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Abstract: The burst of reprogramming technology in recent years has revolutionized the field of
stem cell biology, offering new opportunities for personalized, regenerative therapies. The direct
reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) has provided an invaluable
tool to study and model a wide range of human diseases. Here, we review the transforming potential
of such a strategy in research and in therapies applicable to the hematology field.
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1. Introduction

1.1. Stem Cells: Features

Stem cells are rare, undifferentiated cells in an organism and are defined by their properties
of (1) self-renewal, the ability to undergo numerous cycles of cell division while maintaining an
undifferentiated state; and (2) potency, the ability to generate cells of many lineages. Stem cells
function in early development and in adult organisms to maintain and repair tissue integrity. However,
their number and potency diminish with age.

Based on their potency, stem cells can be classified according to a hierarchical order ranging from
totipotent, to pluripotent, to multipotent stem cells (Figure 1). Totipotent stem cells of the early cleavage
stages are able to generate an entire organism when separated. Further cell division and blastulation
gives rise to the trophoblast, eventually forming the placenta, and inner mass cells, destined to become
the fetus. Isolation of inner mass cells yields pluripotent embryonic stem cells capable of generating all
three embryonic germ layers: endoderm, ectoderm and mesoderm. In contrast to the high population
of stem cells existing in early development, adult stem cells are rare, exist among differentiated tissues
in specialized niches, and function primarily in tissue maintenance and repair. Adult stem cells are
multipotent, lineage-restricted cells, and are capable of generating a single germ layer, often of a single
organ system.

The hematopoietic stem cell (HSC) is the best-studied and well-characterized multipotent stem
cell. It resides in the adult bone marrow niche and is able to regenerate all the cellular components of
the blood. For these reasons, HSCs represent an attractive target for regenerative medicine.

Cells 2017, 6, 7; doi:10.3390/cells6010007 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
http://www.mdpi.com/journal/cells


Cells 2017, 6, 7 2 of 14

Cells 2017, 6, 7 2 of 15 

 

 

Figure 1. The hierarchy of stem cell potency during embryonic to adult development. In general, 

increasing cell specialization parallels a decrease in potency. HSC, hematopoietic stem cell; HPC, 

hematopoietic progenitor cell; CMP, common myeloid progenitor; CLP, common lymphoid 

progenitor. 

The hematopoietic stem cell (HSC) is the best-studied and well-characterized multipotent stem 

cell. It resides in the adult bone marrow niche and is able to regenerate all the cellular components of 

the blood. For these reasons, HSCs represent an attractive target for regenerative medicine.  

1.2. Stem Cells: Source for Potential Therapy 

The differentiation capacity of HSCs has been heavily utilized in regenerative medicine and 

other stem cell-based therapies. CD34+ HSCs can be collected from the bone marrow, umbilical cord 

blood, or from peripheral blood following granulocyte colony stimulating factor (G-CSF)-

mobilization from the bone marrow [1,2]. Transplantation of HSCs (HSCT) has become the standard 

treatment for numerous hereditary diseases and malignant blood disorders [3]. The attractiveness of 

this approach stems from the possibility to regenerate all the cellular components of the blood system 

and to permanently restore a functioning immune system damaged by natural or acquired 

conditions. Regardless of the HSC source, problems associated with transplantation include reliance 

on donors, risk of infection under immunosuppressive drugs, and immunological compatibility 

determined by the degree of “donor-recipient matching” determined as the percentage of identity 

shared between the Human Leukocyte Antigen Loci (HLA) complex of two individuals. The 

matching point greatly limits the number of donor-recipient pairs, with donors found primarily 

among HLA-identical siblings, other family members, and from unrelated marrow donor registries 

[4]. Even with compatible major HLA loci, mismatches at minor HLA loci can lead to graft versus 

host disease (GVHD), in which successfully grafted donor T lymphocytes mount an immune 

response against host antigens, leading to excess inflammation and immune response.  

Alternatively, HSCs can be harvested from more primitive and “antigenically naive” umbilical 

cord blood donations. However, this approach is largely restrained by the number of cells available 

per donation; a single donation provides enough HSCs only for child bone marrow transplantations 

[5]. In the attempt to overcome source material limitations, numerous ex vivo expansion protocols 

have been tested, but with low or modest effects [6]. While some advances have been made over time 

using double cord blood grafts [7] and increased biobanking [5], finding an alternative source of stem 

cell material remains a necessity [6]. 

Figure 1. The hierarchy of stem cell potency during embryonic to adult development. In general, increasing
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1.2. Stem Cells: Source for Potential Therapy

The differentiation capacity of HSCs has been heavily utilized in regenerative medicine and
other stem cell-based therapies. CD34+ HSCs can be collected from the bone marrow, umbilical cord
blood, or from peripheral blood following granulocyte colony stimulating factor (G-CSF)-mobilization
from the bone marrow [1,2]. Transplantation of HSCs (HSCT) has become the standard treatment for
numerous hereditary diseases and malignant blood disorders [3]. The attractiveness of this approach
stems from the possibility to regenerate all the cellular components of the blood system and to
permanently restore a functioning immune system damaged by natural or acquired conditions.
Regardless of the HSC source, problems associated with transplantation include reliance on donors,
risk of infection under immunosuppressive drugs, and immunological compatibility determined by
the degree of “donor-recipient matching” determined as the percentage of identity shared between the
Human Leukocyte Antigen Loci (HLA) complex of two individuals. The matching point greatly limits
the number of donor-recipient pairs, with donors found primarily among HLA-identical siblings,
other family members, and from unrelated marrow donor registries [4]. Even with compatible major
HLA loci, mismatches at minor HLA loci can lead to graft versus host disease (GVHD), in which
successfully grafted donor T lymphocytes mount an immune response against host antigens, leading
to excess inflammation and immune response.

Alternatively, HSCs can be harvested from more primitive and “antigenically naive” umbilical
cord blood donations. However, this approach is largely restrained by the number of cells available per
donation; a single donation provides enough HSCs only for child bone marrow transplantations [5].
In the attempt to overcome source material limitations, numerous ex vivo expansion protocols have
been tested, but with low or modest effects [6]. While some advances have been made over time using
double cord blood grafts [7] and increased biobanking [5], finding an alternative source of stem cell
material remains a necessity [6].

Embryonic stem cells (ESCs) are an alternative to transplantation of adult stem cells [8]. Unlike
adult stem cells, ESCs survive endlessly in culture under the right conditions [9] and can be differentiated
to the targeted cell-lineage, producing scalable and homogenous sources of transplantation material.
However, the use of ESCs is hindered not only by limited access to and low amounts of source material,
but also by ethical concerns related to working with embryonically-derived cells.

Given the limitations associated with HSCT, one of the major tasks in the hematology field remains
the production of a reliable and scalable source of efficient and complete long-term engrafting HSCs.
In addition to their direct therapeutic application for transplantation, HSCs provide a source of mature
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hematopoietic cells for other therapeutic purposes such as red blood cell and platelet transfusions,
drug screenings, and modeling of both human development and hematological malignancies.

2. Induced Pluripotent Stem Cells: A Novel Solution to an Old Problem

The generation of patient-derived HSCs through induced pluripotent technology led to an
appealing strategy to overcome the technical and ethical barriers of working with HSCs and ESCs
(Table 1).

Table 1. Stem cells in hematologic applications. Use of embryonic stem cells, hematopoietic stem cells,
and induced pluripotent stem cells have their respective advantages and difficulties. Concerns arising
include availability and source of material, ethical considerations, and transplantation barriers.

Embryonic Stem Cells (ESCs) Hematopoietic Stem Cells (HSCs) Induced Pluripotent Stem Cells (iPSCs)

Source Inner mass cells of blastocyst Bone marrow donations;
umbilical cord blood

Any somatic cell

Application Basic science research; limited
clinical application currently

Hematopoietic stem cell
transplantation

Basic science research

Markers
SOX2, NANOG, Oct-4, SSEA-1,
SSEA-3, SSEA-4 TRA-1-60,
TRA-1-81 Frizzled5

CD34+, c-Kit−/low, Lin-,
CD38-,Flt-3/Flk-2

Reactivation of embryonic stem cell
markers, e.g., SOX2, NANOG, OCT-4,
KLF4, SSEA-4, TRA-1-60

Derivation Isolation from in vitro
fertilized embryos

Purification from donations Ectopic expression of ESC transcription factors:
OCT3/4, SOX2, KLF4, c-MYC

Pros

Able to generate all three
germ layers;
Amenable to cell culture
expansion while
maintaining pluripotency

Not controversial;
Can be harvested from bone
marrow blood, can be mobilized
to peripheral blood upon
granulocyte-colony stimulating
factor (G-CSF) induction,
or obtained from umbilical
cord blood donations;
Rise in biobanking of umbilical
cord blood increases amount of
source material

Non-invasive isolation;
Avoids Human Leukocyte Antigen
Loci (HLA)-compatibility issues
Can be genetically altered before transfusion;
Expands available research areas;
Recapitulates patient genome;
Theoretically unlimited source material

Cons

Ethical concerns of using
embryonic-derived cells;
Limited source material

Restricted lineage differentiation;
Dependent on HLA compatibility;
Transplantation-associated risks:
immune suppression, graft rejection,
graft vs. host disease

Low efficiency of reprogramming;Incomplete
programming, or “epigenetic memory”;
No standardized protocol for production;
Genetically unstable;
Safety concerns;
Maintenance of germline mutations;
Insertional mutagenesis for integrating vectors

Before 2006, the pluripotent state was a property limited only to ESCs, and their use and
application in research and clinic were impaired by ethical concerns associated with their derivation
from embryonic material. The discovery by Takahashi and Yamanaka that ectopic expression of four
transcription factors (OCT3/4, KLF4, SOX2 and MYC) [10] could restore adult, somatic cells to their
pluripotent state, revealed the critical steps of a process named “reprogramming” through which
differentiated cells can return to a stem-cell-like state.

Hence, the advent of induced pluripotent stem cells (iPSCs) overcame many of the dilemmas
of working with stem cells and generated great optimism in the field of hematology. Indeed, iPSCs
have extensive self-renewal capacity, could differentiate into any cell type, and represent an unlimited
source of research and therapy material.

Specifically, the generation of iPSC-derived hematopoietic stem cells could theoretically solve
all the issues connected with HLA compatibility by eliminating complications associated with
transplantation, such as the use of immunosuppressive drugs, graft versus host disease, etc. Up-to-date,
only a few clinical trials have tested the safety of using pluripotent stem cells for therapeutic purposes
even if generation, differentiation and gene-corrected-iPSCs lineages could provide HLA-matched
cell types for all pathological tissues and organs of interest, in unlimited quantities [11]. In this view
iPSCs opened a new avenue of personalized therapy with the potential to develop patient-specific
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cells with theoretically no risk of rejection as well as providing an excellent tool to study personalized
human biology.

3. Generation of iPSCs

The first strategies conceived to induce pluripotency, such as somatic cell nuclear transfer (cloning)
or fusion of somatic cells with embryonic stem cells (ESCs) [12] were accompanied by technical, ethical,
and logistical barriers restricting the applicability of these pluripotent cells in both research and
therapy. Direct generation of pluripotent cells without the use of embryonic material has emerged
as a more suitable approach to facilitate functional analyses with fewer ethical implications. Cellular
reprogramming can be achieved by ectopic delivery in somatic cells of four transcription factors
known as OSKM (OCT3/4, SOX2, KLF4, and c-MYC, with or without Lin28) [10,13–15] under specific
culturing conditions. While many combinations of factors have shown to successfully generate iPSCs,
regardless of the factors used, current concerns of iPSCs technology focus on the method of effective
delivery mediating the balance between cellular transformation versus temporary induction (Figure 2
and Table 2). To this end, several strategies have been developed to induce pluripotency:
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Figure 2. Selection stages for generation of iPSCs.

Table 2. Selection stages for generation of iPSCs.

Induced Pluripotent Stem Cells (iPSCs) Protocol Consideration

1. Choice of Cell Type Adult mouse and human fibroblasts were used in
first iPSCs experiments.

While iPSCs can in principle be generated from any
somatic cell, in practice, there seems to be an inverse
relationship between degree of differentiation and
ease of reprogramming. Additionally, there is
expanding concern for “memory” of the original cell,
hindering the re-differentiation process downstream.

2. Dedifferentiation
Retroviral- or lentiviral-mediated expression of
four pluripotent-specific genes: OCT3/4, SOX2,
KLF4, and c-MYC (OSKM).

Concern for the transforming potential of c-MYC led
to the identification of other factor substitutes.
c-MYC was later deemed dispensible, and other
factor combinations (Nanog, Lin28) have successfully
generated iPSCs.Methods of delivery must also
consider the effects of insertional mutagenesis when
using integrating vectors. Non-integrating viruses,
small-molecules, RNA- and transposon-based
technologies are also currently being explored.

3. Selection

Transduced cells are cultured in embryonic stem
cell (ESC) medium + antibiotics for 2–4 weeks with
an ESC-specific marker, Fbx15, driving antibiotic
resistance. Only reprogrammed cells can survive
the selection process.

Although Fbx15 is expressed only in ESCs, it is not
essential to ESC development and explains the
partial reprogramming observed initially. Currently,
Nanog-driven selection is favored instead.

4. Differentiation Cultured with feeder cells and cytokines directing
lineage-specific differentiation.

iPSCs can differentiate through (direct) addition of
lineage-specific transcription factors or (indirect)
culture in lineage-specific cytokines and growth
factors. Protocols vary among laboratories.

5. Functional Testing Expression of lineage-specific markers measured
through PCR or immunofluorescence.

Functional tests are not standardized.
Definition of lineage-specific characteristics
vary among laboratories.
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3.1. Moloney-Based Retrovirus

Direct reprogramming was initially performed in mouse fibroblasts through retroviral
transduction of 24 candidate genes, all implicated in the establishment and maintenance of the
pluripotent state of somatic cells. Identification of these candidates led to the hypothesis that all or
some of them could play pivotal roles in the maintenance of ESC identity. Takahashi et al. developed
an assay in which the pluripotent state could be detected upon induction of an ESC-specific marker:
the Fbx15 gene. The authors generated ESCs with a βgeo knock-in construct (Fbx15βgeo/βgeo whereby
ESCs homozygous for the Fbx15βgeo/βgeo were resistant to extremely high concentrations of G418
antibiotic). Somatic cells that had successfully undergone reprogramming showed reactivation of
Fbx15 and were resistant to antibiotic selection, whereas somatic cells derived from Fbx15βgeo/βgeo

mice were sensitive to a normal concentration of G418 as expected in the absence of the Fbx15 locus.
Initially, Takahashi et al. introduced all 24 candidate genes into mouse embryonic fibroblasts (MEFs)
derived from Fbx15βgeo/βgeo mice by retroviral transduction. Resistant colonies were observed for
16 days after transduction. The results obtained for the drug-resistant colonies with any single factor
indicated that no single candidate gene was sufficient to activate the Fbx15 locus. No colony-formation
was observed in the absence of Oct3/4 or Klf4. Removal of Sox2 resulted in only a few colonies whereas
the lack of c-Myc led to G418-resistant colonies with a flatter, non-ESC-like morphology. The remaining
factors did not show to be necessary for colony formation. Overall, these results indicated that Oct3/4,
Klf4, Sox2, and c-Myc were the master regulators for the generation of iPSCs. Surprisingly, the authors
demonstrated that Nanog was dispensable and later the four factors were demonstrated to work across
a multitude of murine cell types [16], as well as rhesus monkey [13] and human [15,17,18] cells.

Although the usage of retroviral vectors carried advantages for the initial attempts, given their
self-silencing property, the transcription factor expression temporal requirements are not defined.
The use of these retroviruses held three main downsides: firstly, retrovirus-generated iPSCs often
maintained viral gene expression and the genomic integration increases the risk of insertional
mutagenesis; [19] secondly, their infectivity is limited to dividing cells, thus restricting the range
of cell types that can be reprogrammed; and lastly, increased tumor incidence in chimeric mice was
observed due to transgene reactivation [20].

3.2. HIV-Based Lentivirus

One of the methods applied to generate pluripotent cells envisioned the use of HIV-based
lentivirus vectors able to transduce non-dividing cells with high expression levels [21]. Unfortunately,
these vectors are poorly silenced in the pluripotent state [22], making the constitutive versions
less suitable for reprogramming. Although iPSCs made with constitutive lentiviruses have been
reported [23], how differentiation proceeds during continued transgene expression remains unclear.
Similarly, doxycycline (dox)-inducible lentiviral vectors have been criticized for permanent genomic
integration and the high risk of insertional mutagenesis. For these reasons, great effort has been made
to pursuing non-integrating approaches.

3.3. Transient Transfection and Adenovirus

A valid strategy to exclude the viruses’ integration in the genome includes transient transfection
and adenoviral-based technologies. In particular, adenoviral delivery has been successfully used
in reprogramming mouse cells. Indeed, mouse fibroblasts and liver cells were generated by
non-integrating adenoviruses, transiently expressing OCT4, SOX2, KLF4, and c-MYC. These adenoviral
iPSCs (adeno-iPSCs) showed DNA demethylation features of reprogrammed cells, expressed
endogenous pluripotency genes, formed teratomas, and contributed to multiple tissues, including the
germ line, in chimeric mice [24]. The production of virus-free iPSCs, albeit from embryonic fibroblasts,
addresses a critical safety concern for potential use of iPSCs in regenerative medicine and proves
the first strong evidence that insertional mutagenesis is not required for in vitro reprogramming.
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The efficiency of iPSC generation, however, is substantially lower than the one observed with
retroviruses, suggesting that retroviral integration facilitates iPSC generation.

3.4. Small Molecules

Small molecules and soluble factors can recapitulate the series of transcriptional and epigenetic
changes brought about by the four transcription factors and are particularly interesting given their
ease of application and the lack of permanent genome modification. In this instance, valproic
acid [25] enhances reprogramming efficiency with the four OSMK factors in mouse fibroblasts;
BIX01294 improves reprogramming efficiencies of OCT4, KLF4 (OK)-infected neural progenitor cells
by approximately 8-fold and allows reprogramming of mouse neural progenitor cells in the absence
of OCT4, although with a very low efficiency and with the presence of the other three SOX2, KLF4,
c-MYC (SKM)factors [26]. It is currently unknown whether small molecules alone can recapitulate
the series of transcriptional and epigenetic events resulting from ectopic expression of the OSKM
master regulators.

3.5. Protein Transduction

Another attempt to achieve pluripotency exploits the use of transducible proteins by using
pSESAME, an expression vector that facilitates the generation of transducible proteins. Both OCT4
and SOX2, two of the main regulators of pluripotency in embryonic stem cells, were genetically
fused with a trans-activator of transcription (TAT) protein transduction domain that promotes cellular
penetration [27]. This approach provides a powerful tool for the modulation of stem cell properties
without involving genetic interference.

3.6. Genome Editing

Site-specific nucleases (SSNs) are the most important genome editing research tools developed in
recent years [28]. Their application to repair or introduce disease-relevant mutation in iPSCs could
play a fundamental role in studying and understanding pluripotency biology. The initial zinc-finger
nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) platforms for genome
editing in stem cells were costly and time-consuming. Their enactment as research tools, therefore,
developed comparatively slowly. However, extensive work with ZFNs and TALENs demonstrated the
power of genome editing and highlighted the universal impact of these SSNs platforms. The turning
point arrived in 2012 with the advent of clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated (Cas) technology. It was shown that within the CRISPR type-2 systems a
single protein, Cas9, could function as a SSN when associated with an engineered single guide RNA
(sgRNA) that bears homology to a genetic locus of interest [29]. The sgRNA substitutes the natural
Cas9-associated bacterial RNAs that normally confer target specificity for the bacterial pathogen DNA
and directs Cas9 to induce a blunt Double Strand Break in any target DNA with complementarity to
a 20-nucleotide-long sequence in the sgRNA. In less than four years Cas9-mediated genome editing
became the platform of choice to generate SSNs and to genetically modify iPSCs. By repurposing the
bacterial CRISPR/Cas9 system [30] as a SSN, the need for a simple and unified platform for genome
editing together with an easy way to make iPSCs was met and resolved.

Similar to the disease-modeling approach, genome editing allows us to engineer variant alleles
found to be associated with specific diseases in otherwise isogeneic cellular settings, as described in
Section 5.

4. iPSCs and Hematopoiesis: Are We There Yet?

iPSCs can be employed to generate lineage-specific hematopoietic cells for immunotherapy,
transfusion medicine, and cell therapy. Thus far, iPSC technology has been applied to produce red
blood cells [31], megakaryocytes and platelets [32], [33] B [34] and T [35] lymphocytes, myelomonocytic
cells [36] and natural killer cells [37]. Protocols describing lineage-specific cell generation from ESCs or
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iPSCs largely depend on spontaneous differentiation within embryoid bodies cultivated in lineage-specific
cytokines or cocultured with stromal cells [38,39]. Major barriers of current reprogramming technologies
include low efficiency and robustness.

4.1. Red Blood Cells/Platelets

Red blood cells (RBC) and platelets are commonly transfused for treatment of common
hematologic disorders including anemias, thrombocytopenias, and hemophilias. The downside of
repeat blood transfusion is the immunogenicity of donor blood cells and potential dangers of viral
infections. Ideally, iPSCs can be used to generate universal donor RBCs generated from antigenless
blood type O individuals. Additionally, red blood cells and platelets are attractive iPSC-derived
end products, given their anucleate nature and thus absence of oncogenic risk. Unfortunately,
transplantation of iPSC-derived blood cells suffers from major limitations concerning cell maturation
and low yields. iPSC-derived RBCs suffer from inefficient enucleation, mostly expressing embryonic
and fetal hemoglobin [40]. The yield of RBCs must also be vastly improved to collect the number
of RBCs needed for one transfusion unit. With the emergency of novel gene-editing technologies,
differentiation cultures aided by the CRISPR/Cas9 system [41] have been used to increase hemoglobin
levels and RBC counts, and to generate replacement products to treat congenital diseases.

Platelet generation suffers from poor yields in the megakaryocyte to platelet differentiation
step [42]. Currently, the major limitation is reliance on stromal cells and inefficiency of megakarycyte
to differentiation. Further investigation of human iPSC-derived platelet production might allow the
generation of large numbers of clinically applicable platelets ex vivo.

4.2. Neutrophils and Monocytes/Macrophages

Transfusion of granulocyte population is extremely beneficial in neutropenic patients following
myeloablative therapy or genetic causes [43]. However, granulocytes are only rarely used, due to (1) their
short half-life and (2) difficulties in procurement and storage. Primary human monocytes/macrophages
have limited proliferation potential and are difficult to transfect. Circulating monocytes are heterogenous
and vary in size, granularity, morphology, and protein expression profiles to the extent that they
have been classified in several subsets [44]. Therefore, development of protocols using iPSCs to allow
prolonged and large-scale production of both cell types is of large interest [36]. Although in vitro-derived
macrophages exhibit functional and morphological similarities to patient-derived cells, their in vivo
functions remain to be evaluated.

4.3. Dendritic cells and Natural Killer (NK) Cells

Dendritic cells derived from xeno-free human iPSCs have been shown to be fully functional [45].
However, these cells are still awaiting in vivo testing for efficacy and procedural safety.

NKs are lymphocytes capable of killing cells with missing self (that is, HLA class I expression).
NK normal laboratory cell lines are currently unavailable, and those used for research purposes
derive from NK leukemia or lymphoma patients, thereby lacking important features of normal
NKs. Generation of iPSCs-derived NK cells does have implications in both cancer therapy and
infectious diseases [46,47]. However, the reliance on two steps of stroma coculture and the need for
sorting CD34+CD45+ cells that are extremely rare in the peripheral blood hinder clinical scale-up of
the protocol.

4.4. T and B Lymphocytes

iPSC can also be used to generate antigen specific sources of T lymphocytes for immunotherapy
applications [35,48,49]. Autologous polyclonal lymphocytes can be transfected with a chimeric antigen
receptor, achieving large doses of functional, antigen-specific autologous effector T lymphocytes, avoiding
off-target [50]. T cells-derived iPSCs have been generated through the OP9 coculturing system or by
intra-teratoma formation [51]. Few reports have demonstrated the possibility to generate B cells-derived
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iPSCs by intra-teratoma formation or by coculture with OP9 [34]. Remarkably, this in vivo differentiation
approach led to the generation of B cells able to produce human immunoglobulin [51], suggesting the
potential application of teratoma based-platforms for patient-specific customized therapies.

4.5. Hematopoietic Stem Cells

In addition to generation of differentiated blood products, generation of iPSC-derived
hematopoietic stem cells has been achieved through teratoma formation [51]. Teratomas provide
bone marrow like niches supporting hematopoiesis and CD34+CD45+ population of progenitor cells.
Isolated progenitor cells are not carcinogenic, as they are unable to undergo serial transplantation in
nude mice. Amabile et al. showed that teratomas develop bone marrow-like structures that ultimately
allow physiologic differentiation of HSCs as well as CD34+CD45+ progenitors cells. The iPSC-derived
hematopoiesis can be augmented by co-injection with OP9 stromal cells. Intriguingly, co-injection
of OP9 cells ectopically expressing delta-like 1 factor are able to sustain specific populations of
hematopoietic cells in vivo (i.e., T cells), suggesting a role of the supporting stromal cells in the
differentiation process [51].

5. iPSCs Hematological Disorders

In addition to their application in transfusion and regenerative medicine, iPSCs have been used to
study the pathogenesis of inherited genetic diseases [52]. Recently, it was reported that iPSCs could be
generated not only from normal tissue cells but also from malignant cells [53,54]. Patient-derived iPSCs
can help in elucidating the molecular mechanisms of various rare terminal diseases, including hematologic
malignancies, through the establishment of in vitro cellular models as well as the development of novel
targeted therapies (Figure 3).
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Figure 3. Benefits of iPSCs technology in hematology. Applications of iPSCs include generation of
HLA-compatible hematopoietic stem cells for transplantation, providing a scalable source of transfusion
products (i.e., red blood cells, neutrophils for neutropenias, platelets for clotting disorders), gene
therapy via CRISPR/Cas9 gene editing of engineered cells (i.e., sickle cell disease, thalassemias),
modeling patient and disease-specific responses to drugs, and the ability to study diseases for which
cell lines or primary patient samples are limited or currently non-existent (i.e., lymphomas).
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5.1. iPSCs in Congenital Hematopoietic Diseases

Inherited bone marrow failure (BMF) syndromes are a group of heterogeneous disorders
characterized by congenital BMF leading to single or multiple lineage cytopenias and associated
with risk of developing solid organ cancers [55]. Inherited BMF syndromes often develop as a result
of specific genetic mutations or polymorphism in hematopoietic stem cells which make iPSCs-based
disease modeling a therapeutic tool for gene-correction approaches. At present, the only available
therapy for BMF syndromes is allogenic HSC transplantation.

5.1.1. Fanconia Anemia

Fanconi anemia (FA) is characterized by physical abnormalities, bone marrow failure (BMF),
and increased risk for malignancy [56]. Progressive bone marrow failure with cytopenia typically
occurs in the first decade, often initiated by thrombocytopenia or leukopenia. The incidence of acute
myeloid leukemia (AML) is 13% by the age of 50 years. Solid tumors, particularly those of the head,
neck, skin, gastrointestinal tract, and genitourinary tract, are more common in individuals with FA.
Molecular genetic testing is complicated by the presence of at least 15 genes that can be altered in the
disease, many of which regulate DNA damage and repair pathways: BRCA2, BRIP1, PALB2, RAD51C,
and SLX4 [57].Although various consequences in hematopoietic stem/progenitor cells have been
attributed to FA-BMF, the quest to identify the initial pathological event is ongoing. To address this
issue, Nakahata, Saito and other colleges established iPSCs from fibroblasts of six patients with FA and
FANCA mutations. An improved reprogramming method yielded iPSC-like colonies from all patients,
and iPSC clones were propagated from two patients. Quantitative evaluation of the differentiation
ability demonstrated that the differentiation propensity toward the hematopoietic and endothelial
lineages is already defective in early hemoangiogenic progenitors [58]. Expression levels of critical
transcription factors were significantly downregulated in these progenitors. These data indicate that
the hematopoietic phenotypes of FA patients arise from the HSCs, underlying the potential usefulness
of iPSCs technology in elucidating the pathogenesis of FA-BMF.

5.1.2. β-Thalassemia

Thalassemias are a group of diseases characterized by abnormal hemoglobin production.
Underlying genetic causes are from mutations or deletions coding for alpha (α-thalassemia) or
beta (β-thalassemia) hemoglobin. Recently, in a case demonstrating principle to application of
iPSCs and genetic engineering, Luo, Sun and colleagues were able to generate beta-thalassemia
(β-Thal) patient-specific iPSCs and mediate correction of the β-globin gene through the CRISPR/Cas9
technology [59]. Gene-corrected cells exhibited normal karyotypes and full pluripotency with no
off-targeting effects. In terms of differentiation efficiency, gene-corrected β-Thal iPSCs showed
increased embryoid body ratio and percentages of hematopoietic progenitor cells. More importantly,
gene-corrected β-Thal iPSCs showed restored β-globin expression and reduced reactive oxygen species
production compared with the parental line. This approach suggested hematopoietic differentiation
efficiency of β-Thal iPSCs can be greatly improved once the causative genetic lesion is corrected, laying
the groundwork for using gene-corrected, iPSCs-derived HSCs in a clinical setting.

5.2. Generation of iPSCs from Hematologic Malignancy

Recent progress in blood cell reprogramming has increased the feasibility of developing iPSC
models for studying acquired blood diseases such as myeloproliferative neoplasms (MPNs), aplastic
anemia, myelodysplastic syndrome (MDS), paroxysmal nocturnal hemoglobinuria (PNH) and other
forms of leukemia. Given that the majority of disease-relevant mutations are restricted to hematopoietic
lineages, the traditional iPSC generation from fibroblasts may lack the genetic information implicated in
the disease development. Nevertheless, fibroblast-derived iPSCs can be still used for disease modeling
by serving as germ line controls containing certain predisposing mutations or polymorphisms.
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5.2.1. Myeloproliferative Neoplasms

In characterizing a disease model for myeloproliferative neoplasms, Yeh and colleagues
generated iPSC lines from CD34+ peripheral blood cells of two patients with JAK2-V617F defined
myeloproliferative disorders (MPD), one evidencing polycythemia vera (PV) and the other with primary
myelofibrosis (PMF). Mutations of the JAK2 kinase characterize more than 95% of PV patients and 50%
of PMF patients, resulting in expanded erythropoiesis and myelopoiesis, respectively. The MPD-derived
iPSCs containing the mutation appeared normal in phenotypes, karyotype, and pluripotency when
maintained as undifferentiated cells [52]. However, upon directed hematopoietic differentiation,
progenitor cells showed increased proliferation rates and skewed tendency to form erythroid colonies,
similar to primary CD34+ cells of the parental PV cells from whom the iPSCs were derived [52].

iPSCs have been obtained from Chronic Myelogenous Leukemia (CML) [54,60]. CML is a
myeloproliferative disease characterized by the presence of the Philadelphia chromosome, involving
a translocation between chromosomes 9 and 22 producing the bcr-abl fusion protein and exhibiting
constitutive tyrosine kinase signaling activity. CML originated from HSCs transformed by the
BCR-ABL fusion gene resulted in elevated downstream tyrosine kinase signaling. While the CML and
CML-derived iPSCs both expressed BCR-ABL, the CML-iPSCs were resistant to imatinib in contrast to
their imatinib-sensitive CML parental line [60]. Differentiation of CML-iPSCs to immature progenitor
cells (CD34+CD38−CD90+CD45+) also displayed imatinib resistance, while more differentiated
cells (CD34−CD45+) recovered sensitivity. Interestingly, pathways critical for BCR-ABL fusion
gene signaling, e.g., Ras/MAPK/ERK, PI3K/Akt, and JAK/STAT were still active in derived iPSCs.
And although treatment with the tyrosine kinase inhibitor Imatinib (IM, first line treatment for
CML) had no effect on the phosphorylation level of ERK, AKT, or JNK in CML-derived iPSCs,
the phosphorylation of signal transducer and activator of transcription (STAT) 5 and V-srk avian
sarcoma virus CT10 oncogene homolog-like (CRKL), often activated in CML cells, were significantly
reduced. This discrepancy could be ascribed to some intrinsic mechanisms leading to activation of
ERK, AKT, or JNK independently from BCR-ABL presence that is essential for iPSCs maintenance.

Notably, studies by Amabile et al. used iPSC technology to examine the role of epigenetic
changes in CML disease progression. By deriving Leukemia-iPSCs (LiPSCs) genetically matched
but epigenetically distinct from the parental cell lines, the authors showed that: (1) genetic and
epigenetic alterations are both required to maintain the leukemic potential; (2) BCR-ABL fusion protein
is able to trigger DNA methylation changes that contribute to leukemia formation and (3) nuclear
reprogramming can erase aberrant DNA methylation, thereby delaying the onset of the malignancy.
This study and others [53] suggest that, in addition to the disease-derived iPSCs’ therapeutic potential,
the reprogramming process per se could find a broad application as a research tool to dissect molecular
mechanisms behind diseases’ pathogenesis.

5.2.2. Myelodysplastic Syndrome

Myelodysplastic syndromes (MDS) are clonal hematologic disorders characterized by ineffective
hematopoiesis and a propensity to progression to AML. Somatic loss of one copy of the long arm of
chromosome 7 (del(7q)) is a characteristic cytogenetic abnormality in MDS, well-recognized as a marker
of unfavorable prognosis [61]. Kotini and colleagues derived del(7q) and isogenic karyotypically
normal iPSCs from MDS patients and demonstrated that del(7q) iPSCs recapitulated disease-associated
phenotypes, including impaired hematopoietic differentiation. These disease phenotypes can be
reproduced in karyotypically normal cells by inducing hemizygosity of defined segments, specifically
the 40 Mb region (7 q31.3–q31.6) on the long arm of chromosome 7 that impairs normal differentiation.
The authors then compared gene expression between isogenic iPSCs harboring one or two copies of
chromosome 7q by constructing del(7q) ORF library with 75 ORFs encoding 62 genes significantly
reduced in del(7q) clones. They demonstrated that four genes, HIPK2, ATP6V0E2, LUC7L2, and EZH2,
are able to partially rescue hematopoietic defects in del(7q) derived iPSCs [62].They also observed that
hematopoietic differentiation and colony formation potential of two EZH2 haploinsufficient clones
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established from human ESCs using a CRISPR/Cas9-based strategy substantially dropped at levels
intermediate between those of normal and del(7q) derived iPSCs [62].

6. Conclusions

The boost of multiple technologies for iPSC generation during recent years has expanded the
feasibility of utilizing iPSCs not only as a research tool but also as an attractive alternative therapeutic
approach. The advent of several strategies of genome editing, combined with the possibility of
generating patient-specific pluripotent stem cells, is transforming our understanding of the molecular
mechanisms underlying genetic diseases and cancers [63]. In particular, great efforts have been directed
to the hematology field, leading to significant advances and offering new possibilities for disease
modeling, drug development and autologous cell therapy.

The growing engagement of pharmaceutical companies in developing iPSC strategies is certainly
contributing to the translational application of iPSC-technology from the bench-side to the bedside.
Indeed, the global market for iPSCs is expected to reach $2.9 billion in 2018, with an annual growth rate
of 19.7% for the five-year period from 2013 to 2018 (Induced Pluripotent Stem Cells: Global Markets,
Report #BIO135A; www.bccresearch.com), resulting from the increasing research and development for
chronic diseases and huge funding allocated by the government for drug discovery.

Thus, the greatest challenges for the future in the iPSC field are not scientific but financial. Indeed,
strong support from pharmaceutical industries and governments will be needed to move forward
with iPSC-based therapies [64].

For drug discovery and disease modeling, researchers must be persistent and patient. “iPSCs can
only shorten the discovery process, not skip it. There’s no magic. With iPSCs or any new technology,
it still takes a long time” [64].
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