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Abstract: Nitrogen-containing heterocycles such as morpholin-2-ones are structural elements of many
biologically active substances, as well as useful synthetic intermediates. To be able to functionalize
them regioselectively in an easy, atom-efficient, and environmentally friendly manner is highly
desirable. A procedure for cross-dehydrogenative coupling between morpholinones and cyclic
imides was developed addressing these requirements. An earth-abundant metal catalyst, copper(I)
chloride, in the presence of acetic acid, and with molecular oxygen as the sole oxidant, operating
under mild conditions, afforded the desired C–N coupled products in high yields. Besides being
potentially biologically active, as many members of both families of compounds are, the products
themselves may be suitable substrates for functionalized polymers, e.g., poly(β-aminoesters) or even
for PROTACs.

Keywords: cross-dehydrogenative coupling; imides; C–N bond formation; oxidation; C–H function-
alization; copper catalysis; molecular oxygen

1. Introduction

Cross-dehydrogenative coupling (CDC) involving C(sp3)–H bonds has evolved in
recent years as a mild, atom- and step-economical, cost-efficient, environmentally friendly
way of undergoing synthesis [1–9]. Direct C–H/C–H coupling is possible, as well as C–X
coupling (X = heteroatom), without the requirement for any pre-functionalization of the
reagents. The possibility of using earth-abundant metal salts like copper or iron as catalysts
has made this type of chemistry even more attractive. A variety of oxidants have been used,
which act as the terminal acceptors of the two hydrogen atoms lost.

Amongst the substrates explored successfully for CDC reactions have been α-
aminocarbonyl compounds, of which amino acids and peptides/peptidomimetics are
the best representatives [10–13]. α-Alkylation or α-heterofunctionalization of these sub-
stances leads to the formation of modified amino acids and peptides which are of prime
interest for the pharmaceutical industry [14–17]. For example, simple aryl glycines, which
are nonproteogenic amino acids, are abundant in a large range of glycopeptide antibiotics
and are also common key intermediates in the production of β-lactam antibiotics [18].
Until recently, classical approaches were utilized for α-functionalization to introduce var-
ious sidechains, relying mostly on carbanion chemistry [19–22], on the use of enzymes
immobilized to a solid support [23–26], or on transition metal-catalyzed processes [23–26].

Problems related to side reactions or racemization with sensitive substrates may occur
and the processes may be either more complex or less general. Several synthetic steps
may also be involved. CDC by-passes these problems and also the possibility of racemiza-
tion of chiral centres. We were interested in the prospect of extending this chemistry to
conformationally constrained amino acids. Incorporating one or more amino acids into
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a ring is one of the ways to restrict conformational freedom, which is of great interest
in medicinal chemistry for the development of new drugs, to include in peptidomimet-
ics to probe protein–protein interactions, and even for synthetic intermediates [14,27–31].
Protein–protein interactions mediate processes in biological systems and play important
roles in disease development [29]. Constraining by cyclization is a technique often used
to improve stability and biological activity in peptides, since the molecules become more
resistant to hydrolysis by peptidases either due to the conformational constraint or to the
lack of amino and carboxyl termini [27–31]. In this context, morpholinones, which can
subsequently be incorporated into peptides, seemed a good subject for research. CDC
methodologies have been so far utilized for the α-functionalization of α-amino esters
and α-amino amides or small peptides in some instances with alkynes, alkenes, indoles
and other heteroarenes, ketones, β-ketoesters, nitroalkanes, ethers, diphenyl phosphine
oxide and H-phosphonates, α-diazocarbonyl compounds, aziridines, as well as alcohols,
thiols, naphthols, pyrroles [10,11,32] and amides and imides (Figure 1a) [33–35]. The α-
functionalization of 3,4-dihydro-1,4-benzoxazin-2-ones with indoles (Figure 1b) [36] and
with malonates (Figure 1c) [37] have been described, but to the best of our knowledge,
morpholinones have not been employed in CDC reactions so far and became the subject of
our studies (Figure 1d). The morpholinones can be obtained from amino acid esters, for
example, by reaction with an ethylene equivalent [38,39].
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Figure 1. CDC reactions related to this work: (a) Cu(I)-catalyzed imidation of N-arylglycine ester
derivatives via C–N coupling; (b) Oxidative sp3 C-H bond functionalization of 3,4-dihydro-1,4-
benzoxazin-2-ones with indoles; (c) Synthesis of (1,4-benzoxazin-3-yl)malonate derivatives via CDC
reactions; (d) The new work plan proposed.

Morpholinones are very interesting compounds in their own right [40–44]. They
are useful intermediates for the pharmaceutical industry, an example being the synthesis
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of Aprepitant (A, Figure 2), a drug utilized to prevent chemotherapy-induced nausea
or vomiting [40]. However, they also have important properties, including T-type Ca2+

channel activity blocking [41], anti-cancer [42], antifungal [43], amongst others. Some
examples are shown in Figure 2 (structures B–D, J). In addition, morpholinones are good
substrates for ring-opening reactions, including polymerization. For example, ring-opening
polymerization of N-acyl morpholin-2-ones with N-acylated amines yielded functional-
ized poly(aminoesters) (PβAE) [45], and alcoholysis of optically active morpholin-2-ones
yielded hydroxyl amides in a stereoselective fashion [46]. Substituted PβAEs have numer-
ous applications due to their excellent properties. They are considered to be the most potent
alternative to viral vectors for gene delivery, destined to treat or to eliminate diseases in-
volving genetic factors, which are used instead of medicines to treat their symptoms [47–49].
However, PβAE are also important in other areas, which range from cancer therapy to tissue
engineering [47–49]. New ways to functionalize morpholinones may find applications in
the synthesis of novel PβAEs with different substitution patterns and different properties.
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Figure 2. Examples of biologically active morpholinones, imides and derivatives. 

Inspired by recent developments in this field, we thought of using cyclic imides as 
reaction partners. CDC reactions of α-amino esters with imides have been reported but 
not with morpholinones [33–35]. CDC could yield new C–N bonded structures with var-
ious properties or for further synthetic manipulations, e.g., polymerization reactions for 
substituted PβAEs [50–52]. Cyclic imides are on their own an important group of com-
pounds with many applications in medicine: as anticancer agents, antiepileptics, seda-
tives, hypnotics, anticonvulsants, hypotensive agents and antitubercular agents [53–56]. 
They are also valuable synthetic intermediates and of interest for the preparation of ad-
vanced polymers. An application in medicine is the glutarimide derivative Lenalidomide 
(E) (trade name Revlimid) the first oral medicine developed for the treatment of multiple 
myeloma and other hematological malignancies, which was the sixth most sold pharma-
ceutical in the USA in 2021 [57] and the second blockbuster drug in terms of retail sales 
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Inspired by recent developments in this field, we thought of using cyclic imides as
reaction partners. CDC reactions of α-amino esters with imides have been reported but
not with morpholinones [33–35]. CDC could yield new C–N bonded structures with var-
ious properties or for further synthetic manipulations, e.g., polymerization reactions for
substituted PβAEs [50–52]. Cyclic imides are on their own an important group of com-
pounds with many applications in medicine: as anticancer agents, antiepileptics, sedatives,
hypnotics, anticonvulsants, hypotensive agents and antitubercular agents [53–56]. They
are also valuable synthetic intermediates and of interest for the preparation of advanced
polymers. An application in medicine is the glutarimide derivative Lenalidomide (E) (trade
name Revlimid) the first oral medicine developed for the treatment of multiple myeloma
and other hematological malignancies, which was the sixth most sold pharmaceutical in
the USA in 2021 [57] and the second blockbuster drug in terms of retail sales [58]. This and
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other examples, some also sales blockbusters in 2021, are shown in Figure 2 (structures
F–I) [53–56].

In recent years, certain cyclic imides, e.g., phthalimide, have also been identified
as key structural units for PROTACs (Proteolysis Targeting Chimerics), small molecules
used to bind to a target pathogenic protein as well as to an E3 ubiquitin ligase which
triggers ubiquitination and induces degradation of the pathogenic protein by the ubiquitin-
proteasome system [59–64]. Different from protein inhibition, this is a highly selective
novel approach to disease control, for example, to destroy cancer cells. PROTACs are
regarded as the next generation drugs and some are even undergoing clinical trials, e.g.,
K (Figure 2) [59]. Considering the importance and many applications of cyclic amides,
sustainable and environmentally friendly approaches to synthesize new derivatives, which
may display novel properties, are highly desirable. Although the imide proton is weakly
acidic and many reactions of imides involve treatment with a base to form an anion to
increase its nucleophilic reactivity [65], the Gabriel synthesis of primary amines being
an example, recent publications show its usefulness in CDC reactions, under oxidative
conditions, playing the role of nucleophilic partner [33–35]. We have developed a novel
regioselective and environmentally friendly method to couple 2-morpholinones to cyclic
imides by cross-dehydrogenative C–N coupling (Figure 1d), which works under mild
conditions, using an earth abundant copper salt as catalyst and molecular oxygen as
oxidant, thus avoiding by-product formation. Our results are described next.

2. Results

To develop our method, we chose known morpholinone, N-phenyl morpholin-2-
one (5a), as the starting material, which was synthesized by an adaptation of a known
methods from the corresponding commercially available protected amino acid 3a. The
morpholinones may also be obtained from aryl amines as shown in Figure 3 [38,66,67]. The
initial product of 1,2-dibromoethane addition is an intermediate bromoester, which upon
prolonged heating cyclizes to the desired product 5 [38]. Morpholinone 5a was stable for
prolonged periods at 4 ◦C (in a refrigerator), but if stored at room temperature for a few
weeks it tended to decompose.

Catalysts 2023, 13, x FOR PEER REVIEW 4 of 16 
 

 

[58]. This and other examples, some also sales blockbusters in 2021, are shown in Figure 2 
(structures F–I) [53–56]. 

In recent years, certain cyclic imides, e.g., phthalimide, have also been identified as 
key structural units for PROTACs (Proteolysis Targeting Chimerics), small molecules used 
to bind to a target pathogenic protein as well as to an E3 ubiquitin ligase which triggers 
ubiquitination and induces degradation of the pathogenic protein by the ubiquitin-pro-
teasome system [59–64]. Different from protein inhibition, this is a highly selective novel 
approach to disease control, for example, to destroy cancer cells. PROTACs are regarded 
as the next generation drugs and some are even undergoing clinical trials, e.g., K (Figure 
2) [59]. Considering the importance and many applications of cyclic amides, sustainable 
and environmentally friendly approaches to synthesize new derivatives, which may dis-
play novel properties, are highly desirable. Although the imide proton is weakly acidic 
and many reactions of imides involve treatment with a base to form an anion to increase 
its nucleophilic reactivity [65], the Gabriel synthesis of primary amines being an example, 
recent publications show its usefulness in CDC reactions, under oxidative conditions, 
playing the role of nucleophilic partner [33–35]. We have developed a novel regioselective 
and environmentally friendly method to couple 2-morpholinones to cyclic imides by 
cross-dehydrogenative C–N coupling (Figure 1d), which works under mild conditions, 
using an earth abundant copper salt as catalyst and molecular oxygen as oxidant, thus 
avoiding by-product formation. Our results are described next. 

2. Results 
To develop our method, we chose known morpholinone, N-phenyl morpholin-2-one 

(5a), as the starting material, which was synthesized by an adaptation of a known methods 
from the corresponding commercially available protected amino acid 3a. The morpho-
linones may also be obtained from aryl amines as shown in Figure 3 [38,66,67]. The initial 
product of 1,2-dibromoethane addition is an intermediate bromoester, which upon pro-
longed heating cyclizes to the desired product 5 [38]. Morpholinone 5a was stable for pro-
longed periods at 4 °C (in a refrigerator), but if stored at room temperature for a few weeks 
it tended to decompose. 

 
Figure 3. Synthetic route towards the 2-morpholinones. For the preparation of compound 5a, com-
mercially available 3a was used. 

The cross-dehydrogenative coupling of morpholinone 5a with phthalimide (Phth, 6a) 
was selected as the model reaction to study. As starting reaction conditions, those used by 
Raman and Chandrasekharam to couple N-arylglycine ester derivatives with 
phthalimides were used, namely 1,2-dichloroethane as solvent, at room temperature, with 
atmospheric oxygen (air) as oxidant, and Cu(I)Cl as catalyst [33]. However, under these 
conditions, only traces of product 6a were observed. When the temperature was raised to 
60 °C, and the reaction was performed under molecular O2 (in a balloon), the desired CDC 
product 6a was obtained with a 23% yield after 23 h (Table 1, entry 1). Coupling took place 
at C-3 exclusively, bearing the most activated C–H bond, since it is doubly activated by 
the nitrogen atom and the carbonyl function. No coupling was observed with C(6)–H. 
These results were not surprising in view of the fact that Raman and Chandrasekharam 
had found that under similar conditions, a substrate containing a tertiary nitrogen atom, 
i.e., N-methyl-N-phenylglycine ester, did not react, and that the presence of a free NH 
group was a requirement for coupling. When morpholinone 5a was reacted in DMSO no 

Figure 3. Synthetic route towards the 2-morpholinones. For the preparation of compound 5a,
commercially available 3a was used.

The cross-dehydrogenative coupling of morpholinone 5a with phthalimide (Phth, 6a)
was selected as the model reaction to study. As starting reaction conditions, those used by
Raman and Chandrasekharam to couple N-arylglycine ester derivatives with phthalimides
were used, namely 1,2-dichloroethane as solvent, at room temperature, with atmospheric
oxygen (air) as oxidant, and Cu(I)Cl as catalyst [33]. However, under these conditions,
only traces of product 6a were observed. When the temperature was raised to 60 ◦C, and
the reaction was performed under molecular O2 (in a balloon), the desired CDC product
6a was obtained with a 23% yield after 23 h (Table 1, entry 1). Coupling took place at
C-3 exclusively, bearing the most activated C–H bond, since it is doubly activated by the
nitrogen atom and the carbonyl function. No coupling was observed with C(6)–H. These
results were not surprising in view of the fact that Raman and Chandrasekharam had
found that under similar conditions, a substrate containing a tertiary nitrogen atom, i.e.,
N-methyl-N-phenylglycine ester, did not react, and that the presence of a free NH group
was a requirement for coupling. When morpholinone 5a was reacted in DMSO no product
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was obtained either (entry 2); however, in MeCN, at a higher temperature (60 ◦C), with
Cu(I)Cl as catalyst and under air, the desired C-3 imidated morpholinone was obtained in
37% yield (in a 0.2 M solution) during a similar period of time (cf. entries 2 and 3) although
under an atmosphere of molecular oxygen, not air, a further increase was observed (entries
3 and 4). Since a large amount of starting material remained unreacted, as evidenced by 1H
NMR spectroscopy, the reaction time was increased (entry 5) with only a small increase
in yield. Preliminary observations had already shown that the reaction tends to stall after
some time, with the conversion hardly increasing with time. Lowering the concentration
while raising the catalyst loading had a beneficial effect on the yield (cf. entries 4 and 6), but
a similar result was obtained when the reaction was performed at higher temperature with
a larger excess of morpholinone (cf. entries 5, 6 and 7). Increasing the concentration even
more made the results worse, and by-product formation was higher (cf. entries 6 and 8).

Table 1. Optimization of the reaction conditions 1.
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7 4 Cu(I)Cl (10) MeCN O2 0.1 None 70
8 Cu(I)Cl MeCN O2 0.3 None 60
9 Cu(I)Cl (30) MeCN O2 0.1 None 65

10 Cu(II)Cl2 MeCN O2 0.1 None Traces
11 Cu(I)Br MeCN O2 0.1 None 49
12 Fe(II)Cl2 MeCN O2 0.1 None 3
13 Cu(II)(OAc)2 MeCN O2 0.1 None 42

14 5 Cu(I)Cl (10) MeCN DTBP (2 equiv)/N2 0.1 None 40
15 5 Cu(I)Cl (10) MeCN DTBP (3 equiv)/N2 0.1 None 55
16 Cu(I)Cl MeCN DTBP (1 equiv)/N2 0.1 None 80
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18 Cu(I)Cl MeCN O2 0.1 Mol. sieves Traces
19 Cu(I)Cl MeCN O2 0.1 Pyridine (1.0 equiv) 31
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1 Conditions: morpholinone:imide:catalyst 2:1:0.15; [imide] = 0.1 M; AcOH: 1.5 equiv; reaction time 28 h. Re-
actions at 60 ◦C unless otherwise indicated. Add. = additive. 2 Determined by 1H NMR analysis with 4-
phenylcyclohexanone as internal standard in relation to the total amount of imide reacted. 3 Morpholinone:imide
2.5:1; 80 ◦C. 4 Reaction time = 41 h. 5 [imide] = 0.15 M.

Higher catalyst loadings were also no better (entry 9). A concentration of 0.1 M with
respect to the imide still gave the best result (entry 6), and this was preferable to running
the reaction at a higher temperature, with a lower catalyst loading but a larger excess of
morpholinone (entry 7). It thus seemed that this CDC reaction is highly susceptible to the
solvent used, as well as to the concentration of the terminal oxidant, molecular oxygen, and
that of the imide.

We also tried to use other metal salts as catalysts (entries 10–13), but Cu(I)Cl remained
the best catalyst. A search for oxidants showed, in preliminary experiments, that the
reaction did proceed in the presence of t-BuOOH in decane, but much more product was
obtained with DTBP (di-tert-butyl peroxide) during the same period of time. Increasing the
concentration of DTBP from 2.0 to 3.0 equiv caused a small increase in yield (cf. entries 14
and 15), but less product was obtained than when the reaction was performed under O2
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(entry 9). However, with 1.0 equiv of DTBP, the product could be obtained in 80% yield
(entry 16).

The use of additives was also explored in an attempt to improve results. The presence
of triethylamine or molecular sieves practically suppressed the reaction completely, but
with addition of pyridine a 30% yield could be obtained. Surprisingly, when acetic acid
was added, the yield jumped to 87% and increasing its concentration caused an even higher
increase in yield to 93% (entries 20 and 21). In the presence of this weak acid a clear
reaction mixture was obtained, whereas in its absence, a small amount of precipitate was
observed as the reaction proceeded. In recent times several reports have documented the
beneficial effect of acetic acid in accelerating CDC reactions of nitrogen heterocycles and
other amines, although the true nature of its role is not clear [68–72]. Finally, surprisingly,
we also observed that acetic acid alone, under an atmosphere of air, could promote this
CDC reaction affording the product in high yield (entry 22). If the acetic acid reaction was
performed under nitrogen, i.e., excluding all oxygen, the yield obtained was substantially
lower (entry 23). In the absence of both the copper salt and acetic acid, a small amount
of background reaction was also observed. However, in all cases, even at very high
conversions, there was always a small amount of unreacted imide present (less than 10%).
Continuing the reaction for long periods did not help. The best reaction conditions overall,
as shown in entry 21, were selected for further work, to explore the scope of the reaction.

It was found that cyclic imides with a variety of substitution patterns were compatible
with the reaction conditions, and the corresponding products were obtained in good to
high yields (Table 2). Unlike the starting morpholinones, the products were stable at room
temperature for a long period of time (months). In some cases, it was difficult to separate
by chromatography the product from the starting morpholinone. This led to lower yields of
product being obtained in some cases. An excess of morpholinone over the imine helped to
raise the yield, as observed in preliminary experiments. The reactions were regioselective,
with the 3-substituted morpholinone being produced exclusively. This is to be expected, in
view of the fact that a NC(3)HCOO radical is more stable than a NC(5)HCH2 radical, due
to the additional resonance stabilization provided by the CO group. Hence, it is easier to
form a C(3) radical than a C(5) radical, and loss of hydrogen occurs at this carbon atom
preferentially. A similar behavior is observed in reactions of β-keto esters [73,74].

Table 2. Scope of the CDC reaction between morpholin-2-ones and imides under the optimized
reaction conditions 1.
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
act to produce the corresponding functionalized morpholinone (7i), neither did saccharin 
acid yield 7j in a catalytic CDC reaction either at 60 or at 80 °C, in the presence or absence 
of acid. 

Table 2. Scope of the CDC reaction between morpholin-2-ones and imides under the optimized re-
action conditions 1. 

 

Entry Morpholinone Imide Product (M) Yield (%) 

1 
N

O O

Ph  

NH

O

O  

7a N

O O

Ph

N

O

O  

68 (93) 

2 
N

O O

Ph  

NH

O

O  

7b N

O O

Ph

N

O

O  

93 2 

3 
N

O O

Ph  

NH

O

O
O2N

7c N

O O

Ph

N

O

O
NO2 

27 

4 
N

O O

Ph  

O

O

NH

 

7d 

O

O

N

O O

Ph

N

 

36 (85) 

5 
N

O O

Ph  

O

O

NH

 

7e 

O

O

N

O O

Ph

N

 

83 3 

6 
N

O O

Ph  

O

O

NH

 

7f 

O

O

N

O O

Ph

N

 

71 

(dr = 1:1) 

7 
N

O O

Ph  

NH

O

O 

7g N

O O

Ph

N

O

O  

ND 

8 
N

O O

Ph  

NH

O

O 

7h N

O O

Ph

N

O

O  

36 (75) 

(at 80 °C) 4 

83 3

6

Catalysts 2023, 13, x FOR PEER REVIEW 7 of 16 
 

 

counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
act to produce the corresponding functionalized morpholinone (7i), neither did saccharin 
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
act to produce the corresponding functionalized morpholinone (7i), neither did saccharin 
acid yield 7j in a catalytic CDC reaction either at 60 or at 80 °C, in the presence or absence 
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
act to produce the corresponding functionalized morpholinone (7i), neither did saccharin 
acid yield 7j in a catalytic CDC reaction either at 60 or at 80 °C, in the presence or absence 
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
act to produce the corresponding functionalized morpholinone (7i), neither did saccharin 
acid yield 7j in a catalytic CDC reaction either at 60 or at 80 °C, in the presence or absence 
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
act to produce the corresponding functionalized morpholinone (7i), neither did saccharin 
acid yield 7j in a catalytic CDC reaction either at 60 or at 80 °C, in the presence or absence 
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
act to produce the corresponding functionalized morpholinone (7i), neither did saccharin 
acid yield 7j in a catalytic CDC reaction either at 60 or at 80 °C, in the presence or absence 
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
act to produce the corresponding functionalized morpholinone (7i), neither did saccharin 
acid yield 7j in a catalytic CDC reaction either at 60 or at 80 °C, in the presence or absence 
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
act to produce the corresponding functionalized morpholinone (7i), neither did saccharin 
acid yield 7j in a catalytic CDC reaction either at 60 or at 80 °C, in the presence or absence 
of acid. 
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counter-productive, and lower yields of product were obtained, e.g., the reaction of 4-
nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not re-
act to produce the corresponding functionalized morpholinone (7i), neither did saccharin 
acid yield 7j in a catalytic CDC reaction either at 60 or at 80 °C, in the presence or absence 
of acid. 
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1 Reaction conditions: morpholinone:imide:catalyst 2:1:0.15; [imide] = 0.1 M; reaction time 28 h. The 
yields reported are of isolated products, after chromatographic purification. Numbers within brack-
ets are yields determined by 1H NMR spectroscopy, relative to the internal standard 4-phenylcyclo-
hexanone. 2 Reaction performed for 48 h; 3 Reaction time = 31 h; 4 No AcOH used; ND = Not detected. 

The enantiomerically pure drug (R)-ethosuximide (3-ethyl-3-methyl-pyrrolidine-2,5-
dione) also reacted smoothly, providing morpholinone adduct 7f in high yield as a 1:1 
mixture of two diastereoisomers. Ethosuximide is a medication used to treat absence sei-
zures, sold under the brand name Zarontin amongst others. It is on the World Health 
Organization’s List of Essential Medicines [75]. In addition, when the phenyl nitrogen 
protecting group was replaced by tolyl, the desired CDC reaction proceeded smoothly to 
afford the desired product 7k in 75% yield after chromatography. The structures of all the 
new compounds were confirmed by NMR and infrared spectroscopy and by elemental 
analysis [also confirmed by mass spectrometry (ESI-MS)]. Copies of the spectra are avail-
able in the Supplementary information file. 

Although in recent years, molecular dioxygen has emerged as an oxidant for oxida-
tive coupling reactions, the actual reaction mechanisms by which it operates are still the 
subject of debate [76–78]. O2 is both thermodynamically and kinetically stable, with a tri-
plet ground state, and, hence, its activation is challenging. First row transition metals like 
copper tend to work, probably because they are prone to function via single electron steps. 

The exact mechanism of the present imidation reaction is not known. We performed 
an experiment in which 1.0 mol equiv of the radical trap 2,2,6,6-tetramethylpiperidin-1-
oxyl (TEMPO) was added to the reaction mixture of morpholinone 5a and phthalimide, 
under the standard reaction conditions of Cu(I)Cl and AcOH catalysis, and some reaction 
suppression was observed, i.e., there was only ~70% conversion of the phthalimide into 
product 7a over the usual 28 h. When the reaction was performed under identical condi-
tions with 1.0 equiv of TEMPO and Cu(I)Cl as catalyst, but without AcOH, a large sup-
pression was observed, and there was only ~25% conversion of the Phth into product 6a. 
These results suggest that when Cu(I)Cl is used alone as a catalyst the reaction follows a 
radical pathway. However, when AcOH is added, the reaction mechanism changes, alt-
hough some radical-mediated reaction may still take place to a smaller extent. Based on 
these results and previous findings by others on oxidative couplings of other benzylic 
species [76–78], we tentatively propose that a mechanism similar to that shown in Figure 
4a may be operating, with copper-catalyzed oxidation of the tertiary amine giving rise to 
an iminium ion A, which is subsequently trapped by the weakly nucleophilic imides. The 
species [HOOCuBr]− has also been proposed as a very probable iminium counterion by 
Zhang, Wiest, Wu, and coworkers in a recent computational study on the mechanism of 
copper-catalyzed sp3-CH CDC reactions [79]. The role of the acetic acid in the present 
study may be to protonate nitrogen and hence accelerate iminium ion formation, which 
would lead to the rate acceleration observed. 
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copper tend to work, probably because they are prone to function via single electron steps. 
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an experiment in which 1.0 mol equiv of the radical trap 2,2,6,6-tetramethylpiperidin-1-
oxyl (TEMPO) was added to the reaction mixture of morpholinone 5a and phthalimide, 
under the standard reaction conditions of Cu(I)Cl and AcOH catalysis, and some reaction 
suppression was observed, i.e., there was only ~70% conversion of the phthalimide into 
product 7a over the usual 28 h. When the reaction was performed under identical condi-
tions with 1.0 equiv of TEMPO and Cu(I)Cl as catalyst, but without AcOH, a large sup-
pression was observed, and there was only ~25% conversion of the Phth into product 6a. 
These results suggest that when Cu(I)Cl is used alone as a catalyst the reaction follows a 
radical pathway. However, when AcOH is added, the reaction mechanism changes, alt-
hough some radical-mediated reaction may still take place to a smaller extent. Based on 
these results and previous findings by others on oxidative couplings of other benzylic 
species [76–78], we tentatively propose that a mechanism similar to that shown in Figure 
4a may be operating, with copper-catalyzed oxidation of the tertiary amine giving rise to 
an iminium ion A, which is subsequently trapped by the weakly nucleophilic imides. The 
species [HOOCuBr]− has also been proposed as a very probable iminium counterion by 
Zhang, Wiest, Wu, and coworkers in a recent computational study on the mechanism of 
copper-catalyzed sp3-CH CDC reactions [79]. The role of the acetic acid in the present 
study may be to protonate nitrogen and hence accelerate iminium ion formation, which 
would lead to the rate acceleration observed. 
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yields reported are of isolated products, after chromatographic purification. Numbers within brack-
ets are yields determined by 1H NMR spectroscopy, relative to the internal standard 4-phenylcyclo-
hexanone. 2 Reaction performed for 48 h; 3 Reaction time = 31 h; 4 No AcOH used; ND = Not detected. 

The enantiomerically pure drug (R)-ethosuximide (3-ethyl-3-methyl-pyrrolidine-2,5-
dione) also reacted smoothly, providing morpholinone adduct 7f in high yield as a 1:1 
mixture of two diastereoisomers. Ethosuximide is a medication used to treat absence sei-
zures, sold under the brand name Zarontin amongst others. It is on the World Health 
Organization’s List of Essential Medicines [75]. In addition, when the phenyl nitrogen 
protecting group was replaced by tolyl, the desired CDC reaction proceeded smoothly to 
afford the desired product 7k in 75% yield after chromatography. The structures of all the 
new compounds were confirmed by NMR and infrared spectroscopy and by elemental 
analysis [also confirmed by mass spectrometry (ESI-MS)]. Copies of the spectra are avail-
able in the Supplementary information file. 

Although in recent years, molecular dioxygen has emerged as an oxidant for oxida-
tive coupling reactions, the actual reaction mechanisms by which it operates are still the 
subject of debate [76–78]. O2 is both thermodynamically and kinetically stable, with a tri-
plet ground state, and, hence, its activation is challenging. First row transition metals like 
copper tend to work, probably because they are prone to function via single electron steps. 

The exact mechanism of the present imidation reaction is not known. We performed 
an experiment in which 1.0 mol equiv of the radical trap 2,2,6,6-tetramethylpiperidin-1-
oxyl (TEMPO) was added to the reaction mixture of morpholinone 5a and phthalimide, 
under the standard reaction conditions of Cu(I)Cl and AcOH catalysis, and some reaction 
suppression was observed, i.e., there was only ~70% conversion of the phthalimide into 
product 7a over the usual 28 h. When the reaction was performed under identical condi-
tions with 1.0 equiv of TEMPO and Cu(I)Cl as catalyst, but without AcOH, a large sup-
pression was observed, and there was only ~25% conversion of the Phth into product 6a. 
These results suggest that when Cu(I)Cl is used alone as a catalyst the reaction follows a 
radical pathway. However, when AcOH is added, the reaction mechanism changes, alt-
hough some radical-mediated reaction may still take place to a smaller extent. Based on 
these results and previous findings by others on oxidative couplings of other benzylic 
species [76–78], we tentatively propose that a mechanism similar to that shown in Figure 
4a may be operating, with copper-catalyzed oxidation of the tertiary amine giving rise to 
an iminium ion A, which is subsequently trapped by the weakly nucleophilic imides. The 
species [HOOCuBr]− has also been proposed as a very probable iminium counterion by 
Zhang, Wiest, Wu, and coworkers in a recent computational study on the mechanism of 
copper-catalyzed sp3-CH CDC reactions [79]. The role of the acetic acid in the present 
study may be to protonate nitrogen and hence accelerate iminium ion formation, which 
would lead to the rate acceleration observed. 
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The enantiomerically pure drug (R)-ethosuximide (3-ethyl-3-methyl-pyrrolidine-2,5-
dione) also reacted smoothly, providing morpholinone adduct 7f in high yield as a 1:1 
mixture of two diastereoisomers. Ethosuximide is a medication used to treat absence sei-
zures, sold under the brand name Zarontin amongst others. It is on the World Health 
Organization’s List of Essential Medicines [75]. In addition, when the phenyl nitrogen 
protecting group was replaced by tolyl, the desired CDC reaction proceeded smoothly to 
afford the desired product 7k in 75% yield after chromatography. The structures of all the 
new compounds were confirmed by NMR and infrared spectroscopy and by elemental 
analysis [also confirmed by mass spectrometry (ESI-MS)]. Copies of the spectra are avail-
able in the Supplementary information file. 

Although in recent years, molecular dioxygen has emerged as an oxidant for oxida-
tive coupling reactions, the actual reaction mechanisms by which it operates are still the 
subject of debate [76–78]. O2 is both thermodynamically and kinetically stable, with a tri-
plet ground state, and, hence, its activation is challenging. First row transition metals like 
copper tend to work, probably because they are prone to function via single electron steps. 

The exact mechanism of the present imidation reaction is not known. We performed 
an experiment in which 1.0 mol equiv of the radical trap 2,2,6,6-tetramethylpiperidin-1-
oxyl (TEMPO) was added to the reaction mixture of morpholinone 5a and phthalimide, 
under the standard reaction conditions of Cu(I)Cl and AcOH catalysis, and some reaction 
suppression was observed, i.e., there was only ~70% conversion of the phthalimide into 
product 7a over the usual 28 h. When the reaction was performed under identical condi-
tions with 1.0 equiv of TEMPO and Cu(I)Cl as catalyst, but without AcOH, a large sup-
pression was observed, and there was only ~25% conversion of the Phth into product 6a. 
These results suggest that when Cu(I)Cl is used alone as a catalyst the reaction follows a 
radical pathway. However, when AcOH is added, the reaction mechanism changes, alt-
hough some radical-mediated reaction may still take place to a smaller extent. Based on 
these results and previous findings by others on oxidative couplings of other benzylic 
species [76–78], we tentatively propose that a mechanism similar to that shown in Figure 
4a may be operating, with copper-catalyzed oxidation of the tertiary amine giving rise to 
an iminium ion A, which is subsequently trapped by the weakly nucleophilic imides. The 
species [HOOCuBr]− has also been proposed as a very probable iminium counterion by 
Zhang, Wiest, Wu, and coworkers in a recent computational study on the mechanism of 
copper-catalyzed sp3-CH CDC reactions [79]. The role of the acetic acid in the present 
study may be to protonate nitrogen and hence accelerate iminium ion formation, which 
would lead to the rate acceleration observed. 

ND

11

Catalysts 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 

9 
N

O O

Ph  

NH

N
H

O

OO  

7i N

O O

Ph

N

N
H

O

O O 

ND 

10 
N

O O

Ph  
S

O

O

O

NH

 

7j S

O

O

O

N

O O

Ph

N

 

ND 

11 
N

O O

Tol  

NH

O

O  

7k N

O O

N

O

O
Tol

 

75 

1 Reaction conditions: morpholinone:imide:catalyst 2:1:0.15; [imide] = 0.1 M; reaction time 28 h. The 
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ets are yields determined by 1H NMR spectroscopy, relative to the internal standard 4-phenylcyclo-
hexanone. 2 Reaction performed for 48 h; 3 Reaction time = 31 h; 4 No AcOH used; ND = Not detected. 

The enantiomerically pure drug (R)-ethosuximide (3-ethyl-3-methyl-pyrrolidine-2,5-
dione) also reacted smoothly, providing morpholinone adduct 7f in high yield as a 1:1 
mixture of two diastereoisomers. Ethosuximide is a medication used to treat absence sei-
zures, sold under the brand name Zarontin amongst others. It is on the World Health 
Organization’s List of Essential Medicines [75]. In addition, when the phenyl nitrogen 
protecting group was replaced by tolyl, the desired CDC reaction proceeded smoothly to 
afford the desired product 7k in 75% yield after chromatography. The structures of all the 
new compounds were confirmed by NMR and infrared spectroscopy and by elemental 
analysis [also confirmed by mass spectrometry (ESI-MS)]. Copies of the spectra are avail-
able in the Supplementary information file. 

Although in recent years, molecular dioxygen has emerged as an oxidant for oxida-
tive coupling reactions, the actual reaction mechanisms by which it operates are still the 
subject of debate [76–78]. O2 is both thermodynamically and kinetically stable, with a tri-
plet ground state, and, hence, its activation is challenging. First row transition metals like 
copper tend to work, probably because they are prone to function via single electron steps. 

The exact mechanism of the present imidation reaction is not known. We performed 
an experiment in which 1.0 mol equiv of the radical trap 2,2,6,6-tetramethylpiperidin-1-
oxyl (TEMPO) was added to the reaction mixture of morpholinone 5a and phthalimide, 
under the standard reaction conditions of Cu(I)Cl and AcOH catalysis, and some reaction 
suppression was observed, i.e., there was only ~70% conversion of the phthalimide into 
product 7a over the usual 28 h. When the reaction was performed under identical condi-
tions with 1.0 equiv of TEMPO and Cu(I)Cl as catalyst, but without AcOH, a large sup-
pression was observed, and there was only ~25% conversion of the Phth into product 6a. 
These results suggest that when Cu(I)Cl is used alone as a catalyst the reaction follows a 
radical pathway. However, when AcOH is added, the reaction mechanism changes, alt-
hough some radical-mediated reaction may still take place to a smaller extent. Based on 
these results and previous findings by others on oxidative couplings of other benzylic 
species [76–78], we tentatively propose that a mechanism similar to that shown in Figure 
4a may be operating, with copper-catalyzed oxidation of the tertiary amine giving rise to 
an iminium ion A, which is subsequently trapped by the weakly nucleophilic imides. The 
species [HOOCuBr]− has also been proposed as a very probable iminium counterion by 
Zhang, Wiest, Wu, and coworkers in a recent computational study on the mechanism of 
copper-catalyzed sp3-CH CDC reactions [79]. The role of the acetic acid in the present 
study may be to protonate nitrogen and hence accelerate iminium ion formation, which 
would lead to the rate acceleration observed. 
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The enantiomerically pure drug (R)-ethosuximide (3-ethyl-3-methyl-pyrrolidine-2,5-
dione) also reacted smoothly, providing morpholinone adduct 7f in high yield as a 1:1 
mixture of two diastereoisomers. Ethosuximide is a medication used to treat absence sei-
zures, sold under the brand name Zarontin amongst others. It is on the World Health 
Organization’s List of Essential Medicines [75]. In addition, when the phenyl nitrogen 
protecting group was replaced by tolyl, the desired CDC reaction proceeded smoothly to 
afford the desired product 7k in 75% yield after chromatography. The structures of all the 
new compounds were confirmed by NMR and infrared spectroscopy and by elemental 
analysis [also confirmed by mass spectrometry (ESI-MS)]. Copies of the spectra are avail-
able in the Supplementary information file. 

Although in recent years, molecular dioxygen has emerged as an oxidant for oxida-
tive coupling reactions, the actual reaction mechanisms by which it operates are still the 
subject of debate [76–78]. O2 is both thermodynamically and kinetically stable, with a tri-
plet ground state, and, hence, its activation is challenging. First row transition metals like 
copper tend to work, probably because they are prone to function via single electron steps. 

The exact mechanism of the present imidation reaction is not known. We performed 
an experiment in which 1.0 mol equiv of the radical trap 2,2,6,6-tetramethylpiperidin-1-
oxyl (TEMPO) was added to the reaction mixture of morpholinone 5a and phthalimide, 
under the standard reaction conditions of Cu(I)Cl and AcOH catalysis, and some reaction 
suppression was observed, i.e., there was only ~70% conversion of the phthalimide into 
product 7a over the usual 28 h. When the reaction was performed under identical condi-
tions with 1.0 equiv of TEMPO and Cu(I)Cl as catalyst, but without AcOH, a large sup-
pression was observed, and there was only ~25% conversion of the Phth into product 6a. 
These results suggest that when Cu(I)Cl is used alone as a catalyst the reaction follows a 
radical pathway. However, when AcOH is added, the reaction mechanism changes, alt-
hough some radical-mediated reaction may still take place to a smaller extent. Based on 
these results and previous findings by others on oxidative couplings of other benzylic 
species [76–78], we tentatively propose that a mechanism similar to that shown in Figure 
4a may be operating, with copper-catalyzed oxidation of the tertiary amine giving rise to 
an iminium ion A, which is subsequently trapped by the weakly nucleophilic imides. The 
species [HOOCuBr]− has also been proposed as a very probable iminium counterion by 
Zhang, Wiest, Wu, and coworkers in a recent computational study on the mechanism of 
copper-catalyzed sp3-CH CDC reactions [79]. The role of the acetic acid in the present 
study may be to protonate nitrogen and hence accelerate iminium ion formation, which 
would lead to the rate acceleration observed. 
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The enantiomerically pure drug (R)-ethosuximide (3-ethyl-3-methyl-pyrrolidine-2,5-
dione) also reacted smoothly, providing morpholinone adduct 7f in high yield as a 1:1 
mixture of two diastereoisomers. Ethosuximide is a medication used to treat absence sei-
zures, sold under the brand name Zarontin amongst others. It is on the World Health 
Organization’s List of Essential Medicines [75]. In addition, when the phenyl nitrogen 
protecting group was replaced by tolyl, the desired CDC reaction proceeded smoothly to 
afford the desired product 7k in 75% yield after chromatography. The structures of all the 
new compounds were confirmed by NMR and infrared spectroscopy and by elemental 
analysis [also confirmed by mass spectrometry (ESI-MS)]. Copies of the spectra are avail-
able in the Supplementary information file. 

Although in recent years, molecular dioxygen has emerged as an oxidant for oxida-
tive coupling reactions, the actual reaction mechanisms by which it operates are still the 
subject of debate [76–78]. O2 is both thermodynamically and kinetically stable, with a tri-
plet ground state, and, hence, its activation is challenging. First row transition metals like 
copper tend to work, probably because they are prone to function via single electron steps. 

The exact mechanism of the present imidation reaction is not known. We performed 
an experiment in which 1.0 mol equiv of the radical trap 2,2,6,6-tetramethylpiperidin-1-
oxyl (TEMPO) was added to the reaction mixture of morpholinone 5a and phthalimide, 
under the standard reaction conditions of Cu(I)Cl and AcOH catalysis, and some reaction 
suppression was observed, i.e., there was only ~70% conversion of the phthalimide into 
product 7a over the usual 28 h. When the reaction was performed under identical condi-
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1 Reaction conditions: morpholinone:imide:catalyst 2:1:0.15; [imide] = 0.1 M; reaction time 28 h. The yields
reported are of isolated products, after chromatographic purification. Numbers within brackets are yields
determined by 1H NMR spectroscopy, relative to the internal standard 4-phenylcyclohexanone. 2 Reaction
performed for 48 h; 3 Reaction time = 31 h; 4 No AcOH used; ND = Not detected.

Cyclic imides with a five-membered ring reacted smoothly at 60 ◦C, affording the
products in in up to 93% yield. The meso phthalimide cis-1,2,3,6-tetrahydrophthalimide
produced 7b with an excellent yield of 93%. The linear imide N-acetylacetamide failed to
react to yield the desired product 7g. The reaction conditions were, however, compatible
with 6-membered cyclic imides and glutarimide afforded the product 7h, although it was
slower to react than the five-membered ring imides. It was found necessary to perform
the reaction at a higher temperature of 80 ◦C for a good yield of product to be obtained.
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In this case, the absence of acid was also found to favor the reaction. The presence of
double bonds in the substrates, i.e., in 7b and 7d, did not influence the results and the
reactions were also regioselective. The presence of additional electron withdrawing groups
was counter-productive, and lower yields of product were obtained, e.g., the reaction of
4-nitrophthalimide to afford 7c. Presumably for a similar reason, barbituric acid did not
react to produce the corresponding functionalized morpholinone (7i), neither did saccharin
acid yield 7j in a catalytic CDC reaction either at 60 or at 80 ◦C, in the presence or absence
of acid.

The enantiomerically pure drug (R)-ethosuximide (3-ethyl-3-methyl-pyrrolidine-2,5-
dione) also reacted smoothly, providing morpholinone adduct 7f in high yield as a 1:1
mixture of two diastereoisomers. Ethosuximide is a medication used to treat absence
seizures, sold under the brand name Zarontin amongst others. It is on the World Health
Organization’s List of Essential Medicines [75]. In addition, when the phenyl nitrogen
protecting group was replaced by tolyl, the desired CDC reaction proceeded smoothly to
afford the desired product 7k in 75% yield after chromatography. The structures of all the
new compounds were confirmed by NMR and infrared spectroscopy and by elemental
analysis [also confirmed by mass spectrometry (ESI-MS)]. Copies of the spectra are available
in the Supplementary information file.

Although in recent years, molecular dioxygen has emerged as an oxidant for oxidative
coupling reactions, the actual reaction mechanisms by which it operates are still the subject
of debate [76–78]. O2 is both thermodynamically and kinetically stable, with a triplet
ground state, and, hence, its activation is challenging. First row transition metals like
copper tend to work, probably because they are prone to function via single electron steps.

The exact mechanism of the present imidation reaction is not known. We performed
an experiment in which 1.0 mol equiv of the radical trap 2,2,6,6-tetramethylpiperidin-1-
oxyl (TEMPO) was added to the reaction mixture of morpholinone 5a and phthalimide,
under the standard reaction conditions of Cu(I)Cl and AcOH catalysis, and some reaction
suppression was observed, i.e., there was only ~70% conversion of the phthalimide into
product 7a over the usual 28 h. When the reaction was performed under identical conditions
with 1.0 equiv of TEMPO and Cu(I)Cl as catalyst, but without AcOH, a large suppression
was observed, and there was only ~25% conversion of the Phth into product 6a. These
results suggest that when Cu(I)Cl is used alone as a catalyst the reaction follows a radical
pathway. However, when AcOH is added, the reaction mechanism changes, although some
radical-mediated reaction may still take place to a smaller extent. Based on these results and
previous findings by others on oxidative couplings of other benzylic species [76–78], we
tentatively propose that a mechanism similar to that shown in Figure 4a may be operating,
with copper-catalyzed oxidation of the tertiary amine giving rise to an iminium ion A, which
is subsequently trapped by the weakly nucleophilic imides. The species [HOOCuBr]−

has also been proposed as a very probable iminium counterion by Zhang, Wiest, Wu,
and coworkers in a recent computational study on the mechanism of copper-catalyzed
sp3-CH CDC reactions [79]. The role of the acetic acid in the present study may be to
protonate nitrogen and hence accelerate iminium ion formation, which would lead to the
rate acceleration observed.

In the case of the metal-free reaction (Figure 4b), in the presence of AcOH and molec-
ular oxygen, a mechanism similar to that proposed by Tokuyama and co-workers for
oxidative coupling reactions at the α-position of tertiary amines is a possibility. It involves
the formation of an intermediate radical B by auto-oxidation, which reacts further with
molecular oxygen to generate peroxide C. Radical C can abstract a hydrogen atom from
another substrate molecule 5a, producing D and more B. In the presence of acetic acid,
the iminium ion A is formed, which reacts with the nucleophilic imide to giving rise to
the final product 7a [70]. The two mechanisms could also act simultaneously, through
the common intermediate A, which would increase the reaction rate, in the metal/AcOH
catalyzed reaction.



Catalysts 2023, 13, 1072 9 of 16

Catalysts 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 

In the case of the metal-free reaction (Figure 4b), in the presence of AcOH and mo-
lecular oxygen, a mechanism similar to that proposed by Tokuyama and co-workers for 
oxidative coupling reactions at the α-position of tertiary amines is a possibility. It involves 
the formation of an intermediate radical B by auto-oxidation, which reacts further with 
molecular oxygen to generate peroxide C. Radical C can abstract a hydrogen atom from 
another substrate molecule 5a, producing D and more B. In the presence of acetic acid, the 
iminium ion A is formed, which reacts with the nucleophilic imide to giving rise to the 
final product 7a [70]. The two mechanisms could also act simultaneously, through the 
common intermediate A, which would increase the reaction rate, in the metal/AcOH cat-
alyzed reaction. 

 
Figure 4. (a) The mechanism proposed for the copper(I)-AcOH-catalyzed reaction and (b) for the 
metal-free reaction. [Cu] represents CuCl. 

To the best of our knowledge, the functionalized morpholinones 7 obtained in this 
work are all new compounds, so far undocumented. 

3. Materials and Methods 
3.1. General Methods 

All the reagents were of analytical grade, acquired from commercial suppliers [Acros 
Organics (Geel, Belgium), Alfa Aesar (Kandel, Germany), Fluka (Buchs, Switzerland),TCI 
(Zwijndrecht, Belgium), Fisher Chemical (Porto Salvo, Portugal), or Sigma-Aldrich 
(Merck, Darmstadt, Germany)]. unless otherwise stated below, and were used without 
further purification. Compressed oxygen gas (purity 99.999%) was supplied by Air 
Liquide (Portugal). One-dimensional (1H, 13C, and DEPT) and two-dimensional (COSY, 
HSQC and HMBC) NMR spectra were recorded on a Bruker Avance (300 MHz) spectrom-
eter or on a Bruker Avance (400 MHz) spectrometer (Brucker, Bremen, Germany) in deu-
terated chloroform (CDCl3) as solvent. Chemical shifts are reported in ppm relative to the 
residual CHCl3 solvent peaks and coupling constants (J) are reported in Hertz. Resonance 
and structural assignments were based on the analysis of coupling patterns, including the 
13C−1H coupling profiles obtained in bidimensional heteronuclear multiple bond correla-
tion (HMBC) and heteronuclear single quantum coherence (HSQC) experiments, per-
formed with standard pulse programs. Multiplicities in 13C were determined by DEPT 
experiments. Infrared spectra were recorded neat on an Agilent Cary 630 FTIR spectro-
photometer (Agilent, Santa Clara, CA, USA). Elemental analyses (C, H and N) were 
performed by the microanalytical services of the Laboratório de Análises do Instituto 
Superior Técnico (LAIST-IST, Universidade de Lisboa, Portugal). High resolution mass 
spectra were performed by the Mass Spectrometry Laboratory of IST (Universidade de 
Lisboa, Portugal). They were obtained on a QqTOF Impact IITM mass spectrometer (Bruker 
Daltonics, Bremen, Germany) interfaced with an ESI source operating in the positive 
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metal-free reaction. [Cu] represents CuCl.

To the best of our knowledge, the functionalized morpholinones 7 obtained in this
work are all new compounds, so far undocumented.

3. Materials and Methods
3.1. General Methods

All the reagents were of analytical grade, acquired from commercial suppliers [Acros
Organics (Geel, Belgium), Alfa Aesar (Kandel, Germany), Fluka (Buchs, Switzerland),TCI
(Zwijndrecht, Belgium), Fisher Chemical (Porto Salvo, Portugal), or Sigma-Aldrich (Merck,
Darmstadt, Germany)]. unless otherwise stated below, and were used without further pu-
rification. Compressed oxygen gas (purity 99.999%) was supplied by Air Liquide (Portugal).
One-dimensional (1H, 13C, and DEPT) and two-dimensional (COSY, HSQC and HMBC)
NMR spectra were recorded on a Bruker Avance (300 MHz) spectrometer or on a Bruker
Avance (400 MHz) spectrometer (Brucker, Bremen, Germany) in deuterated chloroform
(CDCl3) as solvent. Chemical shifts are reported in ppm relative to the residual CHCl3
solvent peaks and coupling constants (J) are reported in Hertz. Resonance and structural as-
signments were based on the analysis of coupling patterns, including the 13C−1H coupling
profiles obtained in bidimensional heteronuclear multiple bond correlation (HMBC) and
heteronuclear single quantum coherence (HSQC) experiments, performed with standard
pulse programs. Multiplicities in 13C were determined by DEPT experiments. Infrared
spectra were recorded neat on an Agilent Cary 630 FTIR spectrophotometer (Agilent, Santa
Clara, CA, USA). Elemental analyses (C, H and N) were performed by the microanalytical
services of the Laboratório de Análises do Instituto Superior Técnico (LAIST-IST, Univer-
sidade de Lisboa, Portugal). High resolution mass spectra were performed by the Mass
Spectrometry Laboratory of IST (Universidade de Lisboa, Portugal). They were obtained
on a QqTOF Impact IITM mass spectrometer (Bruker Daltonics, Bremen, Germany) in-
terfaced with an ESI source operating in the positive mode. Samples were analyzed by
direct infusion (DI), and the mass analyser was calibrated with a solution of ammonium
formate (10 mM) at the beginning of each analysis. The full scan mass spectra were ac-
quired over a mass range of 100–1000 m/z at a spectra rate of 1 Hz. Data were acquired
and processed using Bruker Compass Data Analysis ver 5.1 software of LAIST (Bruker
Daltonics, Bremen, Germany).

The starting morpholinones are not commercially available and were synthesized by
known methods [38,66,67], and so was 4-nitrophthalimide (5-nitroisoindole-1,3-dione) [80].
The substances synthesized produced NMR spectra (1H and 13C) identical to those de-
scribed in the literature as follows: N-phenyl morpholine-2-one [45]; 4-nitrophthalimide [81].
Copies are available below. Melting points were determined either by a Büchi melting
point apparatus B-540 (Büchi, Flawil, Switzerland) or by a Leica Galen III melting point
apparatus (Aigner-Unilab Laborfachhandel, Vienna, Austria), and they are uncorrected.
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3.2. General Procedure for the CDC Reaction between Morpholinones and Imides

The morpholinone (2.0 mmol), the imide (1.0 mmol) and Cu(I)Cl (0.15 mmol) were
dissolved in acetonitrile (10 mL). Acetic acid (1.5 equiv., 1.5 mmol) was added dropwise
with a syringe. The flask was topped-up with an oxygen balloon. The reaction mixture was
heated to 60 or to 80 ◦C as required and stirred for the appropriate time at that temperature.
After cooling, the reaction mixture was filtered through a small plug of silica gel with the
aid of more acetonitrile. Subsequently, the solvent was evaporated off in a rotary evaporator
to afford the crude dry product, which was purified by silica gel chromatography. The
purified derivatized morpholinones 7 were stable at room temperature for long periods of
time (months). They were slightly hygroscopic.

3.3. Characterization Data of Products and Starting Materials

3-(1,3-Dioxoindolin-2-yl)-4-phenylmorpholin-2-one (7a): Prepared from N-phenyl
morpholine-2-one and phthalimide according to the general procedure, in a reaction per-
formed at 60 ◦C. Purified by plate chromatography (silica gel) with dichloromethane/ethyl
acetate (8:1) as eluent. Obtained as buff-colored crystals, 57.8 mg, 68% yield, m.p. 166 ◦C.
1H NMR (CDCl3): δ 3.758 (dt, 1 H, J 2.5, 13.4 Hz, C(5)HH), 4.249 (overlapp ddd, 1 H, J 1.3,
10.8, 13.6 Hz, C(5)HH), 4.62–4.79 (m, 2 H, 2 × H-6), 6.516 (s, 1 H, H-3), 6.911 (t, 1 H, J 7.3 Hz,
p-Ph-H), 7.020 (d, 2 H, J 8.5 Hz, 2 × o-Ph-H), 7.279 (overlapp. t, 1 H, J 6.9 Hz, m-Ph-H),
7.282 (overlapp. t, 1 H, J 7.4 Hz, m-Ph-H), 7.734 (dd, 2 H, J 3.1 Hz, 5.5 Hz, H-6′ and H-7′),
7.835 (dd, 2 H, J 3.0, 5.5 Hz, H-5′, H-8′) ppm. 13C NMR (CDCl3): δ 42.27 (CH2, C-5), 61.72
(CH, C-3), 69.32 (CH2, C-6), 115.78 (CH, 2 × o-Ph-H), 121.13 (CH, p-C, Ph), 123.78 (CH, C-5′

and C-8′), 129.41 (CH, 2 × m-Ph-H), 131.55 (Cq, i-C, Ph), 134.42 (CH, C-6′ and C-7′), 144.83
(Cq, C-4′ and C-9′), 164.41 (Cq, CO, C-2), 167.43 (Cq, 2 × Phth-CO) ppm. IR (neat): ṽ 2957,
1742, 1714, 1600, 1500, 1380, 1221, 1186, 1080, 1000, 979, 886, 765, 714, 693, 656, 521 cm−1.
Elemental analysis: Calcd for C18H14N2O4· 14 H2O: C, 66.15; H, 4.47; N, 8.57. Found C, 66.19;
H, 4.12; N, 8.49. HRMS (ESI): Calcd for C18H14N2NaO4: 345.0847. Found: 345.0846. Calcd
for C18H14KN2O4: 361.0589. Found: 361.0585.
2-(2-Oxo-4-phenylmorpholin-3-yl)-3a,4,7,7a-tetrahydroisoindole-1,3-dione (7b):
Prepared from N-phenyl morpholine-2-one and cis-1,2,3,6-tetrahydrophthalimide according
to the general procedure, in a reaction performed at 60 ◦C. Purified by plate chromatogra-
phy (silica gel) with dichloromethane/ethyl acetate (8:1) as eluent. Obtained as buff-colored
crystals, 38.2 mg, 93% yield, m.p. 131–133 ◦C. 1H NMR (CDCl3): δ 2.129 (dd, 2 H, J 6.6,
15.0 Hz, C(5′)HH and C(8′)HH), 2.363 (d, 2 H, J 13.9 Hz, C(5′)HH and C(8′)HH), 2.94–3.11
(m, 2 H, H-4′ and H-9′), 3.584 (apparent. d, 1 H, 13.0 Hz, C(5)HH), 4.136 (appar. t, 1 H, J
12.7 Hz, C(5)HH), 4.53–4.71 (m, 2 H, 2 × H-6), 5.536 (apparent. s, 2 H, 6′ and 7′), 6.327 (s,
1 H, H-3), 6.880 (d, 2 H, J 7.8 Hz, 2 × o-Ph-H), 6.934 (t, 1 H, J 7.0 Hz, p-Ph-H), 7.258 (t, 2 H,
J 7.4 Hz, 2 × m-Ph-H) ppm. 13C NMR (CDCl3): δ 23.15/23.27 (2 × CH2, C-5′ and C-8′),
38.84/39.23 (2 × CH, C-4′ and C-9′), 42.61 (CH2, C-5), 61.88 (CH, C-3), 69.28 (CH2, C-6),
116.46 (CH, 2 × o-Ph-C), 121.28 (CH, p-Ph-C), 126.73/127.06 (2 × CH, C-6 and C-7), 129.19
(CH, 2 × m-Ph-C), 144.70 (Cq, i-Ph-C), 163.99 (Cq, C-2), 179.12/179.19 (2 × Cq, C-1′ and
C-3′) ppm. IR (neat): ṽ 3063, 3042, 2971, 2945, 2910, 2853, 1735, 1707, 1600, 1496, 1347, 1274,
1234, 1194, 1165, 1087, 1029, 995, 981, 894, 753, 684 cm−1. Elemental analysis: Calcd for
C18H18N2O4· 12 H2O: C, 64.47; H, 5.71; N, 8.36. Found C, 64.88; H, 5.67; N, 8.49.
3-(6-Nitro-1,3-dioxo-indolin-2-yl)-4-phenylmorpholin-2-one (7c): Prepared from N-
phenyl morpholine-2-one and 4-nitrophthalimide according to the general procedure,
in a reaction performed at 60 ◦C. Purified by plate chromatography (silica gel) with ethyl
acetate/hexane (1:3) as eluent, followed by an elution with dichloromethane/ethyl acetate
(8:1). Obtained as pale orange crystals, 12.5 mg, 27% yield, m.p. 192–193 ◦C. 1H NMR
(CDCl3): δ 3.768 (d, 1 H, J 13.4 Hz, C(5)HH), 4.213 (t, 1 H, 11.8 Hz, C(5)HH), 4.65–4.80 (m,
2 H, 6-H), 6.549 (s, H-3), 6.923 (t, 1 H, J 7.1 Hz, p-Ph-H), 6.994 (d, 2 H, 2 × o-Ph-H), 7.23–7.34
(m, 2 H, 2 × m-Ph-H), 8.028 (d, 1 H, J 8.0 Hz, H-8′), 8.597 (d, 1 H, J 8.1 Hz, H-7′), 8.635 (s,
1 H, H-5′) ppm. 13C NMR (CDCl3): δ 42.550 (CH2, C-5), 62.272 (CH, C-3), 69.444 (CH2,
C-6), 115.93 (CH, 2 × o-Ph-C), 119.20 (CH, C-5′), 121.58 (CH, p-Ph-C), 125.06 (CH, C-7′),
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129.54/129.58 (CH, 2 × m-Ph-C), 132.92 (Cq, C-9′), 135.84 (Cq, C-4′), 144.54 (Cq, i-Ph-C),
151.89 (Cq, C-6′), 163.92 (Cq, C(O)-2), 165.10/165.38 (2 × Cq, C(O)-1′ and C(O)-3′) ppm. IR
(neat): ṽ 3100, 2900, 1776, 1722, 1600, 1500, 1338, 1250, 1225, 1200, 1100, 1056, 1013, 962, 932,
856, 744, 716, 687, 641, 524, 500 cm−1. Elemental analysis: Calcd for C18H13N3O6· 14 H2O: C,
58.15; H, 3.65; N, 11.30. Found C, 58.01; H, 3.57; N, 11.00.
3-(2,5-Dioxopyrrol-1-yl)-4-phenylmorpholin-2-one (7d): Prepared from N-phenyl
morpholine-2-one and maleimide according to the general procedure, in a reaction per-
formed at 60 ◦C. Purified by plate chromatography (silica gel) with ethyl acetate/hexane
(1:2) as eluent, followed by an elution with dichloromethane/ethyl acetate (8:1). Obtained
as pale yellow crystals, 15.6 mg, 36% yield, m.p. 121 ◦C. 1H NMR (CDCl3): δ 3.697 (td, 1 H,
J 2.6, 13.4 Hz, C(5)HH), 4.104 (overlapp ddd, 1 H, J 3.4, 7.44, 13.7 Hz, C(5)HH), 4.59–4.73 (m,
2 H, 2 × H-6), 6.299 (s, 1 H, H-3), 6.605 (s, 2 H, H-3′ and H-4′), 6.92–6.99 (m, 3 H, o-Ph-H
and p-Ph-H), 7.294 (t, 2 H, J 7.8 Hz, 2 × m-Ph-H) ppm. 13C NMR (CDCl3): δ 12.159 (CH2,
C-5), 61.651 (CH, C-3), 69.272 (CH2, C-6), 115.92 (2 × CH, o-Ph-C), 121.35 (CH, p-Ph-C),
129.41 (2 × CH, C-3′ and C-4′), 134.41 (2 × CH, m-Ph-C), 144.71 (CH, i-Ph-C), 164.22 (Cq,
C-2), 169.71 (2 × Cq, C-2′ and C-5′) ppm. IR (neat): ṽ 3102, 2968, 2909, 2867, 1738, 1704,
1603, 1505, 1462, 1372, 1361, 1341, 1272, 1210, 1145, 1082, 1033, 983, 851, 828, 796, 750, 693,
649, 439 cm−1. Elemental analysis: Calcd for C14H12N2O4· 12 H2O: C, 59.78; H, 4.66; N, 9.96.
Found C, 59.46; H, 4.26; N, 9.39. HRMS (ESI): Calcd for C14H12N2NaO4: 295.0689. Found:
295.08687. Calcd for C14H12KN2O4: 331.0430. Found: 311.0429.
3-(2,5-Dioxopyrrolidin-1-yl)-4-phenylmorpholin-2-one (7e): Prepared from N-phenyl
morpholine-2-one and succinimide according to the general procedure, in a reaction per-
formed at 60 ◦C. Purified by plate chromatography (silica gel) with dichloromethane/ethyl
acetate (8:1) as eluent. Obtained as buff-colored crystals, 30.6 mg, 83% yield, m.p. 157 ◦C.
1H NMR (CDCl3): δ 2.663 (s, 4 H, 2 × H-3′ and 2 × H-4′), 3.700 (d, 1 H, J 13.4 Hz, C(5)HH),
4.15 (t, 1 H, J 13.5 Hz, C(5)HH), 4.55–4.71 (m, 2 H, 2 × H-6), 6.340 (s, 1 H, H-3), 6.89–6.98 (m,
3 H, 2 × o-Ph-H + p-Ph-H), 7.290 (t, 1 H, J 7.7 Hz, 2 × m-Ph-H) ppm. 13C NMR (CDCl3): δ
27.98 (2 × CH2, C-3′ and C-4′), 42.55 (CH2, C-5), 61.873 (CH2, C-3), 69.30 (CH2, C-6), 115.59
(2× CH, o-Ph-C), 121.10 (CH, p-Ph-C), 129.43 (2× CH, m-Ph-C), 144.64 (CH, i-Ph-C), 164.03
(Cq, C-2), 176.19 (2 × Cq, C-2′ and C-5′) ppm. IR (neat): ṽ 2988, 2937, 2906, 2865, 1741, 1706,
1597, 1496, 1375, 1269, 1208, 1177, 1084, 984, 753, 698 cm−1. Elemental analysis: Calcd for
C14H14N2O4· 14 H2O: C, 60.31; H, 5.24; N, 10.04. Found C, 60.26; H, 5.22; N, 9.64.
3-(3-Ethyl-3-methyl-2,5-dioxopyrrolidin-1-yl)-4-phenylmorpholin-2-one (7f): Prepared
N-morpholine-2-one and (R)-ethosuximide according to the general procedure in a reaction
performed at 60 ◦C. Purified by plate chromatography (silica gel) with dichloromethane/
ethyl acetate (8:1) as eluent to afford a 1:1 mixture of two inseparable diastereoisomers.
Obtained as buff-colored crystals, 29.1 mg, 71% yield, m.p. 78 ◦C. 1H NMR (CDCl3): δ
(mixture of two diastereoisomers) 0.629 and 0.682 (t, 3 H, J 7.4 Hz, CH3-8′), 1.121 (s, 3 H,
CH3-6′), 1.36–1.49 (m, 1 H, CHH-7′), 1.52–1.66 (m, 1 H, CHH-7′), 2.319 (2 × overlapp. d, 1
H, CHH-4′), 2.542 (2 × overlapp. d, 1 H, CHH-4′), 3.56–3.66 (m, 1 H, CHH-5), 4.160 (appar.
t, 1 H, CHH-5), 4.57–4.71 (m, 2 H, H-6), 6.334 and 6.348 (overlapp. s, 1 H, H-3), 6.87–6.97
(m, 3 H, 2 × o-Ph-H and p-Ph-H), 7.22–7.33 (m, 2 × m-Ph-H) ppm. 13C NMR (CDCl3): δ
(mixture of two diastereoisomers) 8.142 and 8.244 (CH3, C-8′), 23.638 and 23.844 (CH3,
C-6′), 30.483 and 30.720 (CH2, C-7′), 39.985 and 40.045 (CH2, C-4′), 42.672 and 42.713 (CH2,
C-5), 44.166 and 44.336 (Cq, C-3), 61.762 and 61.939 (CH, C-3), 69.234 and 69.293 (CH2,
C-6), 116.11 and 116.54 (CH, 2 × o-Ph-C), 121.26 and 121.45 (CH, p-Ph-C), 129.23 (CH, 2 ×
m-Ph-C), 144.72 and 144.79 (Cq, i-Ph-C), 164.06 (Cq, C(O)-2), 175.12 and 175.22 (Cq, C(O)-2′

and C(O)-5′) ppm. IR (neat): ṽ 3012, 2940, 2900, 2858, 1760, 1712, 1600, 1500, 1383, 1267,
1208, 1146, 1092, 983, 742, 692, 667 cm−1. Elemental analysis: Calcd for C17H20N2O4· 12 H2O:
C, 62.76; H, 6.50; N, 8.61. Found C, 62.84; H, 6.70; N, 8.48.
3-(2,6-Dioxopiperidin-1-yl)-4-phenylmorpholin-2-one (7h): Prepared from N-phenyl
morpholine-2-one and glutarimide according to the general procedure, but omitting the
addition of acetic acid, in a reaction performed at 80 ◦C. Purified by plate chromatography
(silica gel) with hexane/ethyl acetate (2:1) as eluent. Obtained as buff-colored crystals,
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16.0 mg, 36% yield, m.p. 165 ◦C. 1H NMR (CDCl3): δ 1.723 (br s, 2 H, 2 × H-4′), 2.574 (t,
J 11.1 Hz, 4 H, 2 × H-3′ and 2 × H-5′), 3.568 (dd, 1 H, J 1.8, 12.7 Hz, C(5)HH), 4.104 (m,
1 H, C(5)HH), 4.50–4.69 (m, 2 H, 2 × H-6), 6.866 (d, 2 H, J 7.5 Hz, 2 × o-Ph-H), 6.923 (t, 1
H, J 7.3 Hz, p-Ph-H), 6.905 (s, 1 H, H-3), 7.261 (t, 2 H, J 7.3. Hz, m-Ph-H) ppm. 13C NMR
(CDCl3): δ 16.416 (CH2, C-4′), 32.456 (2 × CH2, C-3′ and C-5′), 43.367 (CH2, C-5), 61.424
(CH2, C-3), 68.907 (CH2, C-6), 116.48 (CH, 2 × o-Ph-C), 120.96 (CH, p-Ph-C), 129.14 (CH,
2 × m-Ph-C), 145.16 (Cq, i-Ph-C), 165.25 (Cq, C(O)-2), 172.23 (Cq, 2 × C(O), C-2′ and C-6′)
ppm. IR (neat): ṽ 2967, 2932, 2906, 2862, 1749, 1722, 1671, 1595, 1494, 1368, 1344,1310, 1271,
1247, 1213, 1171, 1134, 1086, 1012, 988, 750, 701, 438 cm−1. Elemental analysis: Calcd for
C15H16N2O4· 14 H2O: C, 61.68; H, 5.84; N, 9.25. Found C, 61.30; H, 5.76; N, 9.74.
3-(1,3-Dioxoindolin-2-yl)-4-(p-tolyl)-morpholin-2-one (7k): Prepared from N-
tolylmorpholine-2-one and phthalimide according to the general procedure in a reaction per-
formed at 60 ◦C. Purified by plate chromatography (silica gel) with dichloromethane/ethyl
acetate/hexane (8:1:3) as eluent. Obtained as buff-colored crystals, 33.4 mg, 75% yield. 1H
NMR (CDCl3): δ 2.240 (s, 3 H, CH3), 3.669 (d, J 13.3 Hz, C(5)HH), 4.179 (overlapp. ddd,
J 7.6, 13.5 Hz, C(5)HH), 4.61–4.79 (m, 2 × H-6), 6.457 (s, 1 H, H-3), 6.924 (d, 2 H, J 8.5 Hz,
2 × o-Ph-H), 7.071 (d, 2 H, J 8.5 Hz, 2 × m-Ph-H), 7.719 (dd, J 3.1, 5.4 Hz, C-6′ and C-7′),
7.824 (dd, J 3.1, 5.5 Hz, H-5′ and H-8′) ppm. 13C NMR (CDCl3): δ 20.402 (CH3), 42.688 (CH2,
C-5), 62.113 (CH, C-3), 69.359 (CH2, C-6), 116.46 (CH, 2 × o-Ph-C), 123.76 (CH, C-5′ and
C-8′), 129.90 (CH, 2 × m-Ph-C), 130.94 (Cq, p-Ph-C), 131.55 (Cq, C-4′ and C-9′), 134.37 (CH,
C-6′ and C-7′), 142.62 (Cq, i-Ph-C), 164.53 (Cq, C(O)-2), 167.44 (Cq, C(O)-1′ and C(O)-3′)
ppm. IR (neat): ṽ 3037, 2960, 2922, 2861, 1756, 1712, 1617, 1519, 1470, 1379, 1269, 1204, 1084,
986, 896, 808, 716, 644, 516 cm−1. Elemental analysis: Calcd for C19H16N2O4· 14 H2O: C,
63.12; H, 5.24; N, 7.74. Found C, 63.33; H, 4.74; N, 7.37.
4-(p-Tolyl)-morpholin-2-one (5b): Prepared as 5a. Purified by column chromatography
(silica gel) with ethyl acetate/hexane (1:2) as eluent. Obtained as buff-coloured crystals,
0.188 mg, 21% yield, m.p. 72 ◦C. 1H NMR (CDCl3): 2.313 (s, 3 H, CH3), 3.469 (m, 2 × H-5),
4.089 (s, 2 × H-3), 4.575 (m, 2 × H-6),6.76 (d, 2 H, J 7.4 Hz, 2 × o-CH ), 7.15 (d, 2 H, J 7.4 Hz,
2 × m-CH) ppm. 13C NMR (CDCl3): δ 20.355 (CH3), 44.757, (CH2, C-5), 50.868, (CH2, C-3),
67.793, (CH2, C-6), 114, 39 (CH, 2 × o-Ph-C), 129.73 (Cq, p-C), 130.03 (CH, 2 × m-Ph-C),
145.80, (Cq, i-Ph-C), 167.49 (Cq, C(O)-2) ppm. IR (neat): ṽ 3037, 2999, 2960, 2916, 2852, 1718,
1617, 1514, 1462, 1381, 1275, 1234, 1079, 978, 938, 814, 796, 520 cm−1. Elemental analysis:
Calcd for C11H13NO2· 14 H2O: C, 67.50; H, 6.95; N, 7.16. Found C, 67.12; H, 6.83; N, 7.12.

4. Conclusions

We have developed an environmentally friendly and safe method to couple morpholi-
nones to imides via C–N cross-dehydrogenative coupling, which affords products in good
to high yields. This method uses an earth abundant, easily accessible metal, copper, as cata-
lyst, and it relies solely on molecular dioxygen as oxidant and terminal hydrogen acceptor,
thus avoiding the use of more expensive reagents and the formation of waste by-products,
since in this case only water is also produced. Air may replace oxygen, but the product
yields are lower. No bases are required, avoiding the racemization of sensitive substrates.
The reaction shows good functional group compatibility, and the products may be useful
intermediates for the synthesis of even higher value products, such as advanced polymers
like poly(β-aminoesters) or even for PROTACs, besides the potential biological activity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13071072/s1, Copies of NMR spectra of the new compounds
and of the starting materials prepared in the course of this work: 1H, 13C, DEPT, HSQC.
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