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Abstract: The main groups of catalytic materials used in the conversion of methanol to dimethyl
ether (the MTD process) were presented with respect to their advantages, disadvantages, and the
methods of their modifications, resulting in catalysts with improved activity, selectivity, and stability.
In particular, the effects of strength, surface concentration, and the type of acid sites, the porous
structure and morphology of the catalytic materials, the role of catalyst activators, and others, were
considered. The prosed mechanisms of the MTD process over various types of catalysts are presented.
Moreover, the advantages of membrane reactors for the MTD process are presented and analysed. The
perspectives in the development of effective catalysts for the dehydration of methanol to dimethyl
ether are presented and discussed.
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1. Introduction

Dimethyl ether (DME, methoxymethane) is the simplest ether, with the formula
CH3OCH3. DME is a colourless and odourless gas which was first synthesised by Jean-
Baptiste Dumas and Eugene Péligot in 1835 by the distillation of methanol and sulphuric
acid [1]. Currently, dimethyl ether is produced from various raw materials such as natural
gas, methanol, biomass, and coal. The low boiling point and zero sulphur content are the
main properties of DME, which results in its continuous interest as a solvent in the chemical
and petrochemical industries [2], as well as for the production of a variety of chemicals, such
as diethyl sulphate, oxygenates, and olefins [3–5]. DME has been used as propellant and,
interestingly, was the propellant used in the first aerosol package produced by its inventor,
Erik Andreas Rotheim, in 1928 [6]. DME is also considered a promising raw material in fuel
cells because it can be efficiently converted to hydrogen at low temperatures [7]. Another
important area of DME application, with its increasing prognostic role in the future, is
its blending with liquified petroleum gas (LPG) and the use of such DME-LPG blends in
transportation and power generation [8]. The mixing of LPG and DME is a cost-effective
way to reduce emissions from the existing LPG infrastructure, also making it an attractive
option for household cooking and heating [8]. The combustion of DME-LPG blends was
reported to reduce CO2 emissions by 30–80% and NOx emissions by 5–15% compared with
the combustion of LPG [9]. Moreover, the growth of the DME market is expected due to the
growing demand for aerosol propellants to replace the banned chlorofluorocarbons which
are destroying the ozone layer [9]. DME production is also stimulated by an increasing
interest in the use of dimethyl ether as a cleaner alternative to traditional fuels, such as diesel
and gasoline [10]. Dimethyl ether has a higher cetane number than diesel, which improves
the combustion efficiency. Moreover, the leakage of the C–C bound in the DME molecule
reduces the formation and emission of particulate matter. In addition, the emission of
other pollutants, such as NOx, is significantly reduced [11]. Furthermore, the replacement
of diesel fuel for DME does not require significant changes in exiting engines [12]. DME
was reported to have total compliance with the highly strict California ultra-low-emission
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vehicle (ULEV) regulations for medium-duty vehicles and has the highest efficiency of
all synthetic liquid fuels, such as F-T diesel and methanol [13]. The growth of the role of
dimethyl ether in the automotive segment is expected to continue in the coming years,
mainly due to the increasing demand for cleaner fuels, rising energy prices, and stricter
environmental regulations. The global DME market will possibly increase from USD
4.8 billion in 2022 to USD 12.8 billion in 2032 [9]. Today, more than 65% of the DME
produced globally is blended with LPG and used for transportation, as well as domestic
cooking and heating [14].

DME can be produced by methanol dehydration (methanol to DME, the MTD process,
which is an indirect synthesis) in the presence of acid catalysts according to the following
Equation (1):

2 CH3OH → CH3OCH3 + H2O (1)

This is an exothermic reaction that occurs without variation in the mole number, and
which is not thermodynamically affected by reaction pressure, whereas its thermodynamics
is favoured at a low temperature [9]. Thermodynamic limitations in this case could be
overcome by the selective removal of water from the reaction system, owing to the Le
Chatelier principle, thus enhancing the conversion and selectivity of methanol dehydration
to DME [15]. Various attempts, including the use of hydrophilic membranes for in situ
water removal during methanol dehydration, were proposed [16–19].

Another method uses synthetic gas (CO and H2) which, in the first step, is converted
to methanol in the presence of the Cu-ZnO-Al2O3 redox catalyst in the temperature range
of 240–280 ◦C and a pressure between 30 and 70 bar, followed by the methanol dehydration
reaction (Equation (1)) over the acid catalyst to obtain DME. In this case, the reaction
(syngas to DME, direct synthesis) can be summarised by the following equation:

2 CO + 4 H2 → CH3OCH3 + H2O (2)

The conversion of synthetic gas to DME takes place in the same reactor under process
conditions similar to those of methanol synthesis, but in the presence of two catalyst
beds [20] or, alternatively, a bifunctional catalyst with redox and acidic functions [21,22].
The additional benefit of this process is the shifting of the equilibrium of methanol synthesis
by means of the alcohol dehydration to DME and increasing the conversion of the synthesis
gas [23]. A very promising alternative to the direct synthesis of dimethyl ether from syngas
is the direct synthesis of DME from the mixture containing CO2 and H2 [24], as follows:

2 CO2 + 6 H2 → CH3OCH3 + 3 H2O (3)

This reaction, due to carbon dioxide utilization and the higher intrinsic reaction
rate of CO2 hydrogenation compared to CO hydrogenation [25,26], is a very promising
synthesis route and is one of the core technologies for carbon dioxide utilization [27]. CO2
hydrogenation can be limited by several factors, including the thermodynamic inertness
of carbon dioxide, the generation of water as a by-product, and the formation of coke
deposits [28]. Thus, there are still some limitations and problems related to direct and
indirect DME synthesis that need to be solved, considering the significant prognosed
increase in its production. Although the direct production of DME appears to be more
efficient, the presence of unreacted syngas and CO2 in the product streams makes the next
purification steps difficult [29]. On the other hand, the indirect DME synthesis method
results in a higher purity of the product, and a higher conversion of methanol makes some
profits for the associated industries [29]. Therefore, the indirect method has its advantages
and cannot be completely abandoned.

The paper reviews recent achievements, trends, and perspectives in the research and
technologies of dimethyl ether production by methanol dehydration. The most important
and promising trends, as well as problems, are presented and analysed to predict the future
direction of the development of DME technologies.
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2. Methanol to DME (MTD Process)

The indirect DME synthesis method consists of two separate steps. In the first step,
methanol is produced and purified, while, in the second step, methanol is dehydrated into
DME, according to Equation (1), in a separate reactor. The dehydration of methanol to DME
is an exothermic reaction, and, therefore, DME production is favoured at a low temperature.

Akarmazyan et al. [30] presented a thermodynamic analysis of the methanol dehy-
dration reaction to DME (Equation (1)) carried out using Outokumpu HSC Chemistry®

software (Espoo, Finland). The results of this analysis are shown in Figure 1, where the
profiles of the Gibbs free energy (∆G0

T), entropy (∆S0
T), and enthalpy (∆H0

T) changes in
the reaction are plotted as functions of the reaction temperature. The reaction is exother-
mic, and enthalpy (∆H0

T) and entropy (∆S0
T) decrease with the increasing temperature.

Therefore, the Gibbs free energy (∆G0
T) increases with the temperature, and at tempera-

tures higher than 525 ◦C, where ∆G0
T takes positive values, the reaction is not favoured

thermodynamically.
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Figure 1. Entropy (∆S), Gibbs free energy (∆G), and enthalpy (∆H) changes from methanol dehydra-
tion to the DME reaction as functions of the reaction temperature. Reprinted from [30], copyright
(2014), with permission from Elsevier.

The flow diagram presenting the MTD process is shown in Scheme 1. Pure methanol
is fed to the flow catalytic reactor, where methanol is dehydrated to DME (Equation (1)).
The outlet stream from the reactor contains methanol, water, and DME. Moreover,
some other chemicals, such as CH4, CO, CO2, and H2, can be present in the outlet
stream [31]. The product mixture from the reactor is fed to the DME column, where
dimethyl ether is separated from the other components of the outlet stream. The wa-
ter and methanol mixture is striped from the bottom of this column and fed into the
Methanol column, with depressurisation by the valve, where methanol and water are
separated. Recovered methanol is recycled and reintroduced into the reactor [32]. In
one pass, the conversion of methanol is in the range of 70–85% at typical operating
conditions of 220 to 400 ◦C and a low pressure of 1–30 bar. Methanol consumption is
approximately 1.4 tMethanol/tDME [31].
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2.1. Al2O3-Based Catalysts

The conversion of methanol to DME requires acidic catalysts [33]; however, the effi-
ciency of this reaction depends on the chemical nature of the acid sites, their strength, and
location [34]. Al2O3, zeolites, and surface-modified silicas belong to the most intensively
studied and most effective catalytic systems for the methanol-to-DME dehydration reported
in the scientific literature [35,36].

Sung et al. [37] reported that the most catalytically active forms of alumina are γ-
Al2O3 and η-Al2O3, while α-Al2O3 and κ-Al2O3 present a significantly lower catalytic
potential for the process studied. γ-Al2O3 is characterised by a high surface area, excellent
thermal stability, and mechanical resistance, as well as surface acidity, and was therefore
intensively studied as a catalyst for the conversion of methanol to DME [38,39]. It is
assumed that the active centres of aluminium oxide in the MTD reaction are Lewis-type
acid sites (only this type of acid site was identified by the FT-IR analysis of the samples
pre-adsorbed with pyridine). The highest concentrations of acid sites, determined by the
NH3-TPD method, were found for γ-Al2O3 (36.4 µmol/g) and η-Al2O3, (24.4 µmol/g),
while, for other alumina, including α-Al2O3 and κ-Al2O3, the surface concentration of the
acid sites was below 21 µmol/g. Surprisingly, η-Al2O3 presented better catalytic activity
than γ-Al2O3, indicating that not only concentration of acid sites but also other parameters
influence the catalytic properties of alumna. The advantage of γ-Al2O3 is its high selectivity
to the DME, possibly due to the lower contribution of strong acid sites compared to α-
Al2O3. Akarmazyan et al. [30] reported 100% DME selectivity to DME for γ-Al2O3 catalysts
in the temperature range of 150–325 ◦C. Above this temperature, by-products such as CO
and CH4 are formed. The presence of water vapour in the system reduces the activity of
γ-Al2O3 catalysts in methanol dehydration by the adsorption of water molecules at active
sites, thereby blocking methanol molecules. Research by Akarmazyan et al. shows [30]
that the deactivation of the γ-Al2O3 catalyst by water is a reversible process. Furthermore,
the authors note that the activity of the γ-Al2O3 catalyst in the MTD process depends on
the textural properties, such as the specific surface area, shape, distribution, and volume
of pores, the pore size, the degree of crystallinity, and the surface concentration of acid
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sites [30]. Seo et al. [40] indicate that one of the key factors determining the activity of an
MTD catalyst is the surface density of the acid sites. Two types of alumina, γ-Al2O3 and
η-Al2O3, calcined at different temperatures were studied as catalysts of methanol-to-DME
dehydration. The FT-IR analysis of the samples pre-adsorbed with pyridine showed that
only the Lewis-type acid sites were present on the alumina surface; however, the surface
concentration of the acid sites in γ-Al2O3 was slightly higher (67.7 µmol/g) compared to
η-Al2O3 (61.6 µmol/g; in both cases, the results for the samples calcined at 500 ◦C). The
dehydration process of methanol to dimethyl ether was catalysed by acid centres of both
weak and medium strength with the contributions 45.6 and 45.7% of the total acid site
concentrations in γ-Al2O3 and η-Al2O3 calcined at 500 ◦C. However, the presence of strong
acid centres favoured the formation of by-products and carbon deposits on the surface of
the catalyst, which led to a decrease in its activity [41,42].

Alumina can be obtained by various methods. One of them is precipitation followed by
appropriate thermal treatment. The synthesis conditions, such as the type of precursor used
and the calcination temperature, may significantly affect the physicochemical properties,
and therefore their activity and stability [42,43]. Rahmanpour et al. [44] used an ultrasonic-
assisted precipitation method, which resulted in nano-crystalline γ-Al2O3 (1–2 nm) active in
methanol to the dehydration of DME. On the other hand, Keshavarz et al. [45] synthesised
γ-Al2O3 by the modified sol–gel method using cationic surfactants. In this way, nano-
crystalline, mesoporous γ-Al2O3 was obtained. Probably, the presence of surfactants
prevented the aggregation of particles. The increased catalytic activity of such alumina is
related to the better availability of active sites [45]. Hosseini et al. [46] compared the catalytic
performance of γ-Al2O3 obtained by various methods in the MTD process. The catalysts
obtained by the sol–gel method (both in aqueous and anhydrous media), characterised
by a nano-crystalline structure, was found to be more active than those obtained by the
precipitation method [46].

A disadvantage of γ-Al2O3 is its hydrophilic nature, and therefore the tendency to
adsorb water more strongly than methanol, resulting in a partial loss of its activity in
the MTD process [39,47]. Akarmazyan et al. [30] studied a large number of different γ-
Al2O3 samples, including commercial alumina supplied by various producers and samples
prepared in their laboratories. They formulated a general trend that catalytic performance
is significantly improved with an increase in the specific surface area of the γ-Al2O3
samples, which was evidenced by a change in the methanol conversion profile towards
lower reaction temperatures. The authors postulated that the enhanced catalytic activity
of the high-surface-area samples was attributed not only to the higher concentration of
the surface acid sites, active in methanol conversion, but also to other parameters, such as
textural properties and the degree of crystallinity. Furthermore, it was shown that methanol
conversion was generally higher for materials with a cylindrical pore, a high total porosity
of 0.60–0.80 cm3g−1, and a crystallite size of about 7–9 nm [30]. Probably, these parameters
are related with the high contribution of the crystalline alumina, which, in contrast to
its highly amorphous form, is catalytically active in methanol-to-DME dehydration. The
apparent activation energy of the reaction, determined for all the studied γ-Al2O3 catalysts,
is nearly the same (24 ± 4 kcal mol−1). As mentioned, the presence of water, which is
the reaction by-product (Equation (1)), limits the efficiency of the DME production by
competitive adsorption with methanol. For the alumina catalysts, it was shown that
the presence of water vapour in the reaction mixture did not influence the selectivity
to the reaction products, but resulted in an increase in the apparent activation energy
and a reversible shift of the methanol conversion profile into higher temperatures [30].
Sahebdelfar et al. [33] studied the effect of γ-Al2O3 deactivation induced by the presence
of water vapour. It was postulated that the predominant deactivation mechanism was
related to the reversible exothermic partial hydration of the active γ-Al2O3 phase to the
less catalytically active boehmite (Equation (4)), as follows:

γ-Al2O3 + H2O → 2 γ-AlO(OH) (4)
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However, at higher reaction temperatures, this mechanism ceased at the expense of the
irreversible sintering of the alumina crystallites [48]. Raoof et al. [49] showed that catalyst
deactivation occurred very slowly when pure methanol was used as the process feed;
however, adding water to methanol resulted in a rapid deactivation of γ-alumina. It was
shown that an increase in the water vapour content to 20 wt.% caused a catalyst activity loss
of more than 10-fold compared to the process with pure methanol. Thus, γ-alumina is not a
suitable catalyst for the dehydration of crude methanol obtained without purification and
containing 10–20 mol% water due to the partial loss of its catalytic activity [50]. Another
deactivation pathway could be related to the formation of carbon deposits on the catalyst
surface, which are intensified by stronger acid sites. On the surface of γ-Al2O3, mainly
weak and moderate acid sites of the Lewis type are present, and therefore the catalyst
coking in this case is limited [30].

The catalytic activity of γ-alumina in methanol-to-DME dehydration can be increased
by using γ-alumina in the nano-size form. Rahmanpour et al. [44] successfully synthesised
nano-size γ-Al2O3 (crystallite sizes of 1–2 nm) using the precipitation method under ultra-
sonic vibration. The catalyst obtained was characterised by the increased concentration of
surface acid sites (88.3 µmol/g), mainly of weak and medium strength (with a contribution
of approximately 90%), and therefore a relatively high catalytic activity in the reaction
studied. Yaripour et al. [51] reported the promising catalytic performance of a series of
γ-Al2O3 nano-catalysts prepared by the precipitation method and modified with various
amounts of silica (0–15 wt.%). It was shown that the γ-alumina nano-catalyst, containing
2 wt.% SiO2, exhibited the highest activity in the studied series of the Al2O3-SiO2 catalysts.
The results of the catalytic studies were related to the number of acidic sites in the modified
nano-catalysts, which were increased by Al2O3 modification with silica up to 2 wt.% of its
content, and afterward decreased. This effect could be explained by the possible formation
of Brønsted-type sites, ≡Si–O(H)–Al≡, after the deposition of small amounts of silica. On
the other side, the deposition of larger amounts of silica resulted in covering part of the
alumina surface by SiO2 and blocking the access to acid centres located on its surface.

Apart from γ-Al2O3, η-Al2O3 was also reported to present interesting catalytic prop-
erties in methanol-to-DME dehydration [42,52,53]. η-alumina, characterised by a cubic
structure, can be obtained in the form of fine particles, and therefore a material with a high
surface area and relatively high stability [52]. Osman et al. [42] showed that γ-Al2O3 and
η-Al2O3 can be prepared from different precursors, such as aluminium chloride and nitrate,
respectively. The obtained alumina samples presented different surface morphologies and
acidity. η-Al2O3 showed a higher catalytic activity in the methanol-to-DME dehydration
process than commercial zeolite at reaction temperatures above 275 ◦C. The synthesis,
which started with an aluminium nitrate solution precipitated by an ammonia solution,
followed by drying at 120 ◦C and calcination at 550 ◦C, resulted in nano-size η-Al2O3
(with a crystallite size of about 5.5 nm) [53]. The η-Al2O3 catalyst showed the presence of
mainly weak and medium-strength acid sites of the Lewis type, which were postulated to
be active in methanol-to-DME conversion as well as inactive in the formation of carbon
deposits. Kinetic studies have shown that methanol conversion significantly increased
with the increasing catalyst weight, while it decreased dramatically with the increasing
methanol or water content in the reaction feed at reaction temperatures below 250 ◦C [53].

Al2O3, which is the most widely used catalyst for the reaction of methanol to DME,
was modified with various transition metals, such as Cu or Ag, introduced by the wet-
impregnation method, to improve the Lewis acidity, as they act as electron acceptors [54,55].
The surface concentration of the Lewis acid sites in η-Al2O3 increased by about 2.3%
after the deposition of 1 wt.% Ag and nearly by 15% after the introduction of 15 wt.%
Ag. Osman et al. [42] showed the increased catalytic activity of the Ag/η-Al2O3 catalyst
compared to pure η-Al2O3 (Figure 2a). Optimal catalytic properties were obtained for the
catalyst containing 10 wt.% silver deposited on the alumina. The activating role of silver
deposition on the alumina was attributed to the generation of additional Lewis-type acid
sites, active in methanol dehydration, as well as changing the surface from superhydrophilic
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to hydrophilic, therefore limiting the adsorption of water on the catalyst surface, which
resulted in the improvement of the catalyst stability under reaction conditions (Figure 2b).
A similar effect was observed for γ-Al2O3 modified with copper [55]. It was reported that
the deposition of copper on γ-Al2O3 significantly improved its catalytic performance in
methanol-to-DME conversion. It was shown that the catalysts calcined at 550 ◦C exhibited
higher activity than those calcined at 350 ◦C, which was explained by the thermally induced
phase transformation of γ-AlOOH (boehmite) to γ-Al2O3, which occurred only for the
samples calcined at higher temperatures. Deposition of 1 wt.% Cu into γ-Al2O3 increased
the acid site concentrations by about 6%, while the introduction of 6 wt.% Cu increased
the concentrations by nearly 34%. Deposition or larger amounts of copper resulted in the
decrease in the surface acidity of the samples. The optimal copper loading was found to be
6 wt.% Cu/γ-Al2O3, resulting in improved stability under steady-state conditions. This
effect was attributed to the enhancement in the surface acidity and hydrophobicity.
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(b) Time-on-stream test at 250 ◦C for the 10% Ag/η-Al2O3 and pure η-Al2O3 catalysts. Reprinted
from [54], copyright (2017), with permission from the American Chemical Society.

Another interesting attempt to activate alumina in methanol-to-DME dehydration
was the study of Al2O3-SiO2 systems. Jo et al. [56] deposited silica on η-Al2O3 by the
impregnation method. It was shown that, depending on the silica–alumina ratio, the
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surface concentration of acid sites can be increased or decreased. An increase in the Si
content to 0.5 wt.% resulted in an increase in the surface concentration of the acid sites in the
samples (from 429.6 µmol/g measured for η-Al2O3 µmol/g to 576.8 µmol/g for η-Al2O3
doped with 0.5 wt.% silica), while a higher loading decreased the surface concentration
of the acid sites (228.8 µmol/g for η-Al2O3 doped with 5 wt.% silica). It was shown that
the deposition of small amounts of silica resulted in the formation of stronger acid sites
(the strength of the acid sites was compared by the positions of the ammonia desorption
peaks in the NH3-TPD profiles). Possibly, such sites were created by the formation of
Brønsted-type sites, ≡Si–O(H)–Al≡. On the other hand, the deposition of larger amounts
of silica resulted in covering part of the alumina surface by SiO2, which finally blocked
access to the acid centres located on its surface. The concentration of surface acid sites was
very well correlated with the activity of the studied catalysts. It appears possible that the
improved catalytic performance of the SiO2/η-Al2O3 system is also associated with the
limitation of η-Al2O3 superhydrophilicity by the deposited silica, and therefore the increase
in the adsorption of methanol on the catalyst surface. Of course, this hypothesis should
be proved by future studies. Similar studies were conducted by Yaripour et al. [51], who
verified the catalytic properties of the γ-Al2O3/SiO2 nano-aggregates in methanol-to-DME
dehydration. They showed an increase in the DME yield for systems with a relatively
low silica content compared to pure γ-Al2O3. The maximum yield of dimethyl ether was
obtained in the presence of the catalyst containing 2 wt.% SiO2 deposited into γ-Al2O3.

Another attempt to improve the catalytic efficiency of γ-Al2O3 was its doping with ti-
tanium. Khaleel [57], who analysed the catalytic properties of γ-Al2O3 doped with titanium
(3 to 20 wt.%), showed that catalysts containing small amounts of titanium were more active
and selective toward DME compared to non-modified γ-Al2O3. The best catalytic activity
was found for alumina modified with 3 wt.% titanium. This activating effect was assigned
to the presence of well-dispersed Ti4+ cations on the alumina matrix, which possibly played
the role of additional, relatively weak acid sites active in the conversion of methanol to
DME. On the other hand, the deposition of higher amounts of titanium resulted in the
formation of TiO2 phases, which were less active in the MTD reaction [57].

Liu et al. [58] tried to intensify the conversion of methanol to DME at lower tem-
peratures (240–260 ◦C) by the modification of γ-Al2O3 with niobium oxide. The samples
prepared using the impregnation method contained 1, 5, or 10 wt.% of Nb2O5. Among
these samples, the most promising results of the catalytic tests were obtained for the catalyst
with the highest loading of Nb2O5. The activating role of the introduction of niobium oxide
to γ-Al2O3 was assigned to the generation of additional relatively weak acid sites, active in
the dehydration of methanol. Furthermore, it was shown that Nb2O5 deposition shifted the
reaction into lower temperatures with the maintenance of the high selectivity to DME [58].

Acid sites, as already mentioned, are necessary to activate methanol molecules to be
converted into DME. It is postulated [30] that the interaction of methanol with the Al2O3
surface results in the formation of two kinds of methoxy groups of different adsorption
strengths. Methoxy species that are weakly adsorbed on the Al2O3 surface are converted
to DME, while more strongly held methoxy species decompose to yield formate and,
eventually, CH4 and CO in the gas phase. Thus, it clearly shows that the appropriate
strength of acid sites, modulated by the methods mentioned above, is very important to
effectively convert methanol to DME.

The proposed general mechanism of methanol-to-DME dehydration over the alumina
surface is shown in Scheme 2 [59]. The methanol molecule interacts with the surface
alumina oxygen anion and aluminium cation. In the next step, the hydrogen of the
methanol hydroxy group reacts with the surface –OH with the formation of the water
molecule. Finally, the surface methoxy group reacts with the next methanol molecule,
resulting in DME.
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2.2. Zeolite-Based Catalysts

Zeolites, in addition to alumina, are important catalysts for methanol-to-DME dehy-
dration. The great potential of zeolites in the MTD process is related to their high surface
area, uniform porous structure, and high thermal and hydrothermal stability (higher resis-
tance to water compared to γ-Al2O3), but the most important appears to be their surface
acidity. The number of acid sites (both the Lewis and Brønsted types) can be regulated
by the Si/Al ratio [9,43]. Typically, acid sites in zeolites are stronger than in alumina,
which results in the faster formation of carbon deposits on the surface of zeolite catalysts,
and ultimately leads to a decrease in their activity and selectivity to DME. The causes of
by-product formation and catalyst deactivation are believed to be acid centres that are too
strong and which are in a microporous structure, hindering the diffusion of reagents by
formed coke particles [5,9,43].

ZSM-5 zeolite was reported to be an effective catalyst for the MTD reaction. Vish-
wanathan et al. [60] compared the catalytic properties of ZSM-5 and γ-Al2O3. ZSM-5 had a
higher methanol conversion (approximately 80%) than γ-Al2O3 at 230 ◦C. The same level of
methanol conversion was achieved in the presence of γ-Al2O3 at approximately 320 ◦C [60].
However, ZSM-5 showed a lower selectivity to DME above 270 ◦C and a limited stability
due to the formation of carbon deposits [60]. Moreover, it was shown that the introduction
of sodium into ZSM-5 resulted in a decrease in strong acid site concentrations (by nearly
80% for the sample with 80 mol% Na) and an increase in weak acid sites (by about 56% for
the sample with 80 mol% Na). The acid sides were classified as weak, medium, and strong
by the temperature range of ammonia desorption in the NH3-TPD measurement—weak
acid sites: 120–220 ◦C, medium sites: 220–390 ◦C, and strong sites: 390–570 ◦C. The samples
modified with sodium presented high stability in the MTD process (15 h test), indicating
the positive role of sodium in limiting of carbon deposit formation. Hassanpour et al. [61]
studied the catalytic performance of ZSM-5 catalysts with different Si/Al ratios. It was
shown that the Si/Al ratio significantly affected the acidity, and therefore also the activity,
of the catalysts (Figure 3). The authors reported that the surface acidity of ZSM-5 increased
with an increase in the Si/Al molar ratio from 25 to 125 (186 and 577 µmol/g, respec-
tively), and decreased with a further increase in the Si/Al ratio from 125 to 250 (577 and
298 µmol/g, respectively). This surprising effect could be explained by the formation of
the extra-framework alumina species in addition to the incorporation of aluminium into
the zeolite structure in the case of the samples with a high intended aluminium content.
Such extra-framework alumina species are characterised by a lower content of acid sites.
The ZSM-5 sample with the Si/Al molar ratio of 125 showed the best catalytic properties
for the MTD process. Moreover, it was shown that zeolites with the largest number of acid
centres were characterised by the largest contribution of medium-strength sites effective
in methanol-to-DME dehydration. According to Rownaghi et al. [62], another parameter
that influences the activity of ZSM-5 is the size of the crystallites. The sample with the
smallest ZSM-5 crystallites (with a size of about 120 nm) presented higher catalytic activity
than the samples composed of larger crystallites. It was postulated that smaller crystallites
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allowed easier access of the reagents to the catalytic centres. However, the efficiency of
ZSM-5 catalysts may also be influenced by the number of acid sites on the outer surfaces of
crystallites [62].
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The effect of acid sites that are too strong, which are responsible for the decreased
selectivity to DME and the increased deactivation due to the formation of carbon deposits,
can be improved by the deposition of basic elements. Vishwanathan et al. [60] reported that
the deposition of sodium on the surface of ZSM-5 significantly improved the selectivity
to DME in the temperature range of 230–340 ◦C. The introduction of sodium into ZSM-
5 reduced its surface acidity mainly by eliminating strong acid sites [60]. Hassanpour
et al. [63] tested ZSM-5 zeolites modified with sodium introduced by the impregnation
method. It was postulated that mainly strong acid sites were neutralised by sodium. The
zeolitic catalysts modified with sodium presented increased resistance for the formation of
carbon deposits compared to non-modified ZSM-5 [63]. On the other hand, Kim et al. [64]
decreased the surface acidity of H-ZSM-5 (Si/Al = 100) by its modification with a KNO3
solution using the wet-impregnation method to obtain the K/Al molar ratio of 0.6 in the
K-H-ZSM-5 sample. The deposition of potassium decreased the contribution of strong acid
sites (ammonia desorption above 250 ◦C in the NH3-TPD profile) in the zeolite sample.
Such a modification of H-ZSM-5 resulted in the decrease in the total concentration of acid
sites from 797 to 251 µmol/g. The introduction of water vapour into the feed stream
decreased the methanol conversion, but a DME selectivity of 100% was achieved at high
reaction temperatures without the hydrocarbon side-product formation. As the flow rate
of the feed stream increased, the methanol conversion decreased at low temperature, and
the DME selectivity increased at high temperature. The deactivation of the K-H-ZSM-5
catalyst resulted in coke formation or dealumination under specific reaction conditions.
The deactivation due to dealumination process depended on the water vapour content
in the feed stream. Simple-structured oxygenates were produced when water-containing
methanol was used as the feed. However, aromatic-structured coke was formed on the
catalyst surface with pure methanol as the feed. Therefore, it was postulated that the
formation of aromatic-structured coke decreased the catalytic performance of K-H-ZSM-5
to a greater extent than dealumination [64].
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Other very important information about coke formation under reaction conditions
was provided by the studies of Chaudhary et al. [65], who analysed the selectivity to the
side-reaction products for the MTD reaction performed over beta zeolite (Si/Al = 14) in
the temperature range of 280–450 ◦C. It was shown that, at increased temperatures, strong
acid sites present in beta zeolite promote higher hydrocarbon formation following the
olefin-based cycle. The increase in the reaction temperature resulted in increased methanol
conversion and decreased DME selectivity. Hydrocarbons between the C1 to C4 range
and hexamethyl benzene (HMB) were also identified as the reaction product. The lower-
molecular-weight C2 hydrocarbons were more selective at lower reaction temperatures,
while C4 enrichment occurred at elevated temperatures. HMB was found to be the single
component of the solid product, along with the deposition of poly-methylbenzene on the
zeolite surface. Thus, it could be postulated that HMB is an intermediate product in the
formation of carbon deposits. Furthermore, it was shown that the regeneration of the
spent catalyst (calcination at 550 ◦C for 5 h) resulted only in a small loss of the structural
properties of beta zeolite, which appears to be a promising candidate for the catalyst of the
methanol dehydration reaction [65].

Rutkowska et al. [66] studied the zeolites beta (Si/Al = 21), Y (Si/Al = 16), and ZSM-
5 (Si/Al = 16.5) desilicated with alkalic medium, and, additionally, mesoporous silicas
doped with aluminium, Al-SBA-15 and Al-MCF, in the role of catalysts for the dehydration
of methanol to DME. The preliminary catalytic tests showed an activation effect of the
alkaline treatment of zeolites on their catalytic performance, including resistance to coke
deposition. ZSM-5 was chosen for further, more detailed studies, including the generation
of mesoporosity by alkali treatment. Treatment with NaOH solution partially leached
silicon from the ZSM-5 structure, and therefore significantly increased the contribution
of mesoporosity and modified the surface acidity of the zeolite. The treatment of ZSM-5
with 0.1 M NaOH solution for 2 h resulted in an increase in the mesopore volume from
0.011 to 0.160 cm3/g and increase in the surface concentration of the acid sites from 537 to
615 µmol/g, mainly by the formation of stronger acid sites (with a maximum of NH3
description of about 400 ◦C). The increase in the weak acid site concentrations (with a
maximum of NH3 description of about 220 ◦C) was observed only for the sample treated
with NaOH for 4 h. The zeolite modified in such way presented improved catalytic
properties compared to classical microporous ZSM-5 zeolites [66]. Dalena et al. [67] studied
the nature of the acid sites in desilicated H-ZSM-5 zeolites and their role in the conversion of
methanol to DME. The nature and surface concentration of the acid sites were determined
by the FT-IR analysis of the deuterated acetonitrile (CD3CN) pre-adsorbed samples. The
desilicated zeolite samples were shown to have an increased content of Brønsted and
Lewis acid sites, but only the increase in the Brønsted sites resulted in increased catalytic
activity. Such an effect was not observed for the sample with the increased concentration
of Lewis-type acid sites. The TOF (Turnover Frequency), which refers to the amount of
Brønsted acid sites, was very similar for the zeolite samples desilicated under various
conditions. It was postulated that methanol dehydration in zeolites occurs preferentially
over Brønsted acid sites. Studies by Aloise et al. [68] presented increased catalytic activity
and resistance to the formation of carbon deposits of the ZSM-5 zeolite (the parent zeolite
with the Si/Al ratio of 25) desilicated with NaOH solution. It was shown that the treatment
of zeolite with NaOH solution resulted in changes in the properties of acidic sites and the
mesoporous volume, which increased after 1 h of modification, from 489 to 689 µmol/g
and from 0.089 to 0.185 cm3/g, respectively. FT-IR studies showed that the contribution of
Brønsted acid sites increased from 404 to 510 µmol/g, while the Lewis acid sites increased
from 85 to 179 µmol/g, as a result of zeolite treatment with NaOH solution for 1 h. Thus,
it was shown that the contact time of the alkaline solution treatment determined the final
mesoporous structure of the zeolite sample. For the short contact time (30 min), the main
effect was an increase in the mesopore volume. Treatment with NaOH solution for 60 min
favourably impacted on the catalyst’s activity and stability against deactivation in terms of
the methanol conversion and DME yield. The analysis of the coke formed confirmed that
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the most promising catalyst showed the lowest tendency for coke formation as the main
consequence of the acid treatment.

The zeolite Y has also been reported as a potential catalyst for the MTD process.
However, compared to ZSM-5, zeolite Y is characterised by lower stability under reaction
conditions due to faster deactivation. Jin et al. [69] and Fei et al. [70] reported a dramatic
drop in methanol conversion from 88 to 19% under isothermal catalytic test conditions at
245 ◦C for 14 h. The stability of Y zeolite can be significantly improved by the introduction
of Zr and Ni (1.8–2.0 wt.%) by the ion-exchange method [70]. In this case, the methanol
conversion decreased only by a few percent during the 14 h of the catalytic test. The
amounts of carbon deposits formed on Zr–Y and Na–Y were much smaller compared to
those of unmodified zeolite Y. On the other hand, zeolite Y modified with Fe, Co, or Cr
presented an increased contribution of strong acid centres, which were responsible for
rapid catalyst deactivation due to carbon deposits (even faster than for unmodified zeolite
Y) [70]. The studies were extended for the deposition of Ce, Pr, Nd, Sm, and Eu into zeolite
Y [69]. It was shown that deposition of La, Ce, and Pr resulted in the generation of mainly
medium-strength acid centres active in methanol dehydration and with a limited tendency
for the formation of carbon deposits. The deposition of Nd and Sm resulted mainly in
strong acid centres with limited activity in the DME synthesis and active in coke formation.
All modified Y zeolites presented higher activity and stability than the non-modified Y
zeolite [69].

Mordenite is another zeolite presenting interesting catalytic properties in the MTD
process. Moradi et al. [71] verified the catalytic activity of mordenites with different Si/Al
ratios. Mordenites in protonic form presented better catalytic activity than mordenites in
sodium form. Furthermore, it was shown that mordenite-based catalysts cannot be fully
regenerated, indicating the irreversible formation of carbon deposits or the destruction of
the zeolite structure under conditions of catalyst regeneration [71]. Catizzone et al. [72]
and Migliori et al. [72] reported the high activity of mordenite in the MTD process, but
also the rapid decrease in the methanol conversion (from the initial over 80% to less than
10% after 60 h). In this work, the catalytic performance of mordenite and ferrierite was
compared. Both zeolites presented similar catalytic activity at a relatively low temperature
(220 ◦C); however, ferrierite was significantly more stable, and any noticeable decrease in
the methanol conversion was observed during the 60 h of the catalytic test [72,73].

Another way to improve the properties of zeolite-based catalysts is the preparation
and the use of the composite materials. Zheng et al. [74] studied composite materials
consisting of beta zeolite and mordenite, which were found to be more catalytically active
and more selective toward dimethyl ether than a mechanical mixture of beta zeolite and
mordenite. In the temperature range of 200–275 ◦C, the conversion of methanol in the
presence of the composite catalyst was over 90%, with almost 100% selectivity to DME.
Furthermore, stability tests showed that the high methanol conversion was stable at 275 ◦C
for 72 h [74]. On the other hand, Tang et al. [75] studied ZSM-5/MCM-41, which combines
the advantages of microporous zeolite ZSM-5 with ordered mesoporous silica of the MCM-
41 type. The composite catalyst presented a methanol conversion similar to that obtained
for ZSM-5 zeolite (in the temperature range of 170–310 ◦C). However, the advantage of
the composite material over zeolite ZSM-5 is the lack of the decrease in the selectivity to
DME, with an increase in the reaction temperature as well as improved stability. Methanol
conversion in 30 day tests obtained in the presence of the composite catalysts was above
85%, while, for ZSM-5, it remained at the level of 85% for only 15 days. Later, it dropped
significantly to 45% after 30 days. The improved stability was related to the sufficient
acidity of the composite catalyst, as well as the mesoporosity, which ensures the easier
diffusion of the reactants and contributes to fewer carbon deposits [75]. Ulfah et al. [76]
prepared composite materials consisting of γ–Al2O3 and zeolite A or X as catalysts for the
MTD process. Such material was characterised by a significant contribution of acid sites
with medium strength (325 µmol/g) in the case of γ–Al2O3/A composites, and medium
(308 µmol/g) and high (519 µmol/g) strength in the case of γ–Al2O3/X composites.
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The size of the crystallites is another important property of zeolites influencing their
catalytic performance in methanol-to-DME dehydration. Catizzone et al. [77] compared
the catalytic activity of two series of zeolites, MFI (Si/Al = 23–27) and ferrierite (FER,
Si/Al = 11). Each series consisted of nano-crystalline zeolites (crystallite size of 0.1–0.3 µm)
and microcrystalline zeolites (crystallite size of 3–10 µm). It was shown that FER- and
MFI-type zeolites are stable catalysts of the DME synthesis. The results of catalytic studies
performed in the range of 180–240 ◦C indicate that the crystal size plays a crucial role
in terms of the DME production rate, DME selectivity, and coke deposition. Nano-sized
crystals exhibited superior performance than micro-sized crystals. In particular, nano-sized
MFI presented a similar DME selectivity (above 96%) and conversion of micro-sized FER,
but with a higher DME production rate and lower coke deposition. In the case of ferrierites,
nano-sized FER showed the highest DME selectivity (above 99%). The authors postulate
that zeolites may be considered as nano-scale reactors and, by controlling the residence
time, it is possible to have a control of the product distribution in the case of consecutive
reactions. Furthermore, the improvement of the internal diffusion rate by reducing the
size of the crystallites improves the overall reaction efficiency [77]. Rutkowska et al. [78]
reported the study focused on the synthesis of ZSM-5 composed of loosely adhered zeolite
nano-crystals (with sizes in the range 10–20 nm) with the enhanced internal diffusion
of reactants in spaces between such nano-crystals. Such materials, characterised by a
bimodal porous structure, micropores in zeolite nano-crystals and larger pores between
nano-crystals, were synthetised by the acidification of the zeolite seed slurry using HCl
solution, followed by hydrothermal treatment, enabling the aggregation of zeolite nano-
seeds with the formation of an interparticle mesoporous structure. It was shown that
the ageing conditions of the parent zeolite before and after acidification influenced the
porous and acidic properties of the final product. Moreover, it was reported that the
high catalytic efficiency of the DME synthesis was correlated with the presence of strong
acid sites of the Brønsted type. The as-synthesised micro-mesoporous samples showed
high catalytic activity, which was similar to that of conventional microporous ZSM-5.
However, the presence of weaker acid sites in their structure, connected with the generated
mesoporosity, resulted in an improved reaction selectivity to DME. On the other hand,
Abbasian and Taghizadeh [79] synthesised H-ZSM-5 nano-zeolites by the hydrothermal
method using tetrapropylammonium hydroxide (TPAOH) as a template in the presence of
various concentrations of tetrapropylammonium bromide (TPABr). The effect of different
TPABr/TPAOH molar ratios on the catalytic performance of methanol-to-DME dehydration
was studied. The H-ZSM-5 nano-zeolites (Si/Al = 125) were successfully synthesised by
the hydrothermal crystallization method. It was demonstrated that the sample with the
smaller crystallite size possessed a higher concentration of weak and medium acidic sites,
and consequently presented higher catalytic activity in the DME synthesis. Zeolite with
an average crystallite size of 27 nm was characterised by an acid site concentration of
660 µmol/g, while H-ZSM-5, with an average crystallite size of 81 nm, was significantly
less acidic at 200 µmol/g.

Aboul-Fotouh et al. [80] modified the surface acidity of zeolites (H-ZSM-5, H-MOR,
and H-Y) by their impregnation with ammonium chloride or ammonium fluoride and
ultrasonic treatment. It was reported that the chlorination and fluorination of zeolites
significantly improved their catalytic activity in methanol-to-DME conversion. In the case
of fluorinated H-ZSM-5 and H-MOR, the catalytic activation effect was better than for
chlorinated zeolites. The opposite halogenation effect was found for H-Y, which, in chlori-
nated form, presented higher catalytic activity in the MTD process compared to fluorinated
zeolite. The ultrasonic treatment of all chlorinated zeolites additionally improved their
catalytic activity, while the opposite effect was observed for fluorinated zeolites, which
were deactivated by the ultrasonic treatment. These interesting effects were explained by
the formation of additional acid sites under the conditions of zeolite halogenation, which
was more effective in the case of the fluorinated samples. Ultrasonic radiation additionally
increased the surface concentration of the acid sites for the chlorinated zeolites, e.g., the
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chlorination of H-MOR increased the acid site concentrations by about 10%, while the
ultrasonic treatment increased the concentrations by 30%, mainly by the generation of
weak acid sites (with a maximum of ammonia desorption in the NH3-TPD profile at about
170–180 ◦C). Moreover, the ultrasonic treatment of the chlorinated and fluorinated zeolites
significantly improved the reaction selectivity toward DME. This is possibly related to the
increased contribution of relatively weak Brønsted acid sites, active in the dehydration of
methanol to DME.

Very interesting results of methanol-to-DME conversion were presented by Dennis-
Smither et al. [81], who compared the catalytic activity of various zeolites with the similar
molar Si/Al ratios of 20–25. It was shown that the size of the micropores in zeolites play an
important role in the efficiency of the DME formation. The narrow-pore zeolite H-SSZ-13
(CHA) provided higher productivity to the DME than the medium-pore H-ZSM-5 (MFI),
and the wide-pore zeolites H-beta (BEA) and H-mordenite (MOR). Thus, it was assumed
that tighter confines in the zeolite pores provide higher activity for the DME formation.
The high efficiency of narrow-pore zeolites, such as H-SSZ-13, for methanol dehydration to
DME was also reported by Masih et al. [82].

Catizzone et al. [72,83] analysed the catalytic performance of zeolites, such as morden-
ite, ZSM-12, ZSM-22, EU-1, ferrierite, ZSM-5, beta, and SAPO-34, with different channel
systems, pore dimensions, and framework structures in methanol-to-DME dehydration. It
was postulated that zeolites with the 2D small and medium pore structures of ferrierite are
suitable catalytic environments for the selective conversion of methanol to DME, which
also inhibits coke formation. On the contrary, the 1D structures with large voids lead to the
formation of by-products, such as olefins, and fast coke deposition. Large openings and
side pockets in the one-dimensional pore structures increase carbon deposition, leading
to catalyst deactivation, while the ferrierite structure, with a two-dimensional small pore
channel system, showed high resistance to the deactivation by inhibiting coke deposition.
The 3D structure promotes the deposition of heavier molecules that form coke and affect
the catalytic performances. It was shown that the carbon deposit phase consists mainly of
poly-substituted benzenes, with a substitution level depending on the channel size and
topology. The most promising results of the catalytic tests in terms of methanol conversion,
DME selectivity, and deactivation were obtained for ferrierite (with the Si/Al molar ratio
of 8.4).

The effect of zeolite porosity and acidity was studied by Marosz et al. [84], who
prepared a series of MCM-22 zeolites with various molar Si/Al ratios of 15, 25, and 50, as
well as their delaminated (ITQ-2) and silica intercalated forms (MCM-36). It was shown
that the catalytic activity of the studied samples in the MTD process mainly depended on
the surface concentration of the acid sites, related to the content of alumina in the zeolitic
samples. Aluminium present in the zeolite framework generated mainly Brønsted acid
sites (≡Si–O(H)–Al≡). The surface concentration of the acid sites in MCM-22 decreased
after their delamination and intercalation, e.g., in the case of MCM-22 with the Si/Al ratio
of 15, the surface concentration of the acid sites decreased after delamination (ITQ-2) from
1202 to 943 µmol/g and after interaction with silica pillars (MCM-36) to 869 µmol/g. The
dominating role of Brønsted acid sites in methanol dehydration was postulated.

Two mechanisms—dissociative and associative—were proposed for the conversion of
methanol to DME in the presence of H-ZSM-5 (Scheme 3) [85,86]. It should be noted that,
in both cases, the key role was played by the Brønsted acid sites. These mechanisms were
postulated for H-ZSM-5, but they are probably also valid for other zeolite catalysts for the
MTD process.
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ITQ-2 and MCM-36, with the open interlayer structure, were less affected by coking
deactivation compared to microporous MCM-22. This effect was related to the improved in-
ternal diffusion of the reactant molecules in the interlayer mesopores only partially blocked
by carbon deposits. In contrast, the fully microporous MCM-22 structure can be plugged
very quickly by the coke. The type of zeolite porosity only slightly influenced the overall
efficiency of methanol to DME, as well as ethanol to diethyl ether (DEE) and ethylene
conversion [84]. Similar conclusions were proposed by Święs et al. [87], who verified the
catalytic activity of ferrierites and their delaminated (ITQ-6) and silica intercalated (ITQ-36)
forms in methanol-to-DME, ethanol-to-DEE, and ethylene dehydration. It was reported
that the surface acidity of the zeolite materials is crucial for their catalytic performance in
alcohol dehydration, while their porous structure is significantly less important. The fer-
rierite sample with the higher content of aluminium (Si/Al = 30) in the zeolite framework,
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and therefore the higher concentration of acid sites (276 µmol/g), presented much better
catalytic performance than high-silica zeolite (Si/Al = 50, surface acidity = 47 µmol/g). Sim-
ilar results were obtained for delaminated ITQ-6 (Si/Al = 30, surface acidity = 314 µmol/g;
Si/Al = 50, surface acidity = 39 µmol/g) and silica intercalated ITQ-36 (Si/Al = 30, surface
acidity = 382 µmol/g; Si/Al = 50, surface acidity = 116 µmol/g). It was postulated that
Brønsted acid sites, which dominate in ferrierite (for the sample with Si/Al = 30, the ratio
of BAS/LAS = 5.4) and their delaminated ITQ-6 form (for the sample with Si/Al = 30,
the ratio of BAS/LAS = 6.3) are more active in alcohol dehydration. This hypothesis was
proved by the catalytic activity of ferrierite with the Si/Al molar ratio of 30, which con-
tained only Brønsted acid sites (with no Lewis-type acidity) and was catalytically active in
methanol-to-DME conversion.

Another important pathway is the use of organic activators capable of increasing the
conversion of methanol to dimethyl ether (DME) over zeolite catalysts. Dennis-Smither
et al. [81] reported that mono- and di-carboxylate esters, used as additives, can effectively
promote the production of DME from methanol over zeolite catalysts. It was shown that the
concentrations of such carboxylate esters as low as 10 ppm in the relation to methanol can
significantly improve DME production. Molecular modelling methods applied to study the
role of carboxylate ester, specifically n-hexanoate, in methanol-to-DME conversion over H-
ZSM-5 resulted in the formulation of the following mechanism presented in Figure 4: (1) the
direct reaction of methanol with methyl n-hexanoate H-bonded to a Brønsted acid site,
involving the SN2 nucleophilic attack of methanol on the methoxy group of the adsorbed
methyl ester; (2) the reaction of the methoxy group of such an ester with a methanol
molecule, resulting in DME and a carboxylate ester, which closed the catalytic cycle.
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2.3. Clay Mineral-Based Catalysts

Clay minerals and their modifications were studied as potential catalysts for the MTD
process. Clay minerals are easily available and, therefore, relatively cheap. Moreover, various
methods of their catalytic activation, including acid treatment [88], delamination [89], and
intercalation with inorganic pillars [90,91], have been reported in the scientific literature.

Marosz et al. [92] treated natural vermiculite with a solution of nitric acid (0.8 M)
at 95 ◦C for 2, 8, and 24 h. Such modification of clay mineral resulted in an increase in
the specific surface area from 8 m2/g for the parent vermiculite to 159 m2/g, and surface
concentrations of acid sites from about 8 to 108 µmol/g for the vermiculite treated with acid
solution for 24 h. Moreover, the acid treatment of vermiculite resulted in a partial leaching
of aluminium and iron cations from its layers. For the vermiculite samples treated with a
nitric acid solution for 2 and 8 h, a significant increase in catalytic conversion of methanol
to DME was observed, while, for the sample activated for 24 h, catalytic activity was
significantly lower. The acid treatment of vermiculite resulted in two opposite effects. The
first is related to the development of the clay mineral surface area, resulting in its catalytic
activation. The second effect is attributed to the leaching of aluminium and iron cations
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from the vermiculite layers, resulting in a decrease in the acid site concentrations and
finally the lower catalytic activity in the MTD process. The acid treatment of vermiculite
for 24 h resulted in the most significant increase in its surface area, but, on the other hand,
in the more effective extraction of aluminium and iron cations from the vermiculite layers,
resulting in the reduced number of acid sites active in the conversion of methanol to DME.
A similar acid treatment procedure (0.8 M HNO3; 95 ◦C; 2, 8, or 24 h) was used for the
modification of allophane, palygorskite, and sepiolite [93]. The mineral samples were not
purified prior to the acid treatment. The surface area determined for palygorskite increased
after 24 h of acid treatment from 144 to 213 m2/g and for sepiolite from 99 to 247 m2/g. In
the case of allophane, the acid treatment resulted in a decrease in the surface area. Moreover,
aluminium and iron cations were partially leached from allophane and palygorskite by
the acid treatment. In the case of sepiolite, such an effect was not observed, possibly due
to the much stronger stabilisation of these cations in the sepiolite structure. In a group of
the studied minerals, the best catalytic activity in the MTD process presented allophane;
however, the acid treatment slightly decreased its catalytic activity. The opposite effect
was reported for palygorskite and sepiolite, which were catalytically activated by the acid
treatment. Thus, the acid treatment of the mineral materials may result in the development
of their surface area and porosity, which is beneficial for catalysis but, on the other hand,
the extraction of cations generates acid sites, which has an adverse impact on the catalytic
operation in the MTD process.

Clay layered minerals, such as montmorillonites, vermiculites, or saponites, can be
effectively intercalated with various inorganic pillars [90,91,94], resulting in the opening
of the interlayer space for catalysis. The deposition of inorganic stable pillars into the
interlayer space of the clay minerals results in the permanent separation of the mineral
layers and the formation of high-surface-area materials. In contrast to acid-treated minerals,
such pillared clays are characterised by a more uniform porous structure and preserved
surface acidity, which can be increased by the deposition of the interlayer pillars containing
elements generating acid sites, such as aluminium or titanium. Chmielarz et al. [95] studied
porous clay heterostructures (PCHs) obtained by the intercalation of montmorillonite with
silica, silica–alumina, silica–titania, and silica–zirconia pillars in the role of catalysts for
methanol-to-DME conversion. The catalysts were prepared by the surfactant-directed
method, including the deposition of cationic alkylammonium surfactants and neutral
alkylammonium co-surfactants into the interlayer space of the montmorillonite. Surfactants
and co-surfactants formed the ordered micellar structures in the interlayer space of mineral.
In the next step, tetraethyl orthosilicate (TEOS) was hydrolysed by water present in the
interlayer space of the clay mineral, which condensate around the micellar structure
with the formation of silica pillars, permanently increasing the interlayer distance in
the montmorillonite. In the final step, organic surfactants were removed from the porous
structure of the PCHs by calcination. In the case of montmorillonite intercalation with silica–
alumina, silica–titania, and silica–zirconia pillars, TEOS was mixed with the aluminium
(aluminium isopropoxide), titanium (titanium isopropoxide), or zirconium (zirconium
isopropoxide) source, respectively. The incorporation of these metals into the silica pillars
resulted in the generation of additional acid sites. The specific surface area increased from
77 m2/g for the parent montmorillonite to 318–642 m2/g for the pillared samples. The PCH
samples presented catalytic activity in the MTD process, which depended on the strength
and concentration of the acid sites in the modified clay minerals. In this series of catalysts,
as it is presented in Figure 5, the best results were obtained for the PCH sample intercalated
with the silica–alumina pillars (PCH-Al), which were more catalytically active than the
silica-intercalated montmorillonite (PCH-Si). In the latter case, the acid sites are located
only on the montmorillonite layers, while, in PCH-Al, the acid sites are located both on the
montmorillonite layers and on the silica–alumina pillars.
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Analysis of the NH3-TPD profiles, presented in Figure 6, shows that the alumina
incorporated into the silica pillars resulted in stronger acid sites compared to sites lo-
cated on the montmorillonite layers. Such stronger acid sites are postulated to be more
effective in methanol-to-DME conversion. PCH-Ti and PCH-Zr presented a significant
contribution of acid sites associated with the metal incorporated into the silica pillars, but
were characterised by lower acid strength (Figure 6), and therefore were found to be less
catalytically active in the MTD process (Figure 5). The continuation of these studies was
the deposition of aluminium into PCH-Si by the template ion-exchange method, which
is based on the exchange of the cationic surfactants for Al3+ cations in a freshly prepared
sample [95]. The catalysts obtained by this method, PCH-Al (TIE1) and PCH-Al (TIE2),
presented better catalytic activity than the sample with aluminium incorporated into the
silica pillars, PCH-Al (Figure 5).

Marosz et al. [92] studied acid-treated vermiculites intercalated with Al2O3 pillars as
catalysts for the MTD process. Vermiculites, in contrast to montmorillonites, are charac-
terised by the relatively high stabilisation of the interlayer cations, and therefore the direct
exchange of such cations in parent vermiculite is difficult or even, in many cases, impossible.
To decrease the stabilisation forces of the interlayer cations, vermiculite was treated with a
nitric acid solution to leach part of Al3+ and Fe3+ cations from the vermiculite layers. In the
next step, the leached cations were complexed in solution by oxalic acid (O) or citric acid
(C). Vermiculite modified in this way was intercalated with alumina Keggin oligocations by
the ion-exchange method and finally calcined, resulting in pillared interlayered clay (PILC).
Intercalation of vermiculite with alumina pillars resulted in an increase in the surface area
from 8 to 129 m2/g and surface acidity from 8 to 223 µmol/g for the sample without the
pretreatment with complexing agents. The modification of the acid-treated vermiculite
with oxalic or citric acid resulted in a more effective pillaring process, producing samples,
PILC-O-Al and PILC-C-Al, with a larger surface area of 203 and 172 m2/g, and a surface
acidity of 403 and 321 µmol/g, respectively. The PILC-C-Al catalyst presented significantly
better catalytic properties with respect to methanol conversion (above 80% at 275 ◦C) and
selectivity to DME (about 98% at 275 ◦C) than the other pillared vermiculites, indicating
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that the treatment of the acid-modified vermiculite with complexing agents, prior to the
pillaring, is a very important step in the mineral clay activation for the MTD process.
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2.4. Membrane-Based Catalytic Systems

The efficiency of methanol-to-DME dehydration can be significantly improved by the
application of the membrane reactors. The application of such reactors attracted much
attention in the last decade of the 20th century [96,97]. The operation of the membrane
reactors is based on the simultaneous occurrence of the chemical reaction and separation
of the reaction products using the membrane, resulting in a shift of the thermodynamic
equilibrium towards higher reactant conversion. Membrane separation has been proposed
to improve the performance of the conventional fixed-bed reactors used, for example, in
the steam reforming process [98,99], the production of syngas methanol [100], or Fischer–
Tropsch synthesis [101]. The application of membrane reactors for the MTD process is a
very promising option. Farsi and Jahanmiri [17] analysed the possibility of the application
of the membrane fixed-bed reactor for the large-scale DME production by methanol dehy-
dration. In the proposed reactor, water vapour, produced as a side product of methanol
dehydration, was selectively removed from the reaction zone by using the selective mem-
brane (Figure 7), and therefore the equilibrium conversion of methanol increased owing to
Le Chatelier’s principle. The simulation results indicated that the conversion of methanol
can be increased by about 6.2% compared to the conventional industrial reactor. It was
postulated that the application of the membrane reactor should lead to a higher catalyst
lifetime and lower the cost of the final product purification. Zhou et al. [15] applied a
sandwich FAU–LTA zeolite dual-layer membrane in the catalytic membrane reactor for the
synthesis of dimethyl ether. In the top of such a membrane, the H-FAU layer with mild
acidity for methanol dehydrated to DME was placed. Water formed as the side product
was removed in situ through the hydrophilic Na-LTA layer, which is located between the
porous alumina support and the H-FAU top layer. This combination of the zeolitic layers
and alumina resulted in the continuous removal of water and an increase in the conversion
of methanol (90.9% at 310 ◦C) with almost 100% selectivity to DME. Moreover, because
of the selective and continuous removal of water through the Na-LTA membrane, the
catalyst deactivation was effectively suppressed. Brunetti et al. [10] compared the catalytic
operation of two membranes, ZSM-5-γ-Al2O3 and ZSM-5-TiO2, in the synthesis of DME
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through MeOH dehydration. The performance of the two membrane reactors was analysed
as a function of the temperature and feed pressure, space velocity (WHSV), and feed com-
position. The ZSM-5-γ-Al2O3 membrane (Si/Al = 200; porosity of the zeolite layer = 0.2;
thickness = 50 µm; membrane area = 50.6 cm2) always presented a greater methanol conver-
sion than ZSM-5-TiO2 (Si/Al = 200; porosity of the zeolite layer = 0.2; thickness = 63 µm;
membrane area = 18.8 cm2), which was attributed to the higher catalytic activity of the
alumina than titania. It was reported that an increase in the feed pressure led to lower
methanol conversions, most likely ascribable to a negative effect on the desorption of the
reactants and products from catalytic sites. Moreover, it was shown that the conversion of
methanol was significantly affected by the presence of nitrogen in the feed, which induced
not only variation in the WHSV but also the depletion of the reaction rate due to the
dilution of the methanol concentration. The best catalytic results, in terms of 86.6% of
methanol conversion with 100% DME selectivity, were obtained for the ZSM-5-γ-Al2O3
membrane system at 200 ◦C and the WHSV of 1 h−1. In general, it was shown that the
methanol conversion and DME selectivity obtained with both membrane reactors were
better than that achieved with a traditional reactor. This effect was assigned to the positive
role of the continuous exposition of the catalytic layer to a gas flow, which favours the
removal of water from active sites and, therefore, limits catalyst deactivation and depletes
the formation of possible secondary products. Mohammed et al. [102] modelled and
simulated methanol-to-DME dehydration in an adiabatic tubular fixed-bed reactor with
and without a membrane, and analysed the effect of in situ water removal on the overall
methanol conversion. An optimisation approach was implemented to determine the best
feed conditions to obtain the maximum conversion of methanol. In the study, a steady-state
simulation of adiabatic single-tube reactors was performed using γ-Al2O3 pellets with
strictly defended specifications as catalyst. The hydrophilic membrane (CSP2) developed
by the Energy Research Center of the Netherlands (ECN), composed of four layers on a
commercially available macroporous tube coated with two layers of macroporous α-Al2O3
(40 µm thick), a thin layer of γ-Al2O3 (2 µm thick), and the functional polymeric layer
P84® (1 µm thick), was used. The obtained results showed that the methanol conversion
exceeded the thermodynamic equilibrium limits when a membrane fixed-bed reactor was
used instead of a traditional fixed-bed reactor. The conversion reached 96% at optimum
feed conditions in the fixed-bed reactor with a membrane.
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3. Summary and Perspectives

Dimethyl ether, due to its unique properties, has great potential for various appli-
cations, including its use as a solvent in chemical and petrochemical industries, as well
as to produce different important chemicals, such as diethyl sulphate, oxygenates, and
olefins. However, the prognosed increase in DME production is associated mainly with
the possibility of its mixing with liquified petroleum gas (LPG) to obtain more efficient
and environmentally friendly fuels for transportation and power generation. To intensify
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the DME production, more effective processes and catalysts are needed. Alumina and
zeolites are studied as the catalysts for the conversion of methanol-to-DME dehydration.
Alumina-based catalysts are hydrophilic, so water vapour, which is a side-reaction product,
is accumulated on the surface and hinders the access of methanol molecules to acid sites.
Moreover, the phase transition of alumina to boehmite, which is inactive in the MTD
process, may occur at elevated temperatures in the presence of water vapour. Alumina is
characterised by the presence of relatively weak and medium-strength acid sites, which
are active in the conversion of methanol to DME and less active in the formation of car-
bon deposits. Furthermore, the catalyst’s coking is significantly limited by the amount of
water accumulated on the alumina surface, and therefore such catalysts are characterised
by high selectivity to DME. The hydrophilic character of alumina can be reduced in the
composite Al2O3-SiO2 systems, which presented very promising catalytic properties in
the MTD process. The number of acid sites, which play a role of active centres, can be
increased, and therefore the efficiency of methanol-to-DME dehydration can be improved
by using nano-crystalline alumina. Various methods of such a catalyst’s synthesis have
been reported in the scientific literature. The surface acidity of the alumina-based catalysts
can be adjusted by the deposition of various transition-metal cations that play the role of
Lewis-type acid sites.

Zeolites are characterised by stronger acid sites, which are catalytically active in the
MTD process, but are also more susceptible to the formation of carbon deposits. Due
to the microporous structure of zeolites, their small pores can be effectively plugged
by the formed deposits, and, consequently, the access to the acid sites located inside
micropores is blocked. There are two main strategies focused on the solving of this problem,
reducing the strength of acid sites to limit the formation rate of carbon deposits and using
zeolite materials with the micro-mesoporous structure to improve the internal diffusion
of reagents. The main methods focused on decreasing the acid site strength are based on
the deposition of alkali metals or various transition metals, such as Ni, Co, Cr, Fe, or Zr,
into zeolites, mainly by the ion-exchange method. The surface concentration of acid sites
can be regulated by the synthesis of zeolites with the various Si/Al ratios or composite
zeolite–silica materials. Different strategies of micro-mesoporous zeolite synthesis have
been reported in the scientific literature. Among them, the most important are desilication
of zeolites using alkali solutions, the synthesis of zeolites in the nano-crystalline form (with
the intensified internal diffusion of reactants in the inter-crystalline spaces), as well as the
delamination and intercalation of layered zeolites to create additional interlayer porosity.

Clay minerals, because of their relatively high availability, presence of weak and
medium-strength acid sites, as well as various possible methods of their catalytic activation,
are a very interesting alternative to alumina and zeolites. The acid treatment of such
minerals in many cases result in a very significant increase in their surface area and
porosity, which increases their catalytic activity in the MTD process, but, on the other hand,
results in a partial leaching of elements creating acid sites, such as aluminium or iron, and
therefore decreases their catalytic activity. Thus, the development of the optimal conditions
of the acid treatment procedure is very important for the synthesis of effective catalysts
for the MTD process. The other methods are based on the intercalation and delamination
of layered clay minerals, resulting in the opening of the interlayer spaces for the catalytic
process without the elimination of acid sites.

The dehydration of methanol to DME is a thermodynamically restricted process, and
the equilibrium DME formation decreases with increasing temperature. Thus, from the
low-temperature side, there is a kinetic limitation resulting in the low reaction rate, while,
at higher temperatures, the efficiency of the MTD process is limited because of thermody-
namical reasons. This clearly shows the crucial role of effective catalysts operating in the
low-temperature range. The overall efficiency of the MTD process could be increased above
the thermodynamical equilibrium level by the in situ removal of water (the side-product of
the MTD process) from the catalytic reactor. There are some promising results presenting
the use of the catalytic membrane reactors, in which water vapour can be selectively in situ
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removed from the reaction zone. It seems that the application of such catalytic membrane
reactors will be the main future direction of MTD technology development. There are some
problems that have to be solved to effectively implement such technologies. First, highly
effective and stable membrane systems that can operate at the industrial scale must be
developed. Secondly, effective catalysts cooperating with membranes, with the optimal
strength and density of acid sites, as well as being resistant to poisoning by water vapour
and carbon deposits, have to be developed. Another important problem is the coking of
the catalysts under the conditions of the MTD process. Thus, a lot of attention should be
paid to the effective regeneration of the catalysts, as well as those operating in the catalytic
membrane reactors. Such regeneration, focused on carbon deposit removal, should not
result in the destruction of the catalyst structure or the acidic properties. Much work has
already been performed in this area, and it seems that further research directions have also
been indicated, as demonstrated in this paper. A list of the catalysts studied as potential
catalysts for the MTD process is summarised in Table 1.

Table 1. List of various catalysts for the MTD process.

Catalyst Modifications/Properties Catalytic Properties in MTD Process Ref.

γ-Al2O3
High surface concentration of acid sites and

catalytic activity. [37]

η-Al2O3
Lower concentration of acid sites compared to

γ-Al2O3, but better catalytic activity. [37]

α-Al2O3
Low concentration of acid sites and low

catalytic activity. [37]

κ-Al2O3
Low concentration of acid sites and low

catalytic activity. [37]

γ-Al2O3
Nano-crystallites; increased contribution of

weak and medium acid sites.
Relatively high catalytic activity and resistance

for coking. [38]

γ-Al2O3

High catalytic activity in the range of 150–325 ◦C.
Formation of CO and CH4 at

higher temperatures
[30]

γ-Al2O3
Various calcination temperatures of

alumina precursors.
High contribution of weak and medium acid

sites of the Lewis type active in the MTD process. [40]

η-Al2O3
Various calcination temperatures of

alumina precursors.

High contribution of weak and medium acid
sites of the Lewis type, but lower activity

compared to γ-Al2O3.
[40]

γ-Al2O3
Nano-crystalline (1–2 nm) obtained by

ultrasonic-assisted precipitation.

Catalyst operating in the range of 270–380 ◦C.
Optimum activity at 320 ◦C and a WHSV of

15 h−1.
[44]

γ-Al2O3

Synthesised by a modified sol–gel method
using cationic surfactants, resulting in

nano-crystalline (about 3.9 nm),
mesoporous material.

Small crystallites possess a higher concentration
of medium acidic sites. Nano-crystalline alumina
was more active than conventional alumina in
the broad range of the WHSV (1.75–9.62 h−1).

[45]

γ-Al2O3
Synthesised by a modified sol–gel method

in non-aqueous solvent.
Improved catalytic performance compared to the

classical sol–gel method. [46]

γ-Al2O3

Synthesised in the form of nano-size
material (1–2 nm) using precipitation
method under ultrasonic vibration.

About 90% of weak and medium acid sites active
in the MTD process. [44]

η-Al2O3

Synthesis started from aluminium nitrate
solution precipitated by ammonia solution
resulted in fine particles of about 5.5 nm.

Improved catalytic performance compared to
γ-Al2O3. Sensitive for water presence below

250 ◦C.
[42,52,54]

Ag/η-Al2O3 Silver deposited by impregnation. Increase in methanol conversion by about 10% at
300 ◦C for η-Al2O3 modified with 10 wt.% Ag. [55]
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Table 1. Cont.

Catalyst Modifications/Properties Catalytic Properties in MTD Process Ref.

Cu/γ-Al2O3
Deposition of copper by wet-impregnation

method with the aid of sonication.

Introduction of 6 wt.% Cu increased the acid site
concentrations by nearly 34% and catalytically

activated alumina.
[55]

SiO2/Al2O3
Obtained by the deposition of silica on
η-Al2O3 by the impregnation method.

The best catalytic results for the samples doped
with 0.5 wt.% SiO2, explained by the increased

surface area and Brønsted-type acidity.
[56]

Al2O3-SiO2
Obtained by the precipitation method in

the form of fine particles.
The best catalytic results were obtained for the

sample doped with 2 wt.% SiO2. [56]

TiO2/γ-Al2O3 Deposition of TiO2 (3–20 wt.%) on γ-Al2O3.
The best catalytic results were obtained for the
sample doped with 3 wt.% TiO2. Generation of

additional weak acid sites by Ti4+.
[57]

Nb2O5//γ-Al2O3
Deposition of Nb2O5 (1–10 wt.%) on
γ-Al2O3 by the impregnation method.

The best catalytic results were obtained for the
sample doped with 10 wt.% Nb2O5, which

generated weak acid sites.
[58]

ZSM-5
Better catalytic activity than γ-Al2O3 at 230 ◦C.
Above 270 ◦C, lower selectivity and stability

(coke formation).
[60]

ZSM-5 Zeolites with Si/Al in the range of 25,250. The highest acid site concentrations and catalytic
activity for Si/Al = 125. [61]

ZSM-5 Nano-crystalline material (about 120 nm).
Improved activity in comparison to classical

zeolite. Better accessibility of acid sites in
nano-crystalline ZSM-5.

[61]

ZSM-5

Zeolite composed of loosely sticked
nano-size crystals (10–20 nm) with the

enhanced internal diffusion in
inter-crystal spaces.

Improved reaction to DME in relation to
conventional ZSM-5. [78]

ZSM-5
Nano-zeolites (Si/Al = 125, crystallite size

about 27 nm) synthesised by the
hydrothermal method.

Higher catalytic activity compared to
conventional ZSM-5, explained by the increased

concentration of acid sites.
[79]

ZSM-5 Modification ZSM-5 with sodium. Improved selectivity to DME in the range of
230–340 ◦C. [60]

ZSM-5 Modification ZSM-5 with sodium. Mainly strong acid sites were neutralised by
sodium. Limited coke formation. [63]

ZSM-5 Modification of H-ZSM-5 with a KNO3
solution by the wet-impregnation method. Increased selectivity (nearly 100%) to DME. [63]

ZSM-5 Alkaline treatment resulted in
mesopore formation.

In comparison to classical ZSM-5, improved
catalytic properties and limited carbon

deposit formation.
[66]

ZSM-5
Alkaline treatment resulted in mesopore

formation and modification of
acidic properties.

In comparison to classical ZSM-5, improved
catalytic properties and limited carbon

deposit formation.
[67]

ZSM-5
Mordenite
Y zeolite

Zeolites in protonic forms were
impregnated with ammonium chloride or

ammonium fluoride and
ultrasonically treated.

Fluorination of H-ZSM-5 and H-MOR resulted in
their activation. Chlorination activated H-Y.
Ultrasonic treatment of chlorinated zeolites

additionally improved their catalytic activity,
while the opposite effect was observed for

fluorinated zeolites.

[80]

Beta zeolite

Strong acid sites promoted higher hydrocarbon
formation. Increase in reaction temperature

(280–450 ◦C) increased methanol conversion and
decreased DME selectivity.

[65]
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Table 1. Cont.

Catalyst Modifications/Properties Catalytic Properties in MTD Process Ref.

Y zeolite Lower activity and stability than ZSM-5. [69]

Y zeolite Introduction of Zr and Ni (1.8–2.0 wt.%) by
the ion-exchange method.

Increased stability due to limited coke formation
compared to non-modified Y zeolite. [70]

Y zeolite Introduction of Fe, Co, or Cr by the
ion-exchange method.

Decreased stability due to the increased coke
formation compared to non-modified Y zeolite.
Explained by the formation of additional strong

acid sites.

[70]

Mordenite Catalytic activity at low temperature (220 ◦C)
but limited stability due to coke formation. [72,73]

Ferrierite Catalytic activity at low temperature (220 ◦C)
and high stability. [72,73]

Ferrierite
Zeolites (Si/Al = 11) prepared in the form

of nano- (0.1–0.3 µm) and micro
(3–10 µm)-crystallites.

Increased activity of nano-zeolites compared to
micro-zeolites. Explained by the improved

internal diffusion rate.
[74]

Beta
Mordenite

Composite material consisting of beta
zeolite and mordenite.

More active than the mechanical mixture of beta
and mordenite. Over 90% of methanol

conversion with almost 100% selectivity to DME
in range of 200–275 ◦C. Limited coking of

the catalyst.

[74]

ZSM-5-MCM-41
Composite material consisting of ZSM-5

and MCM-41, which combined the
advantages of microporous zeolite.

Methanol conversion, like in the case of ZSM-5
(170–310 ◦C), but higher selectivity to DME and

improved stability.
[75]

MCM-22
Microporous MCM-22 as well as its

delaminated (ITQ-2) and silica intercalated
(MCM-36) forms were prepared.

It was postulated that the surface concentration
and strength of the acid sites are dominant

factors determining the catalytic activity, while
the porous structure is less important. On the
other hand, the open structures of ITQ-2 and

MCM-36 were more resistant for coking.

[84]

Ferrierite
Microporous ferrierite as well as its

delaminated (ITQ-6) and silica intercalated
(ITQ-36) forms were prepared.

The surface acidity of zeolite materials is crucial
for their catalytic performance, while a porous

structure is significantly less important.
[87]

Vermiculite
Acid treatment (HNO3—2, 8, 24 h) resulted

in development of its porosity and the
decrease in surface acidity.

Activation effect was observed for acid-treated
vermiculites. [92]

Allophane
Palygorskite

Sepiolite

Minerals were treated with a solution of
HNO3 for 2, 8, and 24 h.

Acid treatment increased catalytic activity of
palygorskite and sepiolite, and slightly

decreased the activity of allophane.
[93]

PCHs

PCHs were obtained by the intercalation of
montmorillonite with SiO2, SiO2-Al2O3,
SiO2-TiO2, and SiO2-ZrO2 pillars by the

surfactant-directed method.

The best results were obtained for the PCH
sample intercalated with SiO2-Al2O3 pillars, as
well as the PCH sample intercalated with SiO2

and deposited with alumina.

[95]

PILCs Vermiculite was intercalated with Al2O3
pillars by the ion-exchange method.

For the best catalysts of this series, the methanol
conversion above 80% at 275 ◦C with selectivity

to DME of about 98% was obtained.
[92]

Funding: This research received no external funding.

Data Availability Statement: No new data were created.

Conflicts of Interest: The author declares no conflicts of interest.



Catalysts 2024, 14, 308 25 of 29

List of Abbreviations

BAS Brønsted acid sites
DME dimethyl ether
DEE diethyl ether
FT-IR Fourier transform infrared spectroscopy
F-T Fischer–Tropsch process
HMB hexamethyl benzene
LAS Lewis acid sites
LPG liquefied petroleum gas
MFI mordenite framework inverted (zeolites)
Mt montmorillonite
MTD methanol to dimethyl ether conversion
NH3-TPD temperature-programmed desorption of ammonia
PCH porous clay heterostructure
PILCs pillared interlayered clays
TIE template ion-exchange method, one cycle (TIE1) and two cycles (TIE2)
ULEV ultra-low-emission vehicle
WHSV weight hourly space velocity
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