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Abstract: The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating neurological disorders
that have a global distribution and affect people of all ages. Commonly known as Batten disease,
this form of neurodegeneration is linked to mutations in 13 genetically distinct genes. The precise
mechanisms underlying the disease are unknown, in large part due to our poor understanding
of the functions of NCL proteins. The social amoeba Dictyostelium discoideum has proven to be an
exceptional model organism for studying a wide range of neurological disorders, including the NCLs.
The Dictyostelium genome contains homologs of 11 of the 13 NCL genes. Its life cycle, comprised of
both single-cell and multicellular phases, provides an excellent system for studying the effects of
NCL gene deficiency on conserved cellular and developmental processes. In this review, we highlight
recent advances in NCL research using Dictyostelium as a biomedical model.
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1. Neuronal Ceroid Lipofuscinosis

The neuronal ceroid lipofuscinoses (NCLs), collectively known as Batten disease, are forms of
neurodegeneration that affect people of all ages and ethnic backgrounds [1]. The pathological hallmark of
the disease is the accumulation of autofluorescent storage bodies in almost every cell type and organ [2].
Storage body accumulation is caused by lysosomal dysfunction, which gradually leads to vision loss,
epileptic seizures, impaired cognitive and motor function, and premature death [2,3]. Mutations in any
one of 13 genetically distinct genes can cause Batten disease (CLN1-8, CLN10-14) [1]. These genes encode
lysosomal enzymes (PPT1/CLN1, TPP1/CLN2, CLN5, CTSD/CLN10, CTSF/CLN13), proteins that
peripherally associate with membranes (DNAJC5/CLN4, KCTD7/CLN14), proteins that are present in
the secretory pathway (CLN5, PGRN/CLN11), and several transmembrane domain-containing proteins
(CLN3, CLN6, MFSD8/CLN7, CLN8, ATP13A2/CLN12) [4]. The mechanisms underlying Batten disease
are not well understood as the physiological functions of these proteins have not been fully established.

2. Studying the Functions of NCL Proteins Using the Model Organism Dictyostelium Discoideum

Various genetic models have been used to study the functions of NCL proteins [5]. One such
organism is the eukaryotic microbe Dictyostelium discoideum, which is firmly established as a model
system for biomedical and human disease research [6,7]. Its 34 Mb haploid genome is fully sequenced,
annotated, and encodes approximately 12,500 proteins [8]. The 24-h life cycle of Dictyostelium is
comprised of distinct single-cell and multicellular phases, which allows for the study of conserved
cellular and developmental processes [9]. Moreover, the ability to knockout genes using homologous
recombination or CRISPR/Cas9-mediated targeting has made Dictyostelium a powerful model system
for studying the functions of proteins linked to human disease [10,11].
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In nutrient-rich conditions, Dictyostelium grows as single cells, multiplying by mitosis and
obtaining nutrients through endocytosis (Figure 1) [9]. Removal of nutrients prompts a 24-h
developmental program consisting of a sequence of well-defined events (Figure 1). Cells first undergo
chemotactic aggregation towards 3′,5′-cyclic adenosine monophosphate (cAMP) to form multicellular
mounds (Figure 1). Mounds then undergo a series of morphological changes to form fingers that fall on
the surface to generate motile pseudoplasmodia, also known as slugs (Figure 1). Finally, the majority
of cells within the slug terminally differentiate into either stalk cells or spores, forming a fruiting body
that completes the life cycle (Figure 1). Spore are then dispersed and germinate in the presence of
nutrients, restarting the life cycle.
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Figure 1. The 24-h life cycle of Dictyostelium discoideum. In nutrient-rich conditions, Dictyostelium grow
as single cells and feed on readily available nutrients and bacteria. Removal of the food source initiates
multicellular development. During the initial stages of development, cells chemotactically aggregate
towards 3′,5′-cyclic adenosine monophosphate (cAMP) to form multicellular mounds. Cells then undergo
a series of structural changes to form a finger followed by a motile pseudoplasmodium, or slug. Finally,
the majority of cells within the slug terminally differentiate to form either stalk cells or spores in a fruiting
body. Spores are dispersed and then germinate when nutrients become available, restarting the life cycle.

Like metazoan cells, Dictyostelium growth and development relies on fundamental processes
including cell movement, cell sorting, cell differentiation, intracellular trafficking, autophagy, and signal
transduction [9]. As a result, uncharacterized genes or undefined biological pathways can be thoroughly
studied in Dictyostelium, and the results of these studies can then be translated to mammalian
systems [12–14]. Work in Dictyostelium has made valuable contributions to our understanding of
the functions of proteins linked to human neurological disorders, including epilepsy, prion diseases,
lissencephaly, Alzheimer’s disease, Parkinson’ disease, and Huntington’s disease [15–20]. In addition,
Dictyostelium has proven to be an exceptional organism for studying the cellular and molecular
mechanisms underlying Batten disease [7]. The Dictyostelium genome encodes homologs of 11 of the 13
NCL genes, which is more than other model organisms including yeast, C. elegans, and D. melanogaster [7].
Recent work on Dictyostelium has provided fresh new insight into the functions of TPP1/CLN2, CLN3,
and CLN5. In this review, we highlight these discoveries and discuss how these new findings have
enhanced our knowledge of NCL protein function in humans.

3. Using Dictyostelium to Study CLN2 Disease

3.1. Human TPP1

Mutations in tripeptidyl peptidase 1 (TPP1) cause a late infantile form of NCL referred to as CLN2
disease [1]. Mutations in TPP1/CLN2 are also linked to autosomal recessive spinocerebellar ataxia
7 (SCAR7) [21]. However, unlike in CLN2 disease where the activity of TPP1/CLN2 is completely
abolished, the activity of the enzyme in SCAR7 patients is merely reduced [21]. As a result, SCAR7
patients do not exhibit vision loss or epilepsy [21]. TPP1/CLN2 is an acid-activated serine protease
that localizes to the lysosomal matrix [22]. As a serine protease, TPP1/CLN2 is involved in several
processes such as macroautophagy and endocytosis [23]. The study of TPP1/CLN2 in model organisms
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has been limited due to the absence of homologs in yeast, C. elegans, and D. melanogaster [7]. However,
Dictyostelium has six genes that encode proteins that share a significant amount of similarity with
human TPP1/CLN2 (genes: tpp1A tpp1B, tpp1C, tpp1D, tpp1E, and tpp1F; proteins: Tpp1A, Tpp1B,
Tpp1C, Tpp1D, Tpp1E, and Tpp1F) [24,25] (Figure 2).
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Figure 2. Current model of Tpp1 function in Dictyostelium. (1) The Dictyostelium genome encodes
six proteins that show similarity to human TPP1/CLN2. These proteins likely all contribute to the
total TPP1 activity in Dictyostelium. (2) Tpp1A and Tpp1F localize to the endocytic pathway including
acidic compartments (e.g., lysosomes). (3) Loss of tpp1A causes storage body accumulation, impaired
autophagy, precocious development, and impaired spore formation. (4) StpA functions as a second-site
suppressor of tpp1A-deficiency in Dictyostelium. (5) Tpp1B and Tpp1F bind the Golgi pH regulator
(GPHR). (5,6) Tpp1F also localizes to the endoplasmic reticulum (ER) and extracellular space.

3.2. Loss of the Lysosomal Enzyme Tpp1A Impairs Autophagy and Multicellular Development in Dictyostelium

Homologous recombination was used to knockout the tpp1A gene in Dictyostelium [24].
tpp1A-deficiency in Dictyostelium reduces overall Tpp1 activity and results in an accumulation of
autofluorescent storage material in starved cells [24] (Figure 2). Like human TPP1/CLN2, Tpp1A
localizes to the lysosome [22,24] (Figure 2). The growth and viability of tpp1A− cells is impaired
in autophagy-stimulating media, which is consistent with previous work that reported reduced
autophagosome formation in CLN2 disease patient fibroblasts [23,24] (Figure 2). During the mid-to-late
stages of development, loss of tpp1A causes cells to develop precociously and form abnormal spores [24]
(Figure 2). In addition, the development of tpp1A− cells is severely compromised in the presence of
the lysosomotropic agent chloroquine, which is consistent with a role for Tpp1A at the lysosome [24].
By exploiting the genetic tractability of Dictyostelium, researchers used restriction enzyme-mediated
integration (REMI) mutagenesis to identify stpA (suppressor of Tpp1 A) as a second site suppressor
of tpp1A-deficiency [24] (Figure 2). StpA shares some similarity to oxysterol-binding proteins,
which function in lipid transport and metabolism [24,26]. Intriguingly, altered lipid homeostasis
has been linked to the NCLs [27,28]. For example, lipid accumulation has been observed in neural stem
cells derived from induced pluripotent stem cells generated from CLN2 disease patient fibroblasts [27].
Thus, work in Dictyostelium has provided valuable new insight into the potential of targeting other
genes that may reduce the effects of loss of function mutations in human TPP1.
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3.3. Tpp1B and Tpp1F Interact with the Golgi pH Regulator in Dictyostelium

As mentioned above, the Dictyostelium genome contains six genes that encode proteins similar
to human TPP1/CLN2, with all six proteins likely contributing to the total TPP1 activity in the
cell [24,25] (Figure 2). In addition to Tpp1A, recent work has also studied the function of Tpp1B and
Tpp1F [25]. In Dictyostelium, both proteins bind the Golgi pH regulator (GPHR) [25] (Figure 2). GPHR is
a transmembrane anion channel that acidifies compartments of the Golgi complex and influences its
morphology as well as the morphology of the ER [29,30]. In Dictyostelium, the GPHR plays a role in
regulating growth and the later stages of multicellular development [31]. In addition to the Golgi
complex, Tpp1F localizes to the ER, V-ATPase-positive vesicles, and the extracellular space [25,32]
(Figure 2). Like Tpp1A, Tpp1F also has serine protease activity [25]. However, tpp1F-deficiency in
Dictyostelium has no obvious effects on growth or development, likely from the compensatory activities
provided by the other Tpp1 proteins in Dictyostelium (expression of tpp1B is the highest during growth
and development followed by tpp1F and tpp1A) [25,33]. In total, this work revealed a novel interaction
of Tpp1 proteins with the GPHR in Dictyostelium, which should fuel research in mammalian models of
CLN2 disease to determine if TPP1 interacts with the GPHR in human cells and how this interaction
may contribute to the pathology underlying NCL.

4. Using Dictyostelium to Study CLN3 Disease

4.1. Human CLN3

Mutations in CLN3 (ceroid lipofuscinosis neuronal 3) cause a juvenile form of NCL, which is the
most common subtype of the disease [1]. CLN3 encodes a 438-amino acid transmembrane protein that
localizes to the late endosomal and lysosomal membranes [34,35]. Research in a diversity of genetic
models has speculated that the function of CLN3 is linked to adhesion, apoptosis, autophagy, cell cycle
control, cell proliferation, endocytosis, neurogenesis, osmoregulation, pH and ion homeostasis,
and protein trafficking and secretion [32,36–48]. However, the precise function of the protein has not
been defined.

4.2. Loss of Cln3 Causes Pleiotropic Effects in Dictyostelium that are Consistent with its Localization to the
Contractile Vacuole System

The Dictyostelium homolog of human CLN3 (gene: cln3, protein: Cln3) encodes a 421-amino acid
transmembrane protein. In both growth and starved conditions, Cln3 localizes predominantly to the
contractile vacuole (CV) system, and to a lesser extent, compartments of the endocytic pathway and
Golgi complex [32,40,45] (Figure 3). During growth, cln3− cells display increased cell proliferation,
aberrant cytokinesis, and defects in osmoregulation [40,48] (Figure 3). During multicellular development,
cln3− cells display reduced cell-cell and cell-substrate adhesion, delayed aggregation, aberrant protein
secretion, and precocious multicellular development [32,40,45] (Figure 3). Importantly, evidence from
yeast and mammalian cell models also supports a role for CLN3 in these processes, highlighting that the
molecular function of CLN3 is likely conserved from Dictyostelium to human [36–39,41,42,46,47].

The localization of Cln3 to the CV system has provided clues into the mechanism underlying
cln3-deficiency phenotypes in Dictyostelium. The contractile vacuole (CV) system is a dynamic
organelle that is linked to osmoregulation, protein secretion, and ion homeostasis [49–51]. The effect of
cln3-deficiency on osmoregulation and protein secretion in Dictyostelium has been studied in detail and
will be described below [32,48]. Previous work has also shown that cln3-deficiency phenotypes during
development can be suppressed by treating cells with the calcium chelator egtazic acid (EGTA) [40,45].
These results are consistent with work showing aberrant calcium homeostasis in mouse models of
CLN3 disease [43,46,52]. However, further work is needed to clarify the exact role of Cln3 in regulating
ion balance in Dictyostelium.
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Figure 3. Current model of Cln3 function in Dictyostelium. (1) Cln3 localizes primarily to the contractile
vacuole (CV) system, and to a smaller extent, compartments of the endocytic pathway and the Golgi
complex. (2) Cln3 function is linked to mitosis. (3) Loss of cln3 increases the rate of cell proliferation,
alters cytokinesis, decreases the efficiency of regulatory volume decrease (RVD), reduces adhesion,
delays aggregation, causes cells to develop precociously, and impairs spore integrity. (4) Loss of cln3
reduces the intracellular level of CsaA protein. (5) Loss of cln3 increases the expression of tpp1A
during osmotic stress and increases TPP1 enzymatic activity. (6) Cln3 modulates the secretion of AprA
and CfaD. (7) Loss of cln3 increases the secretion of Tpp1F, Cln5, CtsD, CadA, and selected cysteine
proteases. (8) Loss of cln3 reduces the secretion of CMF during growth.

4.3. Cln3 Regulates Osmoregulation in Dictyostelium

During osmoregulation, the CV system regulates intracellular water balance by collecting excess water
from the cytosol and then expelling the water out of the cell [49]. CLN3 has been shown to play a role in
osmoregulation in mammalian models of CLN3 disease [37–39]. In a baby hamster kidney cell line, osmotic
stress affects the expression and localization of CLN3 [38]. In mice, CLN3 regulates renal control of water
and potassium balance [37]. Finally, osmotic stress induces an abnormal blood–brain barrier response in
brain endothelial cells obtained from Cln3-deficient mice [39]. During hypotonic stress, the expulsion of
water from the cytosol is known as regulatory volume decrease (RVD), which is a conserved process in all
eukaryotic cells [53]. In Dictyostelium, previous work showed that cln3− cells display defects in RVD and
exhibit a delay in their ability to recover from hypotonic stress [48] (Figure 3). This delay is exacerbated
when cln3− cells are treated with ammonium chloride, a lysosomotropic compound that elevates the pH of
intracellular compartments [48,54]. More specifically, following hypotonic stress, the ability of cln3− cells
and V-ATPase-positive compartments in cln3− cells to reduce in size is delayed compared to wild-type
cells [48]. The sensitivity of cln3− cells to hypotonic stress perpetuates into multicellular development
where cln3− cells display delayed development under hypotonic stress, and arrested development at the
slug stage when developed in hypotonic conditions with ammonium chloride [48]. These data suggest that
lysosomotropic agents affect the ability of cln3− cells to cope with osmotic stress. In addition, cln3− cells
display reduced viability under hypotonic stress, which also compromises the integrity of cln3− spores [48].
Finally, loss of cln3 also impairs the viability and development of cells in response to hypertonic stress [48].
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RNA sequencing was used to examine the pathways regulating the response of cln3− cells
to osmotic stress. This analysis revealed 320 genes that were differentially expressed in cln3− cells
compared to wild-type cells during hypotonic stress, and 162 genes that were differentially expressed
during hypertonic stress [48]. The resulting datasets were then examined using GO term enrichment
and STRING protein–protein interaction network analyses [55,56]. These analyses revealed that the
differentially expressed genes are linked to developmental processes, which is consistent with the
aberrant development of cln3− cells during osmotic stress [48]. Additionally, cln3− cells subjected to
hypotonic stress displayed differential expression of genes linked to metabolic processes [48]. In both
osmotic stress conditions, there was an enrichment of differentially expressed genes involved in transport
and catalysis [48]. These results are consistent with the role of Cln3 in protein secretion, specifically
the aberrant secretion of proteases by cln3− cells and the enhanced activity of Tpp1 in cln3− cells
during hypertonic stress [32,48]. Finally, the proteins encoded by genes differentially expressed during
hypotonic stress localize to the cell periphery and extracellular region, while proteins encoded by genes
differentially expressed during hypertonic stress localize to membranes (e.g., intrinsic component of
membrane) [48].

In Dictyostelium, GFP-Cln3 localizes to the CV system during mitosis and cytokinesis [48] (Figure 3).
During cytokinesis, water efflux from CV system bladders facilitates the formation of the cleavage furrow,
which is a transient structure that divides the two daughter cells [57–59]. Not surprisingly, Dictyostelium
osmoregulatory mutants display defects in cytokinesis [60–62]. Aligning with the osmoregulatory defects
observed in cln3− cells, loss of cln3 increases the number of multi-nucleated cells in growth culture [48]
(Figure 3). Importantly, these results are consistent with cytokinesis defects observed in a yeast model of
CLN3 disease [36]. In total, this work links the function of Cln3 to osmoregulation in Dictyostelium and
provides valuable new insight into the mechanisms underlying this function.

4.4. Cln3 Regulates Protein Secretion in Dictyostelium

In addition to osmoregulation, the CV system has also been linked to protein secretion in
Dictyostelium [50]. Work has shown that the enhanced proliferation of cln3− cells may be due to
the aberrant secretion of proteins linked to growth, specifically autocrine proliferation repressor A
(AprA) and counting factor-associated protein A (CfaD) [40] (Figure 3). AprA and CfaD function
together to repress cell proliferation and facilitate chemorepulsion [63–65]. A preliminary analysis into
the mechanism underlying the aberrant adhesion and aggregation of cln3− cells revealed that loss of
cln3 decreased the intracellular amount of the cell–cell adhesion protein contact site A (CsaA) and
increased the amount of soluble extracellular calcium-dependent cell adhesion molecule A (CadA) [45]
(Figure 3). The delayed aggregation of cln3− cells has also been linked to the reduced secretion of
conditioned media factor (CMF) during growth [32] (Figure 3). Since CMF plays a critical role in
initiating and synchronizing development upon starvation, these results indicate that cln3− cells may
not be optimally primed to enter development [66].

Based on the above findings, mass spectrometry was used to further explore the effect of
cln3-deficiency on protein secretion during aggregation [32]. That study provided the first evidence in
any system showing that loss of cln3 alters protein secretion [32]. A total of 450 proteins were detected
in conditioned starvation buffer harvested from wild-type and cln3− cells [32]. Three proteins that are
normally secreted by wild-type cells during starvation were absent in conditioned buffer harvested from
cln3− cells [32]. Two of the three proteins function in adhesion and migration, which could explain the
adhesion defects observed in cln3− cells [32,45]. In addition, 12 proteins that are not normally secreted
during starvation were present in conditioned buffer harvested from cln3− cells [32]. Consistent with
these findings, label-free quantification identified 42 proteins that were present in significantly higher
amounts in cln3− conditioned starvation buffer compared to wild-type and 3 proteins that were present
in significantly reduced amounts [32]. Gene ontology (GO) term analyses revealed an enrichment of
proteins linked to endocytosis, vesicle-mediated transport, proteolysis, and metabolism. Importantly,
these results support the reduced endocytosis and protein transport observed in cells from Cln3-deficient
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mice, reduced basal mitochondrial respiration and ATP production observed in mice harboring the most
common mutation observed in patients with CLN3 disease, and the regulation of cathepsin D (CTSD)
protease activity by CLN3 in baby hamster kidney cells [39,52,67]. In total, this work revealed for the first
time that Cln3 plays a role in protein secretion and suggests that future research in Dictyostelium may
provide additional insight on the precise role of CLN3 in regulating protein secretion in human cells.

5. Using Dictyostelium to Study CLN5 Disease

5.1. Human CLN5

Mutations in CLN5 (ceroid lipofuscinosis neuronal 5) cause a late-infantile form of Batten disease,
but juvenile and adult onsets have also been reported [1,68,69]. CLN5 disease was first reported as
a Finnish variant, however, patients with broad ethnic backgrounds have now been diagnosed [70–73]. In
mammalian cells, CLN5 localizes to the lysosome and is present in the conditioned media of cultured cells,
which is consistent with the presence of a signal peptide for secretion in the N-term of the protein [74–77].
CLN5 is first translated as a 407-amino acid type II transmembrane protein, which resides in the ER
membrane [78]. The protein is then cleaved by signal peptide peptidase-like (SPPL) 3 to form a soluble
protein [79,80]. In addition, CLN5 has eight N-glycosylation sites that are critical for the folding,
trafficking, and localization of the protein [75]. Recently, human CLN5 was shown to display glycoside
hydrolase activity [77]. CLN5 has also been speculated to function in autophagy, lipid metabolism,
lysosome receptor sorting, myelination, and sphingolipid transport [81–85]. However, the precise
mechanisms underlying CLN5 disease have yet to be revealed.

5.2. Cln5 is Secreted and Functions as a Glycoside Hydrolase in Dictyostelium

Dictyostelium is one of the few early eukaryotes that contains a homolog of human CLN5
(yeast, C. elegans, and D. melanogaster lack a homolog) [7]. The Dictyostelium homolog (gene: cln5,
protein: Cln5) is 322 amino acids in size, and like human CLN5, has glycoside hydrolase activity [77]
(Figure 4). The first evidence for human CLN5 having glycoside hydrolase activity was based on
studies that were initiated in Dictyostelium [77]. In Dictyostelium, Cln5 is glycosylated in the ER and then
trafficked to the cell cortex where it appears to be secreted via the CV system during starvation [77,86]
(Figure 4). Upon starvation in Dictyostelium, several conserved cellular processes are activated, one
being autophagy, which is required for multicellular development [87]. Intriguingly, treatment of
wild-type cells with lysosomotropic agents (e.g., ammonium chloride or chloroquine) decreases
Cln5 secretion [86]. Since lysosomotropic compounds inhibit autophagy, these results suggest that
autophagic mechanisms regulate the secretion of the protein [88] (Figure 4). In total, the secretion
of Cln5 in Dictyostelium is consistent with observations in mammalian models of the disease and
indicates that secreted CLN5 may play an important role in the pathological mechanisms underlying
CLN5 disease.
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Figure 4. Current model of Cln5 function in Dictyostelium. (1) Cln5 is glycosylated in the endoplasmic
reticulum (ER) and then trafficked to the contractile vacuole (CV) system. (2) Cln5 is secreted
unconventionally via a pathway involving Cln3 and autophagy induction. (3) Cln5 functions as
a glycoside hydrolase outside of the cell. (4) Loss of cln5 leads to storage body accumulation and
results in aberrant adhesion and chemotaxis. (5) Cln5 interacts with lysosomal enzymes, as well as the
Dictyostelium homologs of human TPP1/CLN2, CTSD/CLN10, and CTSF/CLN13. (6) Cln5 interacts
with proteins linked to Cln3 function in Dictyostelium (cysteine proteases, AprA, CfaD, and CadA).

5.3. Loss of Cln5 Impairs Adhesion and Chemotaxis during the Early Stages of Dictyostelium Development

The accumulation of autofluorescent storage material in neurons, as well as cells outside the
central nervous system, is a pathological hallmark of the NCLs [2]. In Dictyostelium, cln5− cells
also accumulate autofluorescent storage deposits further highlighting the conserved nature of NCL
pathways and validating the use of Dictyostelium as a model system for studying CLN5 disease [86]
(Figure 4). During the early stages of multicellular development, cln5− cells display a reduced ability to
adhere to the substrate, which is exacerbated when cells are treated with chloroquine [86]. Furthermore,
cln5− cells also display a defect in cell–cell adhesion [86]. As a potential consequence of the aberrant
adhesion, cln5− cells display reduced cAMP chemotaxis in a radial bioassay [86,89]. These results
are consistent with observations of fibroblasts obtained from CLN5 disease patients, which attach
poorly to tissue culture dishes and display altered expression of genes linked to cell adhesion [90].
Neurons from Cln5-deficient mice also display altered expression of genes linked to adhesion as well
as aberrant localization of cytoskeletal proteins [91]. Finally, an analysis of the Cln5 interactome in
Dictyostelium revealed that the protein interacts with lysosomal enzymes (e.g., alpha-mannosidase,
beta-glucosidase), cysteine proteases, other NCL protein homologs such as Tpp1B, cathepsin D (CtsD),
and uncharacterized protein DDB0252831 (which is similar to cathepsin F, CTSF/CLN13), and proteins
linked to Cln3 function (e.g., AprA, CfaD, CadA) [77] (Figure 4). Therefore, future work in Dictyostelium
may provide novel insight into the cellular pathways regulated by Cln5 and this knowledge can then
be translated to other genetic models of CLN5 disease.
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6. Using Dictyostelium to Study the Molecular Networking of NCL Proteins

Mounting evidence indicates that the NCL proteins function in shared or convergent biological
pathways [92]. Mutations in NCL proteins cause the accumulation of ceroid lipofuscin within cells and
result in nearly identical clinical manifestations [2]. In addition, previous work reported the spatial and
temporal co-expression of TPP1/CLN2, CLN3, and CLN5 during brain development, shared interaction
partners between CLN3 and CLN5, CLN5 polypeptides interacting directly with TPP1/CLN2 and
CLN3, exacerbated NCL phenotypes in Cln1/Cln5 double knockout mice, and the interaction of CLN5
with PPT1/CLN1, TPP1/CLN2, CLN3, CLN6, and CLN8 [41,93–96]. A recent report also showed
decreased levels of CLN5 protein in a cell line derived from a Mfsd8/Cln7 knockout mouse [97]. Thus,
studying the function of any one NCL protein is likely to enhance our knowledge of the mechanisms
underlying the neurodegeneration associated with the disease, knowledge that can then be applied to
all subtypes of the disease.

Like mammalian models of Batten disease, there is evidence in Dictyostelium to support that
the NCL proteins are connected at the molecular level. Using a proteomics-based approach, 10 of
the 11 NCL protein homologs in Dictyostelium were detected in the macropinocytic pathway [98].
As discussed above, previous work revealed a function for Cln3 in protein secretion [32] (Figure 3).
Specifically, that study reported that a loss of cln3 increased the amount of Tpp1F, Cln5, and
CtsD in conditioned starvation buffer [32] (Figures 2–4). A follow-up study provided direct
evidence linking the secretion of Cln5 to Cln3 function by showing increased amounts of Cln5
in conditioned starvation buffer harvested from cln3− cells [86] (Figures 3 and 4). Furthermore,
Cln5 was shown to co-localize with Cln3 at the CV system, which has been proposed to mediate its
secretion [86]. Immunoprecipitation coupled with mass spectrometry revealed the Cln5 interactome in
Dictyostelium [77]. Cln5-interactors include Tpp1B, CtsD, and uncharacterized protein DDB0252831
(similar to CTSF/CLN13), as well as proteins linked to Cln3 function in Dictyostelium (e.g., AprA,
CfaD, CadA) [77]. Intriguingly, ten Cln5-interactors are differentially secreted by cln3− cells [32,77]
(Table 1). Furthermore, cln3-deficiency increases the expression of tpp1A during hypertonic stress,
which correlates with increased Tpp1 activity [48]. Finally, loss of tpp1A, cln3, or cln5 in Dictyostelium
causes similar phenotypes (Table 2). In total, these findings support the use of Dictyostelium to study
the molecular networking of NCL proteins.

Table 1. Proteins present in Cln5-GFP IP fractions that are differentially secreted by cln3− cells.

dictyBase ID Protein Names Gene Names

DDB0231036 Autocrine proliferation repressor protein A (PhoPQ-activated
pathogenicity-related protein)

aprA
DDB_G0281663

DDB0215012 Cathepsin D (Ddp44) ctsD, catD
DDB_G0279411

DDB0214999 Cysteine proteinase 4 cprD, CP4
DDB_G0278721

DDB0185092 Cysteine proteinase 5 cprE, CP5
DDB_G0272815

DDB0215005 Cysteine proteinase 7 cprG, CP7
DDB_G0279187

DDB0191134 Elongation factor 1-alpha (EF-1-alpha) (50 kDa actin-binding
protein) (ABP-50)

eef1a2, efaa2, efaAII
DDB_G0269136

DDB0233663 Luminal-binding protein (BiP 2) bip2
DDB_G0276445
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Table 1. Cont.

dictyBase ID Protein Names Gene Names

DDB0349243 Uncharacterized protein DDB_G0288563

DDB0233868

Uncharacterized protein, member of the peptidase S28 family
of serine proteases, a group containing lysosomal Pro-X

carboxypeptidase, dipeptidyl-peptidase II, and
thymus-specific serine peptidase

DDB_G0289749

DDB0238155
Induced after Legionella infection

Contains a putative N-terminal signal sequence; regulated by
gskA and zakA; induced by Legionella pneumophila infection

iliA
DDB_G0285615

Table 2. Comparison of the phenotypes observed in Dictyostelium models of TPP1/CLN2, CLN3, and
CLN5 disease.

Phenotype Tpp1a− Cln3− Cln5−

Increased cell proliferation No Yes Not known
Impaired cytokinesis Not known Yes Not known

Autofluorescent inclusions Yes Not known Yes
Defects in osmoregulation Not known Yes Not known
Aberrant protein secretion Not known Yes Not known

Reduced adhesion Not known Yes Yes
Function linked to autophagy Yes Not known Yes

Precocious development Yes Yes Not known
Impaired spore formation Yes Not known Not known

Reduced spore viability/integrity No Yes Not known

7. Conclusions

Dictyostelium has proven to be an exceptional organism for studying the cellular roles of NCL
proteins. Phenotypes previously revealed in other genetic models of Batten disease are present in
Dictyostelium (e.g., aberrant autophagy, impaired osmoregulation, etc.) providing evidence that the
functions of NCL proteins are likely conserved from Dictyostelium to human. Work in Dictyostelium has
also revealed previously unknown functions for the NCL proteins, such as the role of CLN3 in protein
secretion and the glycoside hydrolase activity of CLN5. These findings should spur future research
in mammalian models of NCL to further explore these functions. In fact, recent studies in mice and
humans have also linked the function of CLN3 to secretion [46,47]. However, as with any model
organism, there are caveats that must be considered. For one, Dictyostelium has a limited number of
cell types that may limit the translation of findings to specific tissues or organs in mammalian systems.
In addition, since Dictyostelium lacks a nervous system, discoveries made in the organism must be
validated in the relevant mammalian cell type. Nonetheless, Dictyostelium presents many benefits as
a biomedical model system. Moving forward, research in Dictyostelium has the potential to identify
molecular targets for therapies, which includes studying the effects of new drugs in a multicellular
organism. Finally, NCL phenotypes overlap with those seen in patients with Alzhemier’s disease,
Parkinson’s disease, and frontotemporal dementia [99–101]. Thus, on a larger scale, using Dictyosteium
to study the functions of NCL proteins could enhance our understanding of the mechanisms underlying
other forms of neurodegeneration.
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Abbreviations

AprA autocrine proliferation repressor A
CadA cell adhesion molecule A
cAMP 3′,5′-cyclic adenosine monophosphate
CfaD counting factor-associated protein D
CLN ceroid lipofuscinosis neuronal
CMF conditioned media factor
CsaA contact site A
CtsD cathepsin D
CV contractile vacuole
ER endoplasmic reticulum
GPHR Golgi pH regulator
NCL neuronal ceroid lipofuscinosis
REMI restriction enzyme-mediated integration
RVD regulatory volume decrease
SCAR7 spinocerebellar ataxia 7
SPPL signal peptide peptidase-like
StpA suppressor of Tpp1 A
TPP1 tripeptidyl peptidase 1
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