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Abstract: Regulatory T cells (Tregs) are renowned for maintaining homeostasis and self-tolerance 
through their ability to suppress immune responses. For over two decades, Tregs have been the 
subject of intensive research. The immunosuppressive and migratory potentials of Tregs have been 
exploited, especially in the areas of cancer, autoimmunity and vaccine development, and many 
assay protocols have since been developed. However, variations in assay conditions in different 
studies, as well as covert experimental factors, pose a great challenge to the reproducibility of 
results. Here, we focus on human Tregs derived from clinical samples and highlighted caveats that 
should be heeded when conducting Tregs suppression and migration assays. We particularly 
delineated how factors such as sample processing, choice of reagents and equipment, optimization 
and other experimental conditions could introduce bias into the assay, and we subsequently 
proffer recommendations to enhance reliability and reproducibility of results. It is hoped that 
prioritizing these factors will reduce the tendencies of generating false and misleading results, and 
thus, help improve our understanding and interpretation of Tregs functional studies. 
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1. Introduction 

Regulatory T cells (Tregs) are a specific subset of CD4 T cells endowed with the ability to 
suppress immune responses, thus maintaining homeostasis and self-tolerance [1]. When naïve CD4⁺ 
T cells are triggered through their T cell receptors (TCRs) in the presence of appropriate cytokines, 
they differentiate into Th1, Th2, and Th17 effector T cells or Tregs [2]. Natural Tregs (nTregs), which 
develop in the thymus, and adaptive or induced Tregs (iTregs) produced from naïve T cells in the 
periphery, constitute the broad representatives of Tregs in the body [3]. Around 5%–10% of the 
peripheral naïve CD4+ T lymphocyte population in humans and mice are nTregs [3]. Although 
differences in the anatomical origins of these Tregs subsets are thought to influence their functional 
specificity [1], the intracellular Forkhead box protein 3 (FoxP3) is considered the most specific 
marker for all Tregs. Other surface markers like CD25, CD127 and TNFR2 are also used, in addition 
to FoxP3, to phenotype Tregs [4,5]. Due to their immunosuppressive ability, Tregs have been the 
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subject of intensive research in the past few decades, especially in the areas of cancer, autoimmunity 
and vaccine development. 

The immunosuppressive potential of Tregs is commonly assessed in the Tregs suppression 
assay, a method that measures the suppression of responder cells (e.g., effector T cells) by Tregs in 
controlled conditions in vitro (Figure 1b). The suppression of proliferation of the responder cells 
could manifest as late or reduced proliferation or an absolute impedance of cell division. 
Suppression is also determined by evaluating the ability of Tregs to repress cytokine production by 
the responder cells [6]. For example, in cancer, interferon gamma (IFN-γ), one of the two main 
anti-tumor effector cytokines produced by activated CD8+ T cells, is suppressed by tumor necrosis 
factor receptor 2 positive (TNFR2+) Tregs [5]. Migration assay, on the other hand, is a technique used 
to assess the mobility of cells. Tregs migration assay relies on the principle of chemotaxis, the 
directional movement of cells towards a chemical gradient often established by signaling proteins 
(e.g., chemokines). Tregs are present in blood, tissues and the lymphatics and could inter-travel (e.g., 
from blood or tissue into afferent lymphatics) [7]. The movement of Tregs in steady state and during 
active immune responses in order to establish an adequate pool for effective function is often 
investigated using migration assay. In Tregs migration assay, the ability of Tregs to move toward a 
chemoattractant gradient is largely evaluated using a bare transwell insert and simply referred to as 
transwell migration assay. During the assay, Tregs are placed in a transwell containing a permeable 
membrane and inserted into a receiving well seeded with solution of test chemoattractant (Figure 
1c-e). The setup is incubated, and the cells that migrate via the membrane to the receiving plate are 
subsequently enumerated. However, to assess Tregs migration through the endothelium, the 
transwell insert is layered with a monolayer of endothelial cells prior to treatment with Tregs. This 
type of migration assay is often termed transmigration or transendothelial migration (TEM) assay. 

With the current global race to develop reliable immunotherapies against major diseases, Tregs 
migration and suppression assays are invaluable, since they are vital tools that aid deciphering the 
underlying functional roles of Tregs in autoimmune diseases, including multiple sclerosis [8,9]; type 
1 diabetes [10,11]; rheumatoid arthritis [12,13] and cancers such as lung cancer [14], colorectal cancer 
[15], nasopharyngeal carcinoma [16] and breast cancer [17]. For example, to prevent allograft 
rejection, Tregs must migrate to both grafts and lymph nodes [18]. Furthermore, the migration and 
accumulation of functionally suppressive Tregs at tumor sites is associated with the advancement of 
cancer [19]. 

To perform either of these assays, Tregs and/or responder cells can be enriched from human or 
animal tissues or sourced from cell lines. While a number of researchers conduct Tregs functional 
studies in vivo, many others rely on ex vivo and/or in vitro approaches. Although ex vivo or in vitro 
studies may not fully depict the native cellular environment and conditions, they allow a fair 
simulation of the in vivo conditions, and more so, offer researchers relative ease, rapidity and even 
reduced ethical bottlenecks atypical of the in vivo approach. This review, however, focuses mainly 
on the ex vivo method as we concentrate on human Tregs isolation from blood and tissues and their 
subsequent use in functional studies. 
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Figure 1. Basic Tregs suppression and transwell migration assay setup. (a) Schematic representation 
of distinct peripheral blood mononuclear cells (PBMC) layer following Ficoll density gradient 
centrifugation of whole blood. Tregs can be easily enriched from isolated PBMC through 
Magnetic-activated cell sorting (MACS) or Fluorescence-activated cell sorting (FACS) (b) Tregs 
suppression assay components. Suppression of the proliferation of responder T cells or repression of 
cytokine production is commonly assessed after 72 hours incubation. APC: Antigen presenting cells. 
(c) Tregs transwell migration assay components. (d) Assay setup prior chemotaxis. (e) Assay setup 
after chemotaxis. During incubation, Tregs move from upper compartment (membrane insert) to the 
lower compartment (receiver well) in response to signals from chemoattractant (e.g., CXCL12 and 
CCL22). Migrated cells can be enumerated using hemocytometer, flow cytometer or other dye 
assays. 

2. Sample Processing and Preparation of Single-Cell Suspension 

Given the low population of Tregs [20], sufficient samples should be collected when isolating 
human Tregs from peripheral blood mononuclear cells (PBMC) of whole blood or from tissue 
biopsy, particularly when immunophenotyping and when downstream experiments, such as Tregs 
migration and suppression assays, are to be conducted. This is vital, because the quantity of sample 
processed correlates directly with the number of cells that can be recovered. It should be noted that 
during the typical multiple-sample processing steps, including tissue digestion and immunostaining 
of single-cell suspension, some cells will die naturally or as a result of injury caused by mechanical 
disintegration and enzymatic digestion of tissues [21,22]. 
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Even though isolation of PBMC from whole blood for Tregs functional studies appears to be 
less cumbersome, the protocol utilized should ensure a distinct layer of PBMC ensues following 
Ficoll gradient centrifugation (Figure 1a) to allow the isolation of the lymphocyte population with 
high purity. Interestingly, the purity of mononuclear cells can be enhanced by prior dilution of blood 
samples before Ficoll separation [23]. Additionally, it is important that the period between PBMC 
isolation and its usage for Tregs functional studies is reduced (Figure 2), as PBMCs begin to 
aggregate after sitting on ice for a long period of time. If the cell aggregates are not properly 
dissociated (it should be noted that some clumps can evade dissociation attempts), inaccurate 
enumeration of cells may arise. 

Unless when immediate processing of tissue samples is not possible, the use of fresh tissue 
samples is recommended for the preparation of single-cell suspension. Slow-freezing, snap-freezing 
and overnight storage of intact tissues at 4°C have been shown to cause about 30%-90% reduction in 
total cell recovery [24]. 

Obtaining Tregs from tissue samples can be a little challenging especially, when trying to get 
rid of the extracellular matrix. Mechanical dissociation (e.g., the use of scalpel to mince into small 
pieces) and/or enzymatic digestion with collagenase is widely employed for the preliminary 
treatment of tissue prior to the derivation of single-cell suspension [25–27]. Vigorous tissue 
disintegration using tissue homogenizer rather than simple mechanical dissociation with scalpel, 
razor or scissors has been shown to be inappropriate for the preparation of single-cell suspension, as 
up to 50% and 27% decrease in cell yield and viability, respectively, characterized the usage of a 
homogenizer [22]. However, if the combination of mechanical dissociation and collagenase 
treatment is used, the concentration or incubation time of collagenase should be reduced, since the 
initial mechanical dissociation would increase the surface area of the tissue, allowing quicker 
digestion. Unregulated exposure of tissues to collagenase can affect the expression of certain 
molecules on the cell surface of leukocytes [28,29] (Figure 2). Similarly, it has also been suggested 
that enzymatic digestion could alter or damage the T cell receptor (TCR) on T cells [30]. Thus, these 
effects of collagenase might decrease recovery of the T cells of interest. Conversely, another study 
suggests only a minimal effect of collagenase on the intensity of cell surface markers and does not 
influence in vitro proliferation of T cells [31]. Hence, examining the potential effects of the 
collagenase utilized would enhance the reliability of results. 

Controlling collagenase digestion is essential to sustaining Tregs viability at the sample 
preparation phase. Since collagenase digestion typically proceeds at an optimal temperature range 
of 35–37°C or higher, the duration of digestion at the optimum temperature should be ascertained, 
as a longer incubation period could affect the survival of the cells. Further collagenase digestion can 
be impeded by continuing tissue processing at suboptimal enzyme conditions (e.g., temperature, 
enzyme concentration, etc.); repeated washing steps or the application of inhibitors such as EDTA 
and EGTA. Although it has been shown that different collagenase types (collagenases I, II, V and XI) 
exhibit similar activity on tissues [32], proper optimization should be conducted before processing 
actual samples. In addition, it is desirable to use only one type of collagenase for the digestion of all 
tissue samples under investigation to ensure consistency of method and, thus, reliability of results. 

Following tissue digestion, the membranes of some cells inevitably rupture, releasing free 
DNA. As DNA are sticky in nature, they can initiate and facilitate cell aggregation in single-cell 
suspension, thereby compromising downstream assays. Addition of DNase I to tissue digestion 
cocktail would help mitigate this problem. Digested tissue samples are often strained using a cell 
strainer to get rid of tissue debris and clumps that arise in the course of tissue disintegration. The 70 
µm strainer has been extensively used in the preparation of single-cell suspension for Tregs studies 
[33,34]. While sieving, a strainer should be changed once there is any suspected clog of the mesh’s 
pores to avoid loss of valuable cells. Alternatively, the sieve can be turned upside down and 
carefully flushed into a new tube followed by subsequent straining of the flushed matrix. It should 
be noted that straining of cells at low pressure is critical to minimizing stress on cells. 

Other experimental procedures which may influence downstream results include 
centrifugation, vortexing and pipetting (Figure 2). Rough pipette mixing and vortexing can lead to 



Cells 2020, 9, 487 5 of 14 

 

premature rupture of cells, decreased cell viability and increased cell debris [22]. Similarly, 
subjecting cells to very high centrifugation speeds may damage cell membranes due to extreme 
compression of the cell pellet. On the other hand, when the centrifugation speed is too low, cells will 
fail to pellet and remain in suspension and might eventually be lost during washing steps. 
Centrifuging between 300 and 900 RCF would yield better results when processing tissue samples 
[22]. Overall, gentler handling of cells is necessary to maintain cell viability and higher cell recovery 
when preparing samples for further tests. 

3. Optimization of Experiment 

It is imperative to optimize every step and parameter of the Tregs migration and suppression 
assays as products from different manufacturers, as well as similar products but of different batches 
from the same manufacturer, may slightly differ in components. As factors such as equipment used, 
storage conditions of reagents, etc. can influence optimization results, we do not suggest specific 
optimum conditions here. It is, however, pertinent to report the optimum conditions used in each 
assay. For the migration assay, proper optimization should be done to particularly determine the 
ideal transwell to be used, volume and concentration of cells to be loaded into the transwell, volume 
and concentration of chemoattractant to be used in the receiver well, as well as incubation time. 
Assay conditions used in some recent Tregs studies are summarized and presented in Table 1. In the 
same vein, for the Tregs suppression assay, the optimum concentration and ratio of Tregs, responder 
cells and stimulants should be determined. As with actual experiments, both negative and positive 
controls should be included, and the assay should be done in at least three technical replicates 
during the optimization phase. In addition to correct optimization, highlighted in the next few 
paragraphs are areas we consider crucial to the success of a typical Tregs migration and suppression 
assay. 

4. Tregs Migration Assay 

4.1. Choice of Transwell 

Generally, when conducting a migration assay, selecting an appropriate transwell is 
fundamental. Since transwells are manufactured with different pore sizes (e.g., 3 µm, 5 µm and 8 
µm) to suit different experiments, care must be taken to avoid using a transwell whose pore size is 
too large or too small, as it will impact the outcome of the intended assay. A transwell whose pore 
size is too large will allow the free fall of cells from the upper compartment. Meanwhile, when the 
pore size is too small, cells are restrained from passage into the lower compartment of the assay 
setup. Results generated without due consideration of this factor could be misleading. Several 
studies have effectively used the 5 µm pore transwell in a migration assay [35–37]. Although Tregs 
may be larger than 5 µm, they can migrate via the pore since blood cells can alter their shape by 
rearranging the protein components of their cytoskeleton following the disruption of bonds holding 
the proteins together [38]. This property enables the cells to stretch and maneuver through the tiny 
pore. However, caution must be taken when interpreting results from studies that use atypical 
transwell pore sizes (e.g., 0.4 µm) [39] to investigate Tregs migration, since smaller pore sizes (0.4–3 
µm) are mainly employed in studies of the transport of small chemical compounds [40]. Another 
crucial point to note when choosing a transwell for a Tregs migration assay is the volume of cell 
solution to be loaded into the transwell. Expectedly, this can vary depending on the size of the 
transwell; while a 24 mm transwell may be adequately seeded with 1000 µL of cell solution for 
optimum result, a 4 mm transwell would require much less volume. When too many cells are used, 
chances are that the pores of the transwell can become oversaturated. The utilization of fewer cells, 
on the other hand, could impair accurate enumeration of migrated cells in the receiver well. 
Additionally, when loading the transwell, contact of the pipette tip with the fragile transwell 
membrane must be completely eschewed to prevent inadvertent expansion of the transwell’s pore. 
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4.2. Endothelial Cell Monolayer 

In the transendothelial migration (TEM) assay, confluency of cultured endothelial cells should 
be ascertained before proceeding with the assay. The use of stains such as silver nitrate [41], DAPI 
[42] and hematoxylin/eosin [18] as used in previous studies are helpful in confirming the formation 
and integrity of confluent monolayers. Further, intercellular junction integrity should be accounted 
for prior to the actual assay. This is pertinent, because Tregs infiltration most frequently occurs via 
endothelial junctions [43]. Thus, defective cell-cell junctions would inevitably result in an 
overestimation of migrated cells during the assay. Previous studies have employed 
immunohistochemical staining of the tight junction protein, occludin [44], and measurement of 
cell-cell junction permeability [41] to appraise the fitness of intercellular junctions. 

TNF and IFN-γ stimulation has been demonstrated to aid leukocyte adhesion and TEM in 
different experimental models [45–47]. Stimulating endothelial cells during a transmigration assay 
would better simulate in vivo condition of Tregs migration. While information on endothelial cells 
stimulation with IFN-γ and/or TNF are discernible in reports from some Tregs TEM studies 
[35,48,49], it is obscured in other Tregs TEM studies [50,51]. This confounds the comparison of 
outcomes from the studies. 

4.3. Establishing a Chemotactic Gradient 

Given that chemotaxis of Tregs is largely dependent on ligand-receptor interactions [52,53], 
many studies today exploit the use of chemokine ligands to investigate the trafficking of Tregs to 
tumor microenvironments in various types of cancers [1]. This further underscores the significance 
of the careful isolation of Tregs when preparing and enriching the cells for migration assay. 
Damaged Tregs receptors stemming from incautious cell preparation steps can significantly skew 
the result of the migration assay, as distorted receptors would prevent the anticipated 
ligand-receptor interplay, leading to little or no chemotaxis. Since Tregs receptor integrity is not 
usually determined after isolation, it is pertinent to avoid harsh isolation protocols that might 
compromise cell surface receptors. Several chemokine ligands, including CCL22, CXCL12 and 
CCL28 [54–57], among others, have been used to investigate Tregs migration potentials in different 
types of cancers. 

When the recipient well of the migration assay setup is seeded with solution containing the 
chemokines of interest, care must be taken to ensure the solution is in contact with the upper 
chamber bearing the Tregs to allow the formation of a chemotactic gradient. Once a gradient is 
formed, the setup should be gently handled to avoid spillage of contents from the top chamber to the 
lower one, as this can completely invalidate the results of the assay. Furthermore, incubation of the 
setup should be done immediately after the gradient is formed, because the transwell migration 
assay is only suitable for short-term investigation. After an extended period, the chemotactic 
gradient is lost since the concentration of chemokine ligands becomes equal in both chambers, 
consequently hampering the directional movements of Tregs from the top to the bottom well of the 
transwell setup. 

4.4. Counting Migrated Cells 

After incubation, the cells that migrate to the receiver well can be enumerated using a 
hemocytometer, flow cytometer or other dye assays (Table 1). However, it is important to note the 
quantity of starting Tregs, the migrated, as well as the non-migrated cells. This will help assess the 
impact of dead or lost cells on the results of the assay (Figure 2). 
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Table 1. Tregs migration assay conditions. 

Transwell 
Type (T) & 
Pore Size 

(S) 

Number (N) & 
Volume (V)† of 

Cells in 
Transwell 

Concentration (C) & 
Volume (V)† of 

Chemoattractant in 
Receiver Well 

Incubation 
Condition 

Enumeration 
of Migrated 

Cells 

Referenc
e 

T: 24-well 
S: 5 µm 

N: 5 × 104 
V: NS 

C: 100 ng/mL 
V: NS 

37 °C,  
4 h 

Hemocytomet
er 

[58] 

T: 24-well* 
S: 5 µm* 

N: 5 × 105* 
V: NS 

C: 20 ng/mL 
V: NS 

NS, 
6 h 

Flow 
cytometer 

[34] 
 

T: NS 
S: 3 µm 

N: 1 × 106 
V: NS 

C: NS 
V: NS 

37 °C,  
6 h 

Flow 
cytometer 

[59] 

T: 96-well 
S: 5 µm 

N: 1 × 105 
V: 100 µL 

C: 500 ng/mL 
V: 150 µl 

NS, 
5 h 

Flow 
cytometer 

[60] 
 

T: 24-well 
S: 5 µm 

N: 1 × 106 
V: NS 

C: 1 ng/mL 
V: 500 µL 

37 °C,  
4 h 

Flow 
cytometer 

[61]  

T: 24-well  
S: 5 µm* 

N: 2.5 × 105 
V: 100 µL 

C: vary 
V: 600 µL 

37 °C,  
3 h 

Flow 
cytometer 

[62] 
 

T: NS 
S: 5 µm 

N: 3 × 105 
V: 100 µL 

C: vary 
V: 600 µL 

37oC,  
4 h 

Flow 
cytometer 

[63]  

T: 96-well 
S: NS 

N: 1 × 105 
V: NS 

C: 20 nM 
V: NS 

37 °C,  
4 h 

Flow 
cytometer 

[64] 
 

T: NS 
S: 5 µm 

N: 1 × 105 
V: 300 µl 

C: 200 ng/mL 
V: NS 

NS, 
Vary 

Hemocytomet
er 

[35] 

T: 24-well 
S: 8 µm 

N: NS 
V: NS 

C: 100 ng/mL 
V: NS 

37 °C,  
3 h 

Flow 
cytometer 

[26] 
 

T: 24-well 
S: 5 µm* 

N: 2 × 105 
V: 100 µL* 

C: vary 
V: 600 µL* 

NS, 
4 h 

Hemocytomet
er 

[65]  

T: 96-well 
S: 5 µm 

N: 1 × 105 
V: 50 µL* 

C: vary*  
V: 150 µL* 

37 °C,  
90 min 

Flow 
cytometer 

[37] 
 

T: 96-well 
S: NS 

N: NS 
V: NS 

C: 20 ng/mL 
V: NS 

37oC, 5% 
CO2 
4 h 

Flow 
cytometer 

[25] 

NS: not stated in the publication, †: volume of cell and chemoattractant solution and *: data was 
obtained through direct correspondence with the author. 

5. Tregs Suppression Assay 

5.1. Choice of Responder T Cell 

In Tregs functional studies, conventional T cells (Tconv) is a term often used to describe T cells 
that do not exhibit the classical phenotype of Tregs and are predominantly derived from CD4 and 
CD8 T cells. Unlike Tregs, Tconv play significant roles in pro-inflammatory responses and are 
considered effector T cells  [2,66]. Tconv have been widely used as targets of Tregs suppression in 
several studies [35,65,67]. 

While the use of CD4 or CD8 Tconv as responder T cells in a Tregs suppression assay is 
researcher-dependent, allogeneic and autologous combinations of Tregs/Tconv must be carefully 
considered. Even though the use of autologous responder cells is presumed to be more 
physiologically suitable and avoids probable alloreactivity [33], they are not entirely without 
downsides. For instance, prior in vivo conditions, such as medications, the presence of other 
diseases, various metabolic and inflammatory factors and other unknown factors, may affect the 
replication of CD4+ and CD8+ T cells [33], leading to unsatisfactory results ex vivo. Secondly, 
autologous responder T cells isolated from patients who recently underwent immunosuppressive 
therapy will not be suitable for a Tregs suppression assay, as the responder cells may have been 
affected and be unable to divide irrespective of an ex vivo challenge with Tregs. Lastly, Tconv from 
patients with autoimmune diseases can develop resistance to Tregs suppression [6] as a result of 
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induced cell-intrinsic changes [68]. Thus, to avoid misleading results, it is crucial to address factors 
capable of influencing the normal division of responder T cells. 

Certain circumstances, like insufficient cell concentration and the need to debar bias from 
compromised responder T cells, might warrant the use of allogeneic responder cells from healthy 
individuals. When this option is resorted to, adequate standardization of the human Tregs 
suppression assay should be ensured, especially when Tregs functions from different patients are to 
be compared. It should be noted that responder T cells from different healthy donors may vary in 
their degree of response to stimulation and Tregs challenge [6]. 

5.2. Tregs/Tconv Ratio 

Another important consideration in a Tregs suppression assay is getting the Tregs/Tconv ratio 
right. Tconv can become unresponsive to Tregs suppression when the ratio of Tregs to Tconv is 
tilted in favor of Tconv cells [68]. As much as possible, attempts should be made to determine the 
most suitable Tregs/Tconv ratio for every sample type. We do not recommend the use of a single 
Tregs/Tconv ratio when human Tregs suppression is investigated in different samples, as an ideal 
ratio for one sample may not necessarily reflect an appropriate ratio in another sample. For example, 
at fixed cell concentrations, the suppression outcome of a 1:1 Tregs/Tconv coculture when the Tregs 
are highly ”potent” will differ from a situation when they are “less potent”. 

Other integral assay constituents should also be considered when determining the appropriate 
Tregs/Tcov ratio. For example, studies have shown that the use of soluble anti-CD3 stimulation or 
stimulation of T-cell receptors with lower concentrations of plate-bound anti-CD3 enhanced 
Tregs-mediated suppression of Tconv proliferation, as well as cytokine production, while robust 
TCR stimulation with plate-bound anti-CD3 favored the proliferation of Tconv in a coculture with 
Tregs [69,70]. In addition, co-stimulation with anti-CD28 enabled Tconv to resist Tregs suppression 
in a coculture [70–72]. Given that Tregs utilize different mechanisms in their functional roles [73–75], 
it is crucial to factor in the potential impact of stimulation conditions to the overall outcome of the 
assay. Lastly, to avoid bias from assay plates used to seed the selected ratios of Tregs/Tconv, the 
nature of the plate (U-, V- or F-bottom) should be carefully considered, and there should be 
consistency in usage, since the different plate types can influence the degree of cell interactions. 

5.3. Monitoring Suppression of Proliferation 

Thymidine incorporation and Carboxyfluorescein succinimidyl ester (CFSE) dilution are 
frequently used to appraise Tregs suppression of responder cells. It is crucial, however, to note the 
downsides associated with each of the methods. The use of 3H-thymidine incorporation depends on 
the premise that Tregs are anergic following in vitro stimulation with anti-CD3 monoclonal 
antibodies but responsive upon addition of IL-2, and they are therefore not expected to incorporate 
3H-thymidine in the absence of IL-2 [76,77]. However, as with in vivo proliferation of Tregs, IL-2 can 
also be supplied ex vivo by Tconv in a coculture with Tregs, consequently contributing to Tregs 
division [74,78]. Thus, it is pertinent to note this proliferative potential of Tregs when employing 
3H-thymidine incorporation in order to avoid underestimation of Tregs suppressive ability. 
Furthermore, including an analysis of cytokines produced by Tconv in the assay setup would help 
generate more significant data. Another drawback of thymidine incorporation is that the data of 
Tconv cellular division obtained is often generated towards the end of the whole assay, while it has 
been demonstrated that utmost suppression may occur within the starting hours of the interaction 
between Tregs and Tconv [67]. It would therefore be useful to add and pulse duplicate plates with 
3H-thymidine at 24-h intervals for the entire duration of incubation. 

While CFSE dilution helps to overcome some of the demerits of thymidine incorporation, 
difficulties with the resolution of CFSE peaks and the evaluation of results are a common challenge. 
The following points would be useful when employing CFSE: (a) To enhance the quality of CFSE 
peaks, doublets should be excluded from the gates, especially when cells are sourced from tissues. 
(b) In cases of poor CFSE peaks, it may be helpful to co-stain with Ki-67 in order to accurately locate 
the position of nondividing CFSE peaks of the responder cells. (c) CFSE-labeled cells are 
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light-sensitive; thus, exposure to light can significantly compromise the final readout of the assay. 
(d) Lastly, proliferation of responder cells alone (i.e., in the absence of Tregs) should be at least 20% 
to avoid overestimation of Tregs suppression [79]. 

 
Figure 2. Some notable pitfalls in ex vivo human regulatory T cell migration and suppression assays. 
Pitfalls related to: *: sample processing to obtain Tregs, †: migration assay, ‡: transendothelial 
migration assay, #: suppression assay and ¶: both migration and suppression assay. 

6. Concluding Remarks 

Studies of Tregs functions are ever burgeoning, and the promise of Tregs as potential targets for 
immunotherapy, especially in cancer and autoimmunity, is continually being explored. To bolster 
the remarkable discoveries and progress on Tregs functions, the reliability and reproducibility of 
results is invaluable. We have discussed how assay materials and experimental conditions could 
impact the outcome of Tregs migration and suppression assays and the need to be wary of 
generating results that may be misinterpreted or misleading. We also summarized some of the 
notable pitfalls (Figure 2). Differences in the types of assay plates, transwell inserts, cell 
concentrations and ratios and method of results evaluation, among other factors, often makes the 
comparison of outcomes from different studies herculean. Thus, providing explicit assay protocols 
and stating clearly any assumptions made when conducting these assays would significantly ease 
the reproducibility of results and enhance the accurate interpretation of data. 
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