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Abstract: With unique photochemical properties, graphitic carbon nitride (g-C3N4) has
gained significant attention for application in photocatalytic degradation of a wide range of
organic pollutants. However, its performance is limited by the rapid electron–hole recombi-
nation and the relatively weak redox capability. Substantial progress has been made in the
preparation of g-C3N4-based photocatalysts with enhanced photocatalytic activity. This
review summarizes the recent advances in strategies to improve the photocatalytic activity
of g-C3N4-based photocatalysts and their application in the photocatalytic degradation
of organic pollutants. Morphology control, doping, functionalization, metal deposition,
dye sensitization, defect engineering, and construction of heterojunctions can be used to
improve the photocatalytic activity of g-C3N4 through promoting charge carrier separation,
reducing the bandgap, and suppressing charge recombination. Furthermore, a range of
oxidants, such as hydrogen peroxide and persulfate, can be coupled with g-C3N4-based
photocatalysts to enhance the generation of reactive oxygen species and boost the pho-
tocatalytic degradation of organic pollutants. Precise control over the g-C3N4 structure
during the synthesis process remains a challenge, and further improvements are required
in photocatalyst stability and the mineralization rates of organic pollutants. More research
and development effort is needed to address the existing challenges, refine the design of g-
C3N4-based photocatalysts to improve their activity, and promote their practical application
in pollutant degradation.

Keywords: graphitic carbon nitride; photocatalytic degradation; structural modification;
heterojunction; photo-generated carrier separation

1. Introduction
With the sustained global economic growth in recent years, wastewater pollution due

to rapid industrialization and urbanization has caused great concern. A wide variety of
organic chemicals, including antibiotics, dyes, pharmaceutical and personal care products,
pesticides, and flame retardants, contribute to the pollution of wastewater through their
production and use in factories [1,2]. These organic pollutants in wastewaters are typically
not effectively degraded in the conventional wastewater treatment processes [3]. The
development of green and efficient methods for their removal has become a growing area
of research. Advanced oxidation processes (AOPs) with superior oxidation capability
are considered a promising technology for addressing the issue of organic pollutants in
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wastewater [4]. The remarkable reactivity of AOPs arises from the generation of reactive
oxygen species (ROSs), such as superoxide radicals (•O2

−), hydroxyl radicals (•OH), sulfate
radicals (SO4

•−), and singlet oxygen (1O2). Under the attack of these strong oxidants, most
organic pollutants can be broken down into degradation intermediates, and even partially
or fully mineralized into H2O and CO2 [5,6].

A variety of AOPs have been put forward to use for the degradation of organic
wastewater [7,8]. Benefiting from the plentiful and renewable solar energy on Earth,
as well as its cost-effectiveness, environmental friendliness, high efficiency, and mild
reaction conditions, photocatalytic oxidation is widely regarded as a highly promising
and sustainable solution for degrading organic pollutants [9,10]. As shown in Figure 1a,
photocatalytic reactions consist of three key steps. Initially, the photocatalyst absorbs
photons with energy (hv) greater than or equal to its bandgap energy (Eg), leading to
the generation of electron–hole pairs. Subsequently, the photo-generated charge carriers
separate and then migrate to the surface of the photocatalyst. Electrons that move from
the valence band (VB) to the conduction band (CB) are referred to as photo-generated
electrons (e−), while the remaining holes in the VB are known as photo-generated holes
(h+). Finally, they react directly or indirectly with the organic pollutants on the surface of
the photocatalysts [11,12]. The stability and efficiency of photocatalytic reactions depend
on the effective design and precise fabrication of photocatalysts.
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Figure 1. Schematic illustration of the photocatalytic reaction (a) and the basic structural unit (b) of
g-C3N4. The numbers in red denote the three key steps in photocatalytic reactions.

Among various types of photocatalysts, graphitic carbon nitride (g-C3N4), a non-
metallic semiconductor, has received significant interest globally. As shown in Figure 1b,
triazine (C3N3) rings and tri-s-triazine (C6N7) rings are the basic structural units of g-
C3N4. The latter is the most stable phase, making it the typical structural unit that forms
g-C3N4. Due to its suitable bandgap (ca. 2.7 eV) and favorable band position, g-C3N4

exhibits high visible light responsiveness. It also offers a range of benefits, such as low
cost, excellent stability, and environmental friendliness, making it a promising non-metallic
semiconductor photocatalyst [13,14].

Despite its advantages, the pristine g-C3N4 photocatalyst has several limitations,
including a relatively small specific surface area (SSA), easy recombination of photo-
generated charge carriers, and weak redox capability. These drawbacks greatly limit its
large-scale application [15]. To date, various strategies have been employed to boost the
photocatalytic performance of g-C3N4 [16,17].

Some excellent reviews on the synthesis and design strategies of g-C3N4-based photo-
catalysts have been published [15,18,19]. However, strategies to enhance the efficiency of
g-C3N4-based photocatalysts for the degradation of organic pollutants have not been sys-
tematically reviewed, and the advantages and disadvantages of different design strategies
for g-C3N4-based photocatalysts have not been compared. In this review, recent advances
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in design strategies aimed at boosting the photocatalytic activity of g-C3N4-based photo-
catalysts are comprehensively discussed, while the strategy of oxidant coupling to further
enhance photocatalytic degradation of organic pollutants is also introduced. Finally, the
perspectives and challenges of g-C3N4-based photocatalysts in degrading organic pollu-
tants are discussed. By systematically summarizing the major strategies for improving
the photocatalytic activity of g-C3N4-based photocatalysts, along with their respective
advantages and limitations, we hope that this review can provide valuable guidance and
insights for the development of more efficient photocatalysts. We also aim to inspire future
work to address the existing challenges, refine the design of g-C3N4-based photocatalysts,
and promote their practical application in pollution control.

2. Strategies to Improve Photocatalytic Activity
Numerous strategies have been proposed to enhance the photocatalytic activity of g-

C3N4-based photocatalysts through suppressing the recombination of photo-generated car-
riers, optimizing charge migration pathway, promoting the separation of photo-generated
carriers, and adjusting their redox capability. This section systematically introduces these
strategies, including morphology control, doping, functionalization, metal deposition, dye
sensitization, defect engineering, and construction of heterojunctions. Table 1 compares the
major advantages and limitation of these strategies for enhancing the photocatalytic activity
of g-C3N4-based photocatalysts. Interestingly, these strategies may work synergistically in
practical application. For instance, the formation of heterojunctions may involve the combi-
nation of semiconductors with different dimensional morphology, and the incorporation of
foreign elements is often associated with the formation of surface defects.

Table 1. Summary of major advantages and limitations of different strategies to improve photocat-
alytic activity of g-C3N4-based photocatalysts.

Strategy Advantages Limitations

Morphology control
Various morphology can be chosen to meet
different application requirements, and the
modification process is highly adaptable.

Precise control over the morphology and size
remains a challenge.

Doping The doping procedure is simple and easy
to implement.

Certain dopants may result in a decrease in
specific surface area, and my increase

potential risk from metal leaching.

Functionalization
The required properties can be selectively

introduced through various
functional groups.

Most functionalization methods are not
environmentally friendly, and g-C3N4

functionalized with non-covalent groups
tends to exhibit poor stability.

Metal deposition

The localized surface plasmon resonance
effect can expand the light absorption range,
and the formation of a Schottky barrier can

accelerate electron transfer.

Noble metals are expensive.

Dye sensitization
The dye can be designed and synthesized in a
controlled manner, with adjustments to the
appropriate CB and light absorption range.

The sensitizing dye may decompose during
photocatalytic degradation process.

Defect engineering
Vacancies adjust the energy band alignment
and create trap states that enhance charge

carrier separation and transfer.

Excess defects narrow the bandgap, reduce
the redox capacity of charge carriers, and

increase their recombination.

Construction of
heterojunctions

Significantly enhances electron–hole pair
separation and reduces their recombination.

Precise control of material interfaces is
required in constructing

heterojunction photocatalysts.
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2.1. Morphology Control

g-C3N4 with various morphology has been constructed. According to their dimensions,
g-C3N4-based photocatalysts have been fabricated as zero-dimensional (0D) nanostruc-
tures (e.g., quantum dots [20]), one-dimensional (1D) nanostructures (e.g., nanorods [21],
nanowires [22], nanobelts [23], and nanotubes [24]), two-dimensional (2D) nanostructures
(e.g., nanosheets [25]), and three-dimensional (3D) nanostructures (e.g., nanoflowers [26],
nanospheres [27], nanocages [28], and hierarchical structures [29]).

Controlled morphology imparts various advantages and properties to g-C3N4. The 0D
structure of g-C3N4 generally refers to g-C3N4 quantum dots (QDs). This unique structure
endows the photocatalyst with excellent light absorption capability, superior conversion
efficiency, and enhanced photocatalytic performance [30,31]. Rajeshwari et al. [20] fabri-
cated a g-C3N4 QD-incorporated MoO3 catalyst, which brought about 98% degradation
of p-chlorophenol and 89% degradation of rifampicin after 330 min of visible light irra-
diation. The improvement in photocatalytic activity through g-C3N4 QD doping was
confirmed, which led to a notable narrowing of the band gap, better utilization of visible
light, a larger surface area, an improved charge transfer rate, and reduced electron–hole
pair recombination.

The formation of 1D tubular structures can provide an effective 1D pathway for
photo-generated charge carriers, thereby promoting the charge transfer rate [32]. Zhang
et al. [33] prepared a metal-free nanotubular carbon nitride photocatalyst (CN NT) for
activating O2 to decompose chloroquine phosphate. Density functional theory (DFT)
calculations indicated that the geometric modification of CN NT optimized the surface
electronic effect, particularly through enhancing charge separation and transfer properties,
which promoted strong electron interactions with O2, thereby improving the O2 adsorption
capacity. Furthermore, CN NT exhibited enhanced charge donation and interaction with
adsorbed O2, enabling better photocatalytic O2 activation and the generation of ROSs.

The 2D nanosheet structure of g-C3N4 usually results in a larger SSA, providing
more active sites for reactant capture and activation, and simultaneously improving mass
transfer [34,35]. Additionally, the reduced thickness significantly facilitates the separation
of electron–hole pairs, shortens the migration path to the surface of g-C3N4, suppresses
their recombination, and improves their overall utilization [36]. Kuate et al. [37] developed
a black graphite carbon nitride photocatalyst using a one-step calcination method with
urea and phloxine B, and used it for degrading tetracycline (TC) in seawater under visible
light. Up to 92% of TC degraded at room temperature after 2 h, which is more than
that achieved by pure g-C3N4 under the same conditions. The enhanced photocatalytic
performance was attributed to the ultrathin nanosheet structure, which not only minimizes
the charge transfer distance but also facilitates more efficient electron–hole separation,
thereby improving the overall photocatalytic degradation efficiency.

The 3D structure, with its simple synthesis process, outstanding absorption of visible
light, and recyclability, endows g-C3N4 with significant potential for engineering applica-
tion [30,38]. Gnanaguru et al. [39] fabricated a 3D g-C3N4/WS2/agarose aerogel (GCWAA)
using a simple freeze-casting method. The synthesized 3D GCWAA exhibited promising
photocatalytic removal of tetracycline, ofloxacin, and sulfamethoxazole, with degradation
rates reached 94%, 96%, and 97%, respectively, in 90 min. The lightweight nature and
tunable hydrophobicity of the 3D aerogel structure allow it to float on water surfaces,
enhancing its ability to absorb the incident light and facilitating recovery and reuse.

In summary, the morphology of g-C3N4 influences its key physical and photochemical
properties, such as SSA, light absorption capacity, charge carrier dynamics, and ultimately,
photocatalytic performance. For instance, specific morphology increases the SSA of g-
C3N4-based photocatalysts and provides more active sites for reactions to enhance the
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photocatalytic degradation performance. Moreover, the morphology affects the separation
and transportation of photo-generated electron–hole pairs. For example, tubular structures
provide an effective 1D pathway for photo-generated charge carriers and increase the
charge transfer rate, reduce their recombination, and enhance photocatalytic efficiency [32].
Additionally, certain morphology, such as 3D tubular yolk–shell structures, can effec-
tively enhance light harvesting by utilizing multiple scatterings and reflections within
the yolk–shell chambers, which increases the photocatalytic activity [40]. To address the
diverse needs of practical application, it is necessary to combine g-C3N4 with one or more
strategies to achieve synergistic interactions. Structural design and morphology control
of g-C3N4 are often adopted together to optimize the integration between components in
the photocatalysts.

2.2. Doping

Modifying the bandgap structure and surface of g-C3N4 can drastically improve the
photocatalytic efficiency of g-C3N4-based photocatalysts [15]. Elemental doping is con-
sidered an effective strategy to modify the bandgap and electronic structure of g-C3N4,
as it can efficiently narrow the bandgap, improve light absorption, and adjust the redox
potential of g-C3N4 [41,42]. As shown in Figure 2a, doping involves introducing foreign
elements into the semiconductor, where the introduced elements can occupy structural
voids within g-C3N4 or substitute its carbon or nitrogen atoms [34]. Bandgap engineering
through metal doping [43], non-metal doping [44], or their co-doping [45] has proven to be
an effective strategy for tailoring g-C3N4 for photocatalytic application [34]. Table 2 sum-
marizes the enhancement in photocatalytic performance of g-C3N4-based photocatalysts
through the introduction of common doped elements.
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Figure 2. Schematic diagram of doping (a) and functionalization of g-C3N4 (b).

Table 2. Summary of enhancement in photocatalytic activity of g-C3N4-based photocatalysts by
different doped elements.

Doped
Element Pollutant Concentration

(mg L−1)
Degradation

Efficiency
Kinetic Constant k

(min−1)

Enhancement Factor of k
over Reference
Photocatalyst

Reference

Li RhB 10 98.0% 0.082 6.8 times [46]

Na MB 20 98.5% 0.066 3.6 times [47]

K TMP 100 90.8% 0.038 2.4 times [43]

Ca ENR 5 - 0.046 3.3 times [48]

Mg OTC 20 80% 0.012 2.6 times [49]

Fe RhB 10 100% 0.117 10 times [50]
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Table 2. Cont.

Doped
Element Pollutant Concentration

(mg L−1)
Degradation

Efficiency
Kinetic Constant k

(min−1)

Enhancement Factor of k
over Reference
Photocatalyst

Reference

Co MB 10 96% 0.013 1.7 times [51]

Ni TC 10 77% 0.006 2.8 times [52]

Cu IBP 5 93% 0.089 2.3 times [53]

Ag RhB 10 97.2% 0.205 4.9 times [54]

B 4-CP 20 100% 0.092 4.9 times [55]

C BPA 10 96% 0.053 10.6 times [56]

O 2,4-DNP 10 100% 0.038 1.6 times [57]

N TC 20 93% 0.135 8.5 times [58]

S ATZ 2 99.6% 0.046 2.4 times [59]

P 2,4-D 1 90% 0.043 4.0 times [60]

F TC 10 99.8% 0.021 1.7 times [61]

Cl TC 10 92% 0.020 5.2 times [62]

Br OTC 10 75% 0.018 4.3 times [63]

I TC 10 99.8% 0.032 2.6 times [64]
Note: RhB = rhodamine B; MB = methyl blue; TMP = trimethoprim; ENR = enrofloxacin; OTC = oxytetracycline;
TC = tetracycline; IBP = Ibuprofen; 4-CP = 4-chlorophenol; BPA = bisphenol A; 2,4-DNP = 2,4-dinitrophenol;
ATZ = atrazine; 2,4-D = 2,4-dichlorophenoxyacetic acid; “-” indicates missing data in the reference.

The metal dopants that are currently applied to g-C3N4-based photocatalysts are
primarily alkali metals and transition metals, which can be further categorized into s-block
metals (Li [46], Na [47], K [43], Ca [48], Mg [65]), d-block metals (Fe [66], Co [67], Ni [68]),
and ds-block metals (Cu [69], Ag [54]). The incorporation of metal elements plays a key
role in boosting charge carrier separation and enhancing visible light absorption, ultimately
improving the photocatalytic efficiency [70]. Mao et al. [66] successfully assembled an
iron-doped g-C3N4/GO hybrid composite (GO/Fe-GCN) and employed it as an adsorption–
photocatalytic Fenton-type heterogeneous catalyst. The experimental results showed that
Fe2+ and Fe3+ were captured by the nitrogen-rich g-C3N4, resulting in the formation of well-
dispersed active sites. The equilibrium removal rate of Rhodamine B reached 83.6%, which
is five times higher than that of the pristine g-C3N4. The hybrid GO/Fe-GCN structure,
along with the efficient cycling of Fe2+/Fe3+, plays a crucial role in the synergistic effect
of adsorption enrichment and the photocatalytic Fenton reaction. Furthermore, the Fe–N
ligands that are formed through Fe doping facilitate charge carrier migration while reduce
their recombination.

Numerous non-metal elements have been extensively employed for doping g-C3N4-
based photocatalysts, including B [55], C [56], O [71], N [58], S [59], P [60], F [61], Cl [62],
Br [63], and I [64]. These elements can adjust the electronic structure of g-C3N4-based
photocatalysts, leading to enhanced photocatalytic activity. Meng et al. [71] synthesized O-
doped porous g-C3N4 (OCN) through a thermal polymerization method for the activation
of peroxymonosulfate (PMS) to remove carbamazepine (CBZ) under visible light and dark
conditions. Their findings revealed that the oxygen atoms facilitated electron transfer by
tuning the electronic structure of g-C3N4, activating PMS even without light irradiation.
Moreover, the incorporation of oxygen atoms narrowed the bandgap, improving the light
responsiveness and enhancing the efficiency of electron–hole pair separation, which in turn
boosted the photocatalytic activation efficiency of OCN.
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Co-doping involves the incorporation of two or more metal or non-metal elements
into a material, resulting in enhanced photocatalytic performance through synergistic
interactions. Compared to single-element doping, co-doping typically achieves superior
photocatalytic activity [45,72–74]. Yue et al. [72] synthesized potassium and sodium co-
doped carbon nitride (CN-K/Na) through ionothermal polymerization of urea. This co-
doping process altered the crystallinity and surface morphology of the carbon nitride. The
simultaneous introduction of K and Na significantly promoted the formation of long-range
ordered crystalline structure in carbon nitride, outperforming single-element doping. In
addition, the CN-K/Na co-doped carbon nitride possessed substantial amount of surface
–C≡N and –NH2 functional groups, which play a crucial role in enhancing photocatalytic
performance. This improvement in activity is driven by multiple mechanisms: the Na+

ions aid in the transfer of charges within the plane of the material, while K+ ions support
charge migration between different planes. In addition, the –C≡N groups are instrumental
in capturing and activating O2, while the –NH2 groups facilitate the extraction and release
of protons.

2.3. Functionalization

The use of various chemical modifiers for functionalization has proven to be an ef-
fective approach to introducing new features into g-C3N4. Through molecular doping,
functionalization can optimize the energy band structure, photoelectrochemical proper-
ties, and intrinsic conjugation system of g-C3N4. Owing to its conjugated structure, the
physicochemical properties of g-C3N4 can be significantly altered by copolymerizing with
unique aromatic groups or organic units [75–77]. The functionalization of g-C3N4 typically
refers to covalent modification, where new functional groups are introduced through stable
covalent bonds between the g-C3N4 structure and chemical modifiers. Figure 2b shows
a schematic diagram for the functionalization of g-C3N4 using the cyano and carboxyl
groups, with the introduction of these groups imparting new properties to g-C3N4.

A common covalent functionalization strategy is oxidation, which incorporates
one or more oxygen-containing functional groups, such as hydroxyl groups, carboxyl
groups, and others, onto the surface of g-C3N4. This process can adjust its band structure,
thereby influencing the types of reactive species that are generated during photocataly-
sis and controlling the degradation and transformation pathways of pollutants [78,79].
Ming et al. [80] employed a simple hydrothermal method to gradually oxidize g-C3N4, re-
sulting in oxidized g-C3N4 (CNO). Besides the N–O groups, the formation of C=O and C–O
groups was also detected in the CNO, and the introduction of these electron-withdrawing
groups reduced the VB level of g-C3N4, thereby enhancing its photo-oxidation activity. Fur-
thermore, the photocurrent response of CNO was measured to be approximately 10 times
higher than that of raw g-C3N4, and the photocatalytic activity of CNO for the degradation
of Acid Orange 7 was found to be approximately 7 times higher than that of g-C3N4. To-
gether, the incorporation of these oxygen-containing functional groups plays a significant
role in improving the separation efficiency of photo-generated electrons and holes, thus
enhancing the photocatalytic activity of CNO.

In addition, a variety of functional groups, such as cyano groups [81], amino
groups [82], aldehyde groups [83], and amidoxime groups [84], have been used for the
functionalization of g-C3N4 to regulate its photocatalytic activity. Xu et al. [81] found that
the introduction of the cyano group increased the local charge density of g-C3N4, creating
a potential well that attracted exciton “holes”, thereby accelerating exciton dissociation. As
a result, free radical selectivity up to 97.6% was achieved in the photocatalytic degradation
of tetracycline, with the removal of total organic carbon reached 82.1% within 6 h. This
approach, which selectively generates radicals with stronger photocatalytic oxidation abil-
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ity by manipulating charge carrier transfer and exciton dissociation processes, provides a
method for the precise control of radical production to mineralize refractory pollutants.

g-C3N4 has also been functionalized using non-covalent methods. Unlike covalent
bonding, non-covalent methods primarily rely on physical bonding and intermolecular
interactions, including electrostatic interactions, van der Waals interactions, and π-π inter-
actions [85]. Chen et al. [86] utilized an ultrasonic dispersion method to hybridize Cu(II)
meso-Tetra (4-carboxyphenyl) porphyrin (CuTCPP) with g-C3N4 through π-π interactions.
The resulting composite possessed significantly enhanced photocatalytic activity under
visible light compared to pristine g-C3N4. This improvement was attributed to the efficient
transfer of electrons from CuTCPP to g-C3N4, which facilitated the separation and migra-
tion of photo-generated electron–hole pairs. Notably, the photocatalytic activity of the
composite reached its maximum at the CuTCPP content of 0.75%, with the rate constant for
phenol degradation being approximately 2.2 times that of g-C3N4. The enhanced photocat-
alytic performance under visible light irradiation is ascribed not only to the well-matched
overlapping band structures, which promote the separation and transfer of electron–hole
pairs, but also to the sensitization effect of CuTCPP, which leads to an overall improvement
in the photocatalytic activity of g-C3N4 across its full absorption spectrum.

It is noteworthy that non-covalent interactions are weaker than covalent bonds, result-
ing in composites with relatively poor stability. However, non-covalent methods can retain
the inherent properties of both components while incorporating their characteristics [87].
Therefore, in practical application, the choice of an appropriate functionalization method
should be based on the specific requirements.

2.4. Metal Deposition

Metal doping incorporates metals into the structure of g-C3N4, whereas metal depo-
sition places metals onto the surface of g-C3N4. Figure 3 schematically illustrates metal
deposition on g-C3N4. When the metal interfaces with the g-C3N4 surface, owing to the
higher Fermi energy (Ef) of the g-C3N4 compared to the metal, photo-generated electrons
will migrate from the higher Ef of g-C3N4 to the metal, forming a Schottky barrier [88].
As a result, the structure comprising of g-C3N4 and the metal is referred to as a Schottky
junction. Depositing metal onto the surface of g-C3N4 can promote the separation of photo-
generated charge carriers and enhance the photocatalytic activity [89,90]. Additionally, the
localized surface plasmon resonance (LSPR) effect leads to the plasmonic electron injecting
to g-C3N4, extending photocatalyst’s light absorption range [91,92]. Since they can promote
photocatalytic reactions, the doped metals are also referred to as cocatalysts. Based on
the aforementioned principles, the deposition of noble metals, such as Au [93], Ag [94],
Pt [95], and Pd [96], has been widely studied and proven to be an efficient method for
enhancing the solar energy utilization capability of g-C3N4. Nevertheless, the high cost and
limited availability of noble metals restrict their practical utilization. Consequently, many
researchers have explored the deposition of non-noble metals, such as Ni [97], Cu [98],
and Bi [99], to strengthen the photocatalytic performance of g-C3N4-based catalysts. The
LSPR effect of non- noble metals can also elevate the separation and migration efficiency
of electron–hole pairs and expand the absorption range of photocatalysts. However, their
free carrier density is significantly lower compared to the noble metals, and their LSPR
frequency corresponds to longer wavelength, resulting in lower photocatalytic activity,
which limits their further development [100].

2.5. Dye Sensitization

Dyes possess high tendency for light absorption and can efficiently convert longer
wavelength solar light into molecular energy [101]. Therefore, dye sensitization is an
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effective method for enabling g-C3N4-based photocatalysts to capture solar energy from
longer wavelength. As shown in Figure 4, when the CB of g-C3N4 lies between the LUMO
and HOMO levels of the dye, the electrons that are generated upon light excitation of
the dye on g-C3N4 can transfer from the LUMO orbitals of the dye to the CB of the g-
C3N4. This not only broadens the light absorption range, but also suppresses the carrier
recombination, thus enhancing the photocatalytic activity [102]. Since dyes are organic
molecules that can be designed and synthesized in a controllable manner [102], it is easy to
obtain dyes with suitable CB values and tunable absorption range. Two common types of
dyes that have been used for sensitization of g-C3N4 are metal-free dyes and metal-based
dyes. Bakhtiar et al. [103] utilized a hydrothermal technique to load zinc phthalocyanine
(ZnPc) onto the surface of g-C3N4, significantly boosting its photocatalytic capability.
Within 1 h of light irradation, 85% of 2,4-dichlorophenol degraded in the presence of
the ZnPc-functionalized g-C3N4. Its high photocatalytic activity was attributed to the
excellent visible light absorption and efficient generation of superoxide ions and holes,
which were generated through charge transfer between g-C3N4 and ZnPc. However, during
the photocatalytic degradation process, the free radicals generated may indiscriminately
oxidize the sensitizing dye. As a result, dye sensitization is more commonly applied
in photocatalytic hydrogen production rather than in the photocatalytic degradation of
organic pollutants.
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2.6. Defect Engineering

When the periodic arrangement of atoms or ions in a crystalline structure alters, de-
fects are introduced into the material, which are referred to as crystallographic defects [104].
Since defects can be precisely introduced and characterized, defect engineering can be
utilized to optimize the performance of g-C3N4-based photocatalysts by improving charge
transfer and separation, enhancing light absorption, or manipulating surface reactions [105].
Generally, defects in g-C3N4 are point defects, which can be categorized into four distinct
types: nitrogen vacancies [106], carbon vacancies [107], amino defects [108], and cyano
defects [109,110]. Introducing vacancies into semiconductors can narrow their band gap,
thereby expanding the photocatalyst’s light absorption range [111]. Li et al. [112] con-
structed porous g-C3N4 nanosheets with carbon vacancies through a simple annealing
process. In the photocatalytic Fenton-like reaction, the degradation efficiency of metronida-
zole reached 90.7%, and the TOC removal efficiency achieved 62% within 100 min, which
was approximately 6 times higher than those achieved by g-C3N4. The results indicated
that carbon vacancies could broaden the light absorption range, leading to a negative shift
in the energy bands, which in turn promotes the capture of photo-generated electrons
and activates the surface-adsorbed molecular oxygen. Defect-induced electronic states,
commonly referred to as “trap states”, play a crucial role in expanding light absorption by
enabling electron excitation. Additionally, these states provide pathways for the energy
relaxation of photo-generated charge carriers within VB and CB. By influencing the dy-
namics of charge carriers, these states accelerate the efficient separation and transport of
electron–hole pairs, ultimately enhancing the photocatalytic activity. Liu et al. [113] synthe-
sized nitrogen-defective g-C3N4 with varying nitrogen defect density for photocatalytic
degradation of ciprofloxacin (CIP). The degradation rate constant of CIP in the presence
of nitrogen-defective g-C3N4 was approximately an order of magnitude higher than that
of g-C3N4. The incorporation of nitrogen defects induced defect states between the CB
and VB, thereby modulating the electronic and band structure. These induced defect states
shifted downward toward the VB, achieving an optimal nitrogen defect density to facilitate
the excitation of electrons. This effectively narrowed the bandgap, broadened the light
absorption range, and enhanced the separation and transfer of charge carriers.

2.7. Construction of Heterojunctions

In an isolated g-C3N4 photocatalytic system, photo-generated electrons in the CB are
likely to recombine with the holes in the VB, causing electron–hole recombination, which
is detrimental to the photocatalytic activity. Hence, the development of g-C3N4-based
heterostructures has garnered significant attention for promoting the photocatalytic activity
of g-C3N4. These heterostructures can significantly expand the light absorption capacity,
increase the SSA, and enhance the density of active sites. Additionally, the incorporation
of cocatalysts helps lower the overpotential that is required for catalytic reactions and en-
hances the separation of photo-generated charge carriers under light excitation. In general,
designing and fabricating suitable heterostructures is widely regarded as one of the most
effective approaches to improve the efficiency of electron–hole pair separation, yielding a
notable increase in photocatalytic activity [12]. Moreover, the introduction of other compo-
nents, presumably with synergistic interactions, brings several new advantages, including
enhanced light absorption capacity, higher surface reactivity, and optimized band posi-
tions, all of which benefit the photocatalytic activity. Based on the separation and transfer
mechanisms of photo-generated electron–hole pairs, g-C3N4-based heterostructures are
grouped into four major types: Type-II heterojunction, Z-scheme heterojunction, S-scheme
heterojunction, and p-n heterojunction.
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2.7.1. Type-II Heterojunction

A conventional Type-II heterojunction system is formed by establishing a tailored
interface between two semiconductor photocatalysts, utilizing the distinct energy band
alignment. This design promotes efficient spatial separation of photo-generated charge
pairs, significantly enhancing the photocatalytic activity [114]. For pure g-C3N4, due to the
Coulombic effect, photo-generated electrons in the CB are likely to recombine with holes in
the VB. However, in g-C3N4-based Type II heterojunction systems, the CB potential of g-
C3N4, typically around −1.1 eV, is lower than that of the second semiconductor. As a result,
photoexcited electrons in the CB of g-C3N4 can rapidly migrate to the CB of photocatalyst
II, which has a higher potential. Simultaneously, the photo-generated holes shift in the
reverse direction. This separation significantly reduces the recombination of electrons and
holes, thereby extending their lifetime. Figure 5a schematically illustrates the separation
pathway of photo-generated electron–hole pairs in a type-II heterojunction.
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Figure 5. Schematic illustration of the separation pathways of photo-generated electron–hole pairs
in a type-II heterojunction (a), a Z-scheme heterojunction with an electron mediator (b), a direct
Z-scheme heterojunction (c), an S-scheme heterojunction (d), depicting the band structure before
contact, the formation of a built-in electric field and band bending, and the charge transfer pathway
under light irradiation, as well as the different charge migration pathways in the p-n heterojunction:
type-II heterojunction pathway (e) and Z-scheme heterojunction pathway (f).

To date, various g-C3N4-based type II heterojunctions have been constructed, explor-
ing different semiconductor materials, including metal oxides (e.g., TiO2 [115], CeO2 [116],
Fe2O3 [117], Cu2O [118]), metal sulfides (e.g., MoS2 [119], ZnIn2S4 [120], SnS2 [121]), halides
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(e.g., BiOBr [122], BiOI [123]), and other semiconductors (e.g., ZnFe2O4 [124], BiVO4 [125],
CoTiO3 [126], LDH [127], MOFs [128], COFs [129]). Numerous studies have demonstrated
that Type-II heterojunctions are effective in promoting the separation of photo-generated
charge carriers [130]. For instance, Song et al. [131] fabricated boron-doped carbon dot
(BC-dot)-decorated g-C3N4 (C3N4/BC-dots) photocatalysts through surface deposition.
The boron doping treatment transformed the BC-dots from semimetals into semiconduc-
tors, leading to the construction of a type II heterojunction between the C3N4 and BC-dots,
which facilitated the separation of electrons and holes. The experimental data revealed
that BC-dots/C3N4 possessed a large SSA, fast charge transfer rate, and superior visible
light absorption. Additionally, construction of type II heterojunctions also enhances the
photoelectrochemical properties of g-C3N4 to different extent, depending on the specific
characteristics of the second semiconductor material [132].

2.7.2. Z-Scheme Heterojunction

While g-C3N4-based Type-II heterojunction photocatalysts enhance photo-generated
electron–hole separation, photocatalytic reactions may occur on semiconductors with
lower redox potentials, thereby reducing both the reduction and oxidation capability from
a thermodynamic standpoint [12,19,114]. A key challenge in designing g-C3N4-based
heterojunction systems is to efficiently separate photo-generated charge carriers while
preserving strong redox properties.

To address these issues, Bard et al. [133] introduced the groundbreaking concept of
Z-scheme photocatalytic systems in 1979. Based on the natural photosynthesis process in
green plants, this unique charge transfer pathway enhances the separation of electron–hole
pairs while maintaining strong redox capability. Figure 5b depicts the typical Z-scheme
electron–hole pair transfer mechanism between two semiconductors (C1 and C2), facilitated
by electron mediators. In this system, photoexcited electrons in the lower CB of C1 migrate
to an electron mediator. The mediator then passes these electrons to the VB of C2, where
they recombine with photo-generated holes. This process effectively separates the electron–
hole pairs in both semiconductors, with electrons remaining in C2 and holes in C1, thereby
enhancing the redox ability of both semiconductors.

A conventional Z-scheme system is usually limited to liquid-phase application due to
the necessity of redox mediators. Therefore, the development of all-solid-state Z-scheme
photocatalytic systems, where solid conductive materials either replace or eliminate the
need for mediators, is highly important [134]. Tada et al. [135] proposed an all-solid-
state Z-scheme photocatalyst in 2006, which includes two semiconductors and a solid
electron mediator between them. These all-solid-state systems can be employed in a
variety of phases, including solutions, gases, and solids, thus broadening their scope f
application. However, the solid electron mediators that are required for enhancing electron
migration in these systems are often costly and scarce, posing a significant barrier to their
large-scale deployment.

Building on previous concepts, Yu et al. [136] presented an innovative idea of direct Z-
scheme heterojunctions in 2013. Unlike traditional all-solid-state Z-scheme photocatalysts,
which require costly electron mediators, direct Z-scheme photocatalysts eliminate this
need, greatly reducing the production cost. In such systems, the electrostatic attraction
between photo-generated electrons and holes enhances the charge transfer, making it more
efficient than in Type II heterojunctions. Specifically, as shown in Figure 5c, the electrostatic
interaction facilitates the transport of electrons from the CB of C1 to the VB of C2, which is
rich in holes [134]. Wang et al. [137] constructed a Fe-g-C3N4/Bi2MoO6 (FCNB) Z-scheme
heterojunction enriched with oxygen vacancies. This structure exhibited excellent activity
in photocatalytic Fenton degradation of TC under visible light. The introduction of the
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Z-scheme heterojunction effectively suppressed the recombination of electron–hole pairs at
the interface.

Z-scheme heterojunction systems require the coupling of two semiconductors with ap-
propriate bandgap structures and closely aligned energy bands to achieve favorable charge
carrier separation and transfer. This limits the selection of materials for the construction of
Z-scheme photocatalysts [138]. Moreover, the complexity of semiconductor interfaces and
the high contact resistance could inhibit the transport of charge carriers, leading to inferior
photocatalytic activity [139,140]. To mitigate these issues, researchers have constructed
dual Z-scheme heterojunction systems, where the combination of multiple components
enhances the photon absorption range of photocatalysts [141,142]. Ma et al. [143] synthe-
sized a g-C3N4/Bi2O2CO3/β-Bi2O3 ternary heterojunction via a Bi-based metal–organic
framework (Bi-MOF) derivative strategy. This material possessed a high SSA, excellent
visible light utilization efficiency, and enhanced charge spatial separation ability due to
the electronic transfer pathway via Bi−N bonds and the formation of the heterojunction.
Under visible light excitation, approximately 96.7% of TC degraded in the presence of this
heterojunction within 120 min, and the reaction rate constant (0.023 min−1) was 4.6 times
higher than that of g-C3N4.

2.7.3. S-Scheme Heterojunction

The present Z-scheme heterojunction mechanism has some drawbacks in explaining
charge transfer during photocatalysis. In 2019, Yu et al. [144] established a Step-scheme
(S-scheme) heterojunction (Figure 5d), which can visually describe the transfer pathway of
electrons from lower to higher energy levels, resembling the “steps” of a staircase, thus offer-
ing new insights into the charge transfer process in heterojunction photocatalysts [145,146].
This system consists of two specific semiconductors: an oxidation photocatalyst (OP)
and a reduction photocatalyst (RP), which can be either n-type or p-type semiconductors.
However, the CB position and Ef of the RP must be higher than those of the OP [146].
The contact between the OP and RP causes electrons to migrate from the RP to the OP,
driven by the difference in Ef, until an equilibrium is reached. The change in interface
charge causes the energy bands of the OP to bend downward, forming an accumulation
layer, while the energy bands of the RP bend upward at the interface, resulting in a de-
pletion layer of electrons and creating an internal electric field that promotes the transfer
of photo-generated electrons from the OP to the RP. The charge transfer at the interface
of the two photocatalysts is driven by the internal electric field that is formed between
them [147]. This S-scheme heterojunction effectively enhances charge carrier separation
while preserving the redox capability, offering a significant advantage over traditional
Type II heterojunctions [114]. Duan et al. [148] fabricated an S-scheme heterojunction
photocatalyst by integrating CdS with sulfur-doped carbon nitride (GCNS) using a straight-
forward solid-state diffusion technique. The photocatalytic degradation rate constant of
methyl orange in the presence of this heterojunction was 9.67 and 5.39 times higher than
those of GCNS and CdS, respectively. DFT calculations and charge flow tracking revealed
that the S-scheme was formed as a result of the unidirectional band edge bending, which
facilitates the migration of electrons from CdS to GCNS. This configuration significantly
enhanced the light absorption, improved charge separation, and promoted the generation
of •O2

− species.
Similar to the dual Z-scheme heterojunctions, g-C3N4-based dual S-scheme het-

erojunctions have also been proposed to address the limitations of single-junction S-
scheme structures, including weak interactions and poor multiphase integration [147,149].
Zhao et al. [150] reported a dual S-scheme heterojunction, CeO2/g-C3N4/Bi2O4, which
exhibited excellent photocatalytic activity and stability. The dual S-scheme electron mi-
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gration pathway significantly facilitates the transport of photo-generated charge carriers,
suppresses electron–hole recombination, and maintains high redox activity.

2.7.4. p-n Heterojunction

In typical p-type semiconductors, holes are the primary charge carriers, whereas in
n-type semiconductors, free electrons serve as the dominant charge carriers. g-C3N4, with
its –NH/NH2 groups acting as electron donors, is classified as an n-type semiconductor.
Thus, g-C3N4 can be coupled with a suitable p-type semiconductor to construct a p-n
heterojunction for enhanced photo-generated charge separation [12,151]. Typically, the Ef

of p-type semiconductors is close to the VB, while it is near the CB in n-type semiconductors.
The contact of these two semiconductors leads to band bending at the interface, forming
an internal electric field. This field aids in the transfer of photo-generated electrons from
the p-type to the n-type semiconductor, while holes migrate in the reverse direction. This
p-n heterojunction structure promotes effective charge separation in g-C3N4, enhancing its
photocatalytic activity [114].

Interestingly, although the photo-generated electron transfer mechanism in p-n het-
erojunctions always involves the movement of electrons from the p-type semiconductor
to the n-type semiconductor, the pathway of charge carrier transfer can vary significantly
owing to the difference in their Ef values. As shown in Figure 5e, if the Ef of the p-type
semiconductor is higher than that of the n-type semiconductor, the photo-generated charge
carriers will transfer through the Type-II heterojunction path. The presence of built-in elec-
tric field accelerates this process. Conversely, photo-generated charge carriers will transfer
through the Z-scheme heterojunction path pathway if the Ef of the p-type semiconductor is
lower than that of the n-type semiconductor (Figure 5f), driven by the internal electric field.
This mode is analogous to the S-scheme heterojunction that is formed between n-type and
p-type semiconductors, which efficiently suppresses the recombination of electron–hole
pairs while maintaining strong redox capability.

Recent studies have used various p-type semiconductors, including CuAl2O4 [152],
NiO [153], Mn3O4 [154], and BiOI [155], for constructing p-n heterojunctions with g-C3N4.
Wang et al. [152] developed an S-scheme p-n heterojunction by coupling p-type MnS with
n-type protonated g-C3N4 (PCN) semiconductors for photocatalytic H2O2 production
and achieved in situ oxidative degradation of oxytetracycline. The construction of a p-n
heterojunction significantly enhanced the photo-generated charge separation and electron
transfer efficiency.

3. Oxidant Coupling Strategy to Enhance the Photocatalytic Degradation
Efficiency of Organic Pollutants

g-C3N4-based photocatalysts have been applied for the photocatalytic degradation of
various organic pollutants, such as dyes [156], antibiotics [157], microplastics [158], pharma-
ceutical and personal care products [159], and pesticides [59]. Various strategies have been
adopted to enhance the photocatalytic activity of g-C3N4 and performance in pollutant
degradation. For instance, Liu et al. [160] developed an innovative Z-scheme heterojunction
composed of Ag/AgVO3 and carbon-rich g-C3N4 using a simple hydrothermal calcination
method, which exhibited excellent solar-driven photocatalytic activity in the degradation
of sulfamethazine. The degradation rate constant for the optimal composite was approxi-
mately 13 times higher than that of carbon-rich g-C3N4 and 30 times higher than that of
Ag/AgVO3. •O2

− was revealed to be the key ROS in the Z-scheme photocatalytic system.
Notably, due to the difference in redox potential among different ROSs, the degradation
efficiency of organic pollutants depends not only on the rate of ROS generation, but also on
the types of ROSs produced. However, most of the ROSs generated under light irradiation
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in typical photocatalytic systems of g-C3N4-based photocatalysts are •O2
−, which has a

relatively weak oxidizing power.
An increasing number of researchers have begun to employ strategies that couple

g-C3N4-based photocatalysts with oxidants to enhance the generation of ROSs, aiming to
optimize the photocatalytic degradation efficiency of organic pollutants. Figure 6 briefly
summarizes the major oxidants that have been coupled with g-C3N4-based photocatalysts
in the degradation of organic pollutants. Qin et al. [161] fabricated carbon-rich graphitic
carbon nitride (Fe1/C-CN) containing single-atomic Fe−N4 sites in the interlayer, which
exhibited excellent activity in the degradation of p-nitrophenol in the presence of H2O2 as
an oxidant during the photo-Fenton-like catalytic oxidation process. The pseudo-first-order
degradation rate constant of p-nitrophenol in the coupled oxidation process was 7.5 times
greater than that of Fe1/C-CN photocatalysis and 21.1 times higher than that of Fenton-like
system, and complete TOC removal was achieved after 4 h of reaction. The enhanced sepa-
ration of electron–hole pairs was key in the process, which was coupled with the efficient
regeneration of ≡Fe(II) and the activation of H2O2 on Fe1/C-CN. The synergistic effect
of these factors greatly enhanced the generation of ROSs, including •OH, •O2

−, and 1O2,
thereby improving the oxidation of p-nitrophenol and its transformation intermediates.
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In addition to hydrogen peroxide, photo-assisted AOPs with the addition of persulfate
oxidants have also demonstrated superior degradation performance. Nguyen et al. [162]
successfully developed a flower-like core–shell heterojunction by integrating manganese
dioxide (MnO2) nanosheets with B and S co-doped g-C3N4 (CNBS) nanotubes to create a
Z-scheme CNBS@MnO2 photocatalyst. This structure significantly enhanced the photo-
catalytic degradation of diclofenac (DCF) when combined with peroxymonosulfate (PMS)
under visible light (460 nm). Near complete degradation of DCF occurred within just
15 min of light irradiation. The Z-scheme CNBS@MnO2 not only facilitates efficient charge
carrier separation, but also activates the PMS, generating a range of reactive radicals, such
as h+, •O2

−, and SO4
•−, which are responsible for the fast degradation of DCF.

Besides hydrogen peroxide and persulfate, g-C3N4-based photocatalysts can also
be coupled with a range of other oxidants, such as chlorine-containing oxidants [163],
ozone [164], periodate (PI) [165], acetylacetone (AA) [166], permanganate [Mn(VII)] [167],
and peracetic acid (PAA) [168], to generate different types of ROSs, to enhance the degra-
dation and mineralization of organic pollutants [169]. For instance, Cheng et al. [163]
constructed a visible-light-driven g-C3N4-enabled chlorine advanced oxidation process
(VgC-AOP). The pseudo-first-order degradation rate constant of carbamazepine in this pro-
cess was 16 and 7 times greater than those in the systems without g-C3N4 and HOCl/ClO−,
respectively. Additionally, the VgC-AOP system showed stable performance over multiple
use cycles. Unlike traditional HOCl/ClO− systems, which only produce radicals under UV
light, this process successfully expanded the visible light absorption (>400 nm), thereby
enhancing its potential in practical application.

Overall, coupling oxidants with g-C3N4-based photocatalysts to generate multiple
highly oxidative ROSs is a promising strategy for enhancing the photocatalytic degradation
of pollutants. This approach can be combined with the design strategies of g-C3N4-based
photocatalysts discussed in the above section. Nonetheless, overdosing of oxidants poses
a potentially significant problem in practical application, as the generation of excessive
ROSs may lead to ROS quenching, thereby impairing the degradation efficiency of targeted
pollutants. Thus, the selection of appropriate oxidants and their doses should be tailored
based on the type and concentration of organic pollutants to be treated.

4. Conclusions and Perspectives
Photocatalytic degradation of organic pollutants has become one of the most effective

techniques for harvesting solar energy for pollution control. g-C3N4, with its low cost,
strong visible light absorption, and high stability, is considered a promising non-metal
semiconductor photocatalyst. However, the easy recombination of photo-generated charge
carriers and the relatively weak redox capability limit its large-scale application. This
review systematically summarizes the major strategies for enhancing the photocatalytic
activity of g-C3N4-based photocatalysts, including morphology control, doping, func-
tionalization, metal deposition, dye sensitization, defect engineering, and construction
of heterojunctions. The enhanced photocatalytic activity is attributed to the improved
charge carrier separation, reduced bandgap, expanded light absorption, and suppressed
charge recombination. Additionally, the strategy of coupling oxidants, such as hydrogen
peroxide and persulfate, with g-C3N4-based photocatalysts to enhance the photocatalytic
degradation of organic pollutants was also briefly discussed.

Despite the significant progress that has been made through the development of
various strategies to enhance the photocatalytic performance of g-C3N4-based photocat-
alysts, several critical challenges remain, particularly for their practical application in
industrial-scale wastewater treatment.
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1. While many strategies have demonstrated significant performance enhancement in
laboratory-scale experiments, ensuring long-term stability of the photocatalysts under
harsh industrial conditions remains a pressing issue. Photocatalysts often degrade or
lose efficiency with prolonged use, especially when exposed to complex wastewater
matrices containing various inorganic and organic components. Additionally, the
mineralization rates of organic pollutants are often insufficient, requiring further
optimization of the photocatalysts’ oxidizing capability.

2. The synergistic or antagonistic effects of combining multiple catalyst design strategies
remain poorly understood. In-depth understanding of the inter-relationship between
these strategies is essential for designing more efficient and cost-effective photocatalysts.

3. Precise control over the structure of g-C3N4 during the synthesis process poses a
significant challenge. Some of the aforementioned strategies, such as morphology
control and construction of heterojunctions, require precise regulation of the surface
structure to optimize photocatalytic performance.
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