be around 5 to 10 s to establish a saturated constant state, as shown in
Figure 10a,b. Similarly, in order to further demonstrate the validity of the I–V approach,
a repeatability test at 0.1 µM was also conducted under similar circumstances as those
used in the previous experiments. In this regard, the results of ten to twelve subsequent
measurements were checked during the repeatability test after predetermined intervals. It
was observed that after washing with deionized water for each trial, the response of the
newly designed Er2O3@NiO-NC/Nafion/GCE towards m-Tolyl HDZN was still repeatable
and showed no signs of substantial alteration, as shown in Figure 11a. After this, I–V
response of this newly non-reported m-Tolyl HDZN sensor was also monitored for up to
16 days in the context of its stability and reproducibility towards m-Tolylhydrazine and it
was determined to be stable and reproducible with no discernible change in the current
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response after washing for each experiment, as shown in Figure 11b. It is also pertinent
to mention here that when m-Tolyl HDZN was detected throughout these stability trials,
there was no electrode contamination or poisoning, and the sensitivity was nearly identical
to that of the original response.
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each trial in repeatability and stability tests.

2.5. Control Experiment

In order to further validate that our newly designed Er2O3@NiO-NC/Nafion/GCE is
only valid for m-Tolyl HDZN, a control experiment was also carried out by using different
modified GCEs, and their current responses were observed against the potential applied
(0.0 to +1.5 V) in the presence of m-Tolyl HDZN. The GCEs were fabricated using different
materials via the same protocol that was adopted for the Er2O3@NiO-NC/Nafion/GCE. For
this study, different derivatives of Er2O3, such as Ca2O3@Er2O3 nanorods and Zn-doped
Er2O3, and materials other than erbium derivatives, such as AgO2@La2O3 nanosheets,
that were available at that time in our laboratory, were used to modify the GCEs. It
was discovered that the Er2O3@NiO-NC/Nafion/GCE was highly selective and sensitive
to m-Tolyl HDZN and possesses very good affinity for our target analyte, as shown in
Figure 12a,b.
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Tolylhydrazine; (b) magnified view of the control experiment from +0.4 V to +1.2 V. This study was
conducted under similar circumstances as those used in the previous experiments.

Therefore, our newly fabricated Er2O3@NiO-NC/Nafion/GCE has good adsorption
and absorption capability, in addition to its stability, ease of use, strong electrocatalytic
behavior, and biocompatibility with our ecosystem when compared with other approaches
presented in the literature for the detection of common harmful cations and organic toxic
pollutants. Hence, this novel I–V electrochemical approach is also exceptionally sensitive
and selective, and has a quick reaction time towards toxic chemicals, as discussed herein
for m-Tolyl HDZN in the presence of other interfering toxic chemicals. Moreover, the
strong electron communication feature between the active sites of the (Er2O3@NiO) NC
and the flat surface of the GCE is related to its high sensitivity towards m-Tolyl HDZN. In
addition, its porous surface provides a large surface area as an ideal nano-environment
for the detection of our target analyte with excellent absorption and adsorption abilities.
Additionally, a literature study reveals that this is the first report of the qualitative and
quantitative detection of m-Tolylhydrazine, in addition to its electrocatalytic degradation,
using an I–V approach, compared to other analytical methods that were reported earlier;
Table 2.

Table 2. Comparison of the proposed I–V method with different previously reported analytical
methods for the detection of hydrazine compounds.

Methods/Materials Analytes Sensitivity LDR * LOD ** LOQ *** Ref

UV Spectrophotometer Hydrazine – – 1.5 × 105 pM – [76]
Colorimetric/Fluorometric Hydrazine – 0.00–100 µM 9.40 × 106 pM – [82]

Chemiluminescence Hydrazine – 0.00–500 µM 9.30 × 105 pM – [78]
UPLC–MS/MS Hydrazine – – 93.75 pM 312.5 pM [72]

Ion-exclusion chromatography Hydrazine – 3.1 × 104–3.1 × 109 pM 2.0 × 104 pM – [74]
HS-SPME and GC-MS/MS Hydrazine – 625–3125 pM 62.50 pM 218.7 pM [86]

GC-MS Hydrazine – 1.5 × 103–3.1 × 106 pM 62.5 pM 218.7 pM [79]
CE-AD Hydrazine 0.247 nAµM−1 2.0 × 10−5–2.0 × 10−4 M 1.5 × 106 pM – [85]

Amperometric Hydrazine 0.915 µAµM−1cm−2 0.25–40 µM 1.0 × 105 pM – [90]
CV Phenyl Hydrazine 0.02 µAµM−1 5.0 µM × 0.2 mM 1.0 × 105 pM – [88]

DPV Hydrazine 196.7 µAmM−1 0.2–100 µM 1.0 × 104 pM 3.0 × 104 pM [91]
LSV Hydrazine 0.68 µAµM−1cm−2 0.0–350 µM 9.1 × 104 pM – [92]

I–V method
CdO/CNT NCs/binder/GCE m-Tolyl HDZN 25.79 µAµM−1cm−2 0.01 nM–0.1 mM 4.0 pM [68]

I–V method
Ag.NiMn2O4nanomaterial/

binder/GCE
m-Tolyl HDZN 47.27 µAµM−1cm−2 1.0 pM–0.01 mM 0.9 pM [63]

I–V method
Er2O3@NiO-NC/Nafion/GCE m-Tolyl HDZN 14.50 µAµM−1cm−2 0.1 pM–0.1 mM 0.066 pM 0.22 pM This work

* linear dynamic range; ** limit of detection; *** limit of quantification. UPLC-MS/MS = ultra-performance
liquid chromatography–tandem mass spectrometry; HS-SPME = headspace solid-phase micro extraction;
GC-MS/MS = gas chromatography-tandem mass spectrometry; GC-MS = gas chromatography-mass spectrome-
try; CE-AD = capillary electrophoresis-amperometric detector; CV = cyclic voltametry; DPV = differential pulse
voltammetry; LSV = linear sweep voltametry I–V method = (current–potential) method.
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2.6. Real Sample Analysis

A standard addition method was used for the analysis of real samples for further
validation of an I–V approach for the detection m-Tolyl HDZN using the newly designed
Er2O3@NiO-NC/Nafion/GCE as a selective m-Tolyl HDZN electrochemical sensor. Real
environmental samples, such as industrial effluent, an extract of a baby feeding bottle,
an extract of a PC bottle, and an extract of a PVC food packing bag, were used for this
purpose. Before analysis, real samples of the baby feeding bottle, PC bottle, and PVC
food packing bag were ground into fine powder, followed by controlled reflux at 60 ◦C in
the mixture, at a 1:1 ratio, of methanol and PBS of pH = 7.0 for three hours. The mixture
was then left for seven days to evaporate the methanol. Then, a fixed amount of 25.0 µL
aliquot was shifted to 5.0 mL PBS of pH = 7.0 for its analysis using the standard addition
method. For this purpose, a similar electrochemical (I–V) approach was used with the
newly fabricated Er2O3@NiO-NC/Nafion/GCE as the selective electrochemical probe only
for m-Tolyl HDZN. The results of their analysis are given in Table 3.

Table 3. Real sample analysis of m-Tolyl HDZN in various environmental samples.

Real Samples Amount of
Hg2+ Added

No. of
Readings

Measured
Response in (µA) % Recovery Mean

(% Recovery) SD RSD SEM

m-Tolyl HDZN 0.1 µM, 25 µL – 12.771 100 – – – –

Industrial effluent 0.1 µM, 25 µL

R1 12.241 95.8

97.6 1.50 1.54 0.86R2 12.596 98.6

R3 12.541 98.2

Plastic baby
feeding bottle 0.1 µM, 25 µL

R1 13.391 104.9

102.2 5.49 5.37 3.17R2 12.242 95.9

R3 13.511 105.8

Plastic mineral
water bottle

0.1 µM, 25 µL

R1 13.202 103.4

95.8 6.62 6.91 3.82R2 11.875 93.0

R3 11.632 91.1

Food packaging bag 0.1 µM, 25 µL

R1 13.086 102.5

99.7 4.86 4.87 2.80R2 12.020 94.1

R3 13.102 102.6

SD = standard deviation; RSD = relative standard deviation; SEM = standard error of mean.

3. Experimental
3.1. Materials and Methods

All chemicals, such as erbium(III) chloride (ErCl3), nickel chloride hexahydrate
(NiCl2.6H2O), 2-Aminophenol (2-AP), 2-nitrophenol (2-NP), 3-methoxyphenyl hydrazine
(3-MPh HDZN), m-Tolylhydrazine (m-TolylHDZN), Zimtaldehyde (Zimt-ALD), para-
nitrophenol (para-NP), sodium hydroxide, thiourea, 5% ethanolic-Nafion solution, and
mono-and disodium phosphate, were analytical grade, purchased from Sigma-Aldrich,
and used without further purification. For structural and optical characterization of newly
synthesized Er2O3@NiO NC, FTIR, UV/Vis, and photoluminescence (PL) spectral analyses
were performed, respectively, on a NICOLET iS50 FTIR spectrometer, Thermo Scientific
(Madison, WI, USA), Evolution 300 UV/Visible spectrophotometer, Thermo Scientific
(Madison, WI, USA), and fluorescence spectro-fluorometer. Additionally, a powder X-ray
diffraction examination was carried out to ascertain the sample’s crystallinity under ambi-
ent circumstances on a Thermo Scientific Diffractometer (ARL X’TRA XRD) (Madison, WI,
USA). JSM-7600F FESEM, JEOL (Tokyo, Japan) equipped with XEDS analysis was also used
for our newly synthesized NC to examine its structural morphology and its organization
in addition to its elemental analysis. Moreover, X-ray photoelectron spectroscopy (XPS)
analysis was performed using K-Alpha XPS Thermo Scientific (Madison, WI, USA) in order
to further confirm its chemical composition as well as the electronic states of elements
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present in it. Then, a new electrochemical approach called the I–V method was employed
via a 6517A–Keithleyelectrometer, Keithley Instruments, (Cleveland, USA) to detect m-
Tolylhydrazine (m-Tolyl HDZN), qualitatively and quantitatively. In this I–V approach, a
two-electrode setup was established in a laboratory, in which one electrode served as the
counter/reference electrode and the other as the working electrode (NC-modified GCE), so
as to measure the current against the applied potential (0.0 V to +1.5 V) in accordance with
Ohm’s law. The newly designed modified GCE, Er2O3@NiO NC/Nafion/GCE, was used as
the working electrode and a Pt wire as the counter electrode. Throughout this investigation,
stock solutions and chemical solutions of various concentrations were prepared using
de-ionized water.

3.2. Synthesis of Binary Metal Oxide(Er2O3@NiO) Semiconductor Nanocomposite (NC) Using a
Wet Chemical Method

A simple classical wet chemical approach at alkaline pH was employed to synthesize
the binary metal oxide(Er2O3@NiO) semiconductor nanocomposite. In this procedure,
equimolar precursor solutions of ErCl3 (50.0 mL) and NiCl2.6H2O (50.0 mL), along with
thiourea of equal concentration at a 1:2 ratio by volume were put into a 250.0 mL Erlenmeyer
flask and vigorously stirred to homogenize it. Thiourea plays a role as a surfactant to the
mixture for the purposes of de-agglomeration. The pH was then changed to an alkaline state
by adding (2.0 M) NaOH drop-wise. Following the addition of NaOH, the flask was heated
for 6 h at 80 ◦C with constant stirring on an electric hotplate. A co-precipitate of Er2O3-NiO
was generated at the completion of the reaction which was filtered and thoroughly washed
with a mixture of water and acetone to eliminate any undesired impurities. This was dried
at 80◦C in an oven for 24 h followed by grinding to ensure homogeneity before being
placed in a muffle furnace (Barnstead Thermolyne, 6000 Furnace, Dubuque, USA) and
constantly calcined at 600 ◦C for 6 h; Scheme 3. The formation of the binary metal oxide
(Er2O3@NiO) semiconductor nanocomposites can be explained by the chemical reactions
shown in Equations (5) to (9).

NaOH(s) → Na+
(aq) + OH−

(aq) (5)

ErCl3 → Er3+
(aq) + 3Cl−(aq) (6)

NiCl2.6H2O→ Ni2+
(aq) + 2Cl−(aq) + 6H+

(aq) + 6OH−
(aq) (7)

5OH−
(aq) + Ni2+

(aq) + Er3+
(aq) → Ni(OH)2(aq) + Er(OH)3(aq) (8)

Ni(OH)2(aq) + 2Er(OH)3(aq) → Er2O3@NiO(s) ↓ +4H2O(aq) (9)

The production of the Er2O3@NiO nanocrystals depends heavily on an alkaline pH
and NaOH, and the pH was thus maintained at 10 by adding hydroxyl (OH−) to the
system. In this way, ErCl3 and NiCl2·6H2O were hydrolyzed in the water to form their cor-
responding unstable hydroxides, namely, Er(OH)3 and Ni(OH)2), which were then further
changed into their respective oxides by the dehydration with ongoing heating. Due to the
lower activation energy barrier of heterogeneous nucleation during this phase and a larger
concentration of Er3+ions in the solution in addition to OH− ions, Ni(OH)2 first started to
precipitate. After that, a number of bulkier materials in the form of assembledEr2O3-NiO
precipitates were generated among the materials as a result of the system’s greater con-
centration of Er3+. According to the Ostwald ripening theory, the formation of Er2O3-NiO
nanocrystals started. For this Er2O3-NiO, nuclei first started to develop via mutual and self-
aggregation, creating the nanocrystals. Van der Waals forces caused these nanocrystals to
re-aggregate with one another, creating the binary metal oxide (Er2O3@NiO) semiconductor
NC; Scheme 4.
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The optical, morphological, and structural characteristics of the newly synthesized non-
reported calcined NC were investigated via modern analytical tools such as UV/Vis, FTIR,
and PL spectroscopy, in addition to powder XRD, XPS, BET, EIS, and FESEM combined
with EDS to confirm its formation. The synthesized NC was then used for detection
and electrocatalytic degradation of selective toxic chemicals in an aqueous system via an
easy and credible electrochemical (I–V) approach by developing its modified GCE for the
first time.

3.3. Fabrication of GCE with Er2O3@NiO NC

A very basic and inexpensive approach was used for the fabrication of Er2O3@NiO-
NC/Nafion/GCE as a selective and efficient m-Tolyl HDZN sensor. A GCE with geometric
dimensions of 12 cm in length and 0.0316 cm2 in diameter was used in this regard. First,
the GCE was washed using a basic process prior to manufacturing. The GCE was first
immersed in acetone for 10 min. It was then scrubbed with deionized water, dipped in
ethanol using cotton swabs, and dried for 15 min at 60 ◦C. After thorough washing, 5.0 to
10.0 mg of Er2O3@NiO NC was mixed with ethanol to make the slurry, which was then
applied on the GCE’s flat surface with 1 to 2 drops of 5% ethanolic-Nafion as an adherent
and a conducting binder. After coating, it was set in an oven at 40 ◦C for 10 to 15 min in
order to obtain evenly dry Er2O3@NiO-NC/Nafion/GCE as a selective m-Tolyl HDZN
sensor; Scheme 5. For an I–V response in phosphate buffer solution (PBS) of pH = 7.0, a
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laboratory-made electrochemical cell was devised using the newly fabricated Er2O3@NiO-
NC/Nafion/GCE as the working electrode, which was selective for m-Tolyl HDZN, and
Pt-wire (1.5 mm in diameter) as the counter electrode. A 100.0 mL measuring cylinder
was used to combine an equimolar (0.2 M) solution of Na2HPO4 (39 mL) and NaH2PO4
(61.0 mL) to prepare the PBS of pH = 7.0. A fixed amount (5.0 mL) of 0.2 M PBS of pH = 7.0
was used consistently throughout this investigation. A 0.1 M stock solution of target
analyte, m-Tolyl HDZN, was prepared in deionized water, and was further diluted to make
various concentrations (full concentration range: 1.0 pM to 1.0 mM). Different analytical
parameters, such as linear dynamic range (LDR), coefficient of correlation (r), sensitivity,
limit of detection (LOD) (at S/N 3), and limit of quantification (LOQ), were calculated to
optimize our newly designed m-Tolyl HDZN sensor (Er2O3@NiO NC/Nafion/GCE) using
the slope of the calibration curve. With the basic two-electrode setup, stipulated above, a
Keithley electrometer was used as a constant voltage source for the I–V measurement.
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chemical (current–potential) approach. The response of the newly fabricated Er2O3@NiO
NC/Nafion/GCE to our target analyte was very fast (i.e., 5 to 10 s) in the presence of
other interfering toxic chemicals, with a detection limit of 0.066 pM over a wide range of
concentrations from 0.1 pM to 0.1 mM. Er2O3@NiO NC was synthesized using a classical
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Moreover, the results of powder XRD, FTIR, PL, XPS, BET, EIS, and FESEM-EDS analyses
for its structural elucidation were also in good concurrence with the results previously
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