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Abstract: Inhibitors of apoptosis (IAPs) are a family of proteins that regulate cell death and
inflammation. XIAP (X-linked IAP) is the only family member that suppresses apoptosis by directly
binding to and inhibiting caspases. On the other hand, cIAPs suppress the activation of the extrinsic
apoptotic pathway by preventing the formation of pro-apoptotic signaling complexes. IAPs are
negatively regulated by IAP-antagonist proteins such as Smac/Diablo and ARTS. ARTS can promote
apoptosis by binding and degrading XIAP via the ubiquitin proteasome-system (UPS). Smac can
induce the degradation of cIAPs but not XIAP. Many types of cancer overexpress IAPs, thus enabling
tumor cells to evade apoptosis. Therefore, IAPs, and in particular XIAP, have become attractive
targets for cancer therapy. In this review, we describe the differences in the mechanisms of action
between Smac and ARTS, and we summarize efforts to develop cancer therapies based on mimicking
Smac and ARTS. Several Smac-mimetic small molecules are currently under evaluation in clinical
trials. Initial efforts to develop ARTS-mimetics resulted in a novel class of compounds, which bind
and degrade XIAP but not cIAPs. Smac-mimetics can target tumors with high levels of cIAPs, whereas
ARTS-mimetics are expected to be effective for cancers with high levels of XIAP.
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1. Introduction

Apoptosis is a form of programmed cell death that is critical for normal development and
tissue homeostasis. Abnormal regulation of this process is associated with a wide variety of human
diseases, including immunological and developmental disorders, neurodegeneration, and cancer [1–3].
Apoptosis can be initiated by both extrinsic and intrinsic signals mostly centered in and from the
mitochondria [4,5]. The extrinsic apoptotic pathway is activated when apoptotic inducing ligands
such as Fas ligand (FasL) and tumor necrosis factor alpha (TNFα) engage with their receptors, such as
FAS receptor (CD95) and TNF receptor (TNFR), respectively [6]. The intrinsic pathway is induced by
internal apoptotic signals (such as DNA damage) but can also be activated following extrinsic stimuli to
enhance the death receptor apoptotic signals [7,8]. Both pathways are executed by activating caspases
(cysteine–aspartic proteases) through cleavage from their inactive zymogens [9–11]. Apoptotic caspases
are organized into “initiator caspases” (caspase-2, -8, -9, and -10) and effector caspases (caspase-3, -7,
and -6) [11–14]. Caspases 8 and 10 are cleaved primarily in response to extrinsic signals, while caspase-9
is activated in the intrinsic mitochondrial pathway. These enzymes act in a cascade that culminates in
cleavage of multiple cellular proteins, resulting in disassembly of the content of cells [10]. In living
cells, caspases are kept in check by inhibitors of apoptosis (IAP) proteins [15,16]. There are eight human
IAPs, namely X-linked-IAP (XIAP), cIAP1, cIAP2, ML-IAP, NAIP, ILP2, survivin, and Bruce. IAPs
contain between one to three baculoviral IAP repeats (BIR), which serve as protein–protein interaction
domains [9,10,17]. In addition, XIAP, cIAP1, cIAP2, ML-IAP, and ILP2 have an ubiquitin-associated
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(UBA) domain, which enables the binding of poly-ubiquitin conjugates, and a RING domain responsible
for E3-ligase activity [18–21]. The best-studied IAP is XIAP, which has three BIR domains. Its BIR3
domain binds directly to and inhibits caspase-9, while the linker region between the BIR1 and BIR2
domains is responsible for the inhibition of caspase-3 and 7 [22–24]. XIAP is the most potent member
of the IAP gene family in terms of its ability to directly inhibit caspases and suppress apoptosis [25].
Unlike XIAP, its two paralogs, cIAP1 and cIAP2, are not able to directly repress caspases [15,17]. cIAPs
can interact with TNF-associated factors (TRAFs) to prevent the formation of pro-apoptotic signaling
complexes in the extrinsic apoptotic pathways initiated by TNFR [26–29]. cIAPs affect cell survival
through both canonical and non-canonical NF-κB signaling [28,30–35]. The canonical NF-κB pathway
involves the assembly of a signaling complex comprised of TRADD, TRAF2, RIPK1, and cIAPs. cIAPs
induce a non-degradative ubiquitylation of RIPK1 as well as auto-ubiquitylation [26–29]. This leads to
activation of downstream pro-survival NF-κB signaling. Alternatively, survival is maintained through
the inhibition of the non-canonical pathway by cIAPs promoting proteasomal degradation of NIK
(NF-κB-inducing kinase) [26–35]. Notably, inactivation of individual cIAP genes yields viable mice
and causes no obvious defects in NF-κB signaling and TNFα induced cell death, presumably due
to redundant function [36,37]. Consistent with this idea, cIAP1/2 DKO mice die as embryos and
have a reduced response to TNFα that has been attributed to a defect in the amplification loop of the
TNFR pathway [38]. In contrast, although originally XIAP deficient mice were reported to have no
obvious phenotype, a later publication found that XIAP∆RING mutant mice develop lymphomas
and lymphoblastic leukemia [19,39]. In addition, inactivation of XIAP sensitizes certain types of stem
cells for apoptosis, including hair follicle stem cells of the skin and intestinal stem cells, and this is
associated with decreased wound healing [40,41]. Moreover, using gene-targeted mice, the loss of
XIAP or deletion of its RING domain lead to excessive cell death [42].

2. IAP-Antagonists, Smac/Diablo, and ARTS

IAPs are negatively regulated by IAP-antagonist proteins, such as Smac (second
mitochondrial-derived activator of caspases)/Diablo (from here forth will be referred to as Smac),
Omi/HtrA2, XAF1 (XIAP-associated factor 1), and ARTS (Apoptosis Related protein in the TGF-β
Signaling pathway) [43–50]. The name “ARTS” reflects the fact that this protein was originally
discovered in cells induced for apoptosis by TGF-beta [47]. Yet, we have found that ARTS acts
downstream of basically all apoptosis stimuli tested, such as treatment with STS (staurosporine),
etoposide, arabinoside (Ara-c), nocadosole, UV radiation, TNF-α, etc. [47,51,52]. Smac and Omi/HtrA2
contain a conserved four amino acid domain (AVPI/F) that was first described in the Drosophila
IAP-antagonists reaper, hid, and grim, later termed IBM (IAP-binding motif) [53–56]. Genetic and
biochemical characterization of reaper, hid, grim, and Diap1 (Drosophila IAP1) provided the first evidence
for the critical physiological role of IAPs and their antagonists in regulating apoptosis [55,57–60].
In this review, we will concentrate on Smac and ARTS (Table 1), which represent the two major types
of IAP-antagonists, with a focus on developing small-molecule mimetics of these IAP-antagonists
for cancer therapy. Smac is localized at the inner membrane space of mitochondria [43,44,61].
Upon apoptotic induction and mitochondrial outer membrane permeabilization (MOMP), Smac, and
cytochrome C (Cyto c) are released into the cytosol from the mitochondrial inner membrane space.
Cyto c together with APAF-1 and pro-caspase-9, then form the "apoptosome" complex which cleaves
and activates caspase-9 [62]. Smac binds to the caspase-9 pocket in BIR3 domain of XIAP via its IBM,
resulting in the release of XIAP-bound-caspases [43,63–65]. Importantly, the release of Smac from the
mitochondria is caspase dependent [63,66–68]. This indicates that caspases are activated upstream
of MOMP, and the release of Smac and Cyto c from mitochondria [67,69]. Smac binds to cIAP1,
cIAP2, and XIAP, yet it only induces the ubiquitylation and degradation of cIAPs but not XIAP [70,71].
There are two possible interpretations for the binding of Smac to XIAP. The prevailing theory is that
Smac antagonizes XIAP. On the other hand, Smac may be a substrate for XIAP-mediated degradation.
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Consistent with this idea, it has been reported that XIAP can degrade Smac and thereby attenuate
apoptosis [72].

Interestingly, Smac over-expression alone, without any additional apoptotic stimuli, does not
cause either apoptosis or induction of caspase activity [43]. Moreover, Smac KO mice developed
normally and did not exhibit any obvious macroscopic or microscopic abnormalities [73]. Aged mice
(more than 12 months of age) did not show any sign of anomalies, such as autoimmune disease or
tumor formation [73]. Notably, Smac KO cells were resistant to apoptosis induced by NSAIDs and
TRAIL, yet treatment with other agents did not significantly affect these cells [74]. Furthermore, loss of
Smac in mice led to elevated levels of cIAP1 and cIAP2 [74,75]. Yet expression levels of XIAP remained
intact in Smac KO cells [63] (summarized in Table 1). These data imply that Smac is required for the
inhibition of cIAPs but not XIAP in vivo and suggest the existence of a redundant molecule/s capable
of compensating for the loss of Smac function [73,74].

ARTS (Sept4_i2) is a splice variant derived from the Sept4 (Septin 4) gene, and the only splice variant
that functions as a pro-apoptotic protein [76]. ARTS is a tumor-suppressor protein that is localized at
the mitochondrial outer membrane (MOM) [69]. Upon apoptotic stimuli, ARTS rapidly translocates to
the cytosol in a caspase-independent manner and antagonizes XIAP [50,69]. ARTS binds directly to the
XIAP/BIR3 domain but in a way distinct from Smac. ARTS does not contain a canonical IBM; instead,
it binds to XIAP/BIR3 using unique sequences found at its C-terminus [50,77,78]. Moreover, ARTS
binds to specific sequences within XIAP/BIR3, which are not interacting with Smac. Therefore, the
binding sites of ARTS and Smac within BIR3/XIAP are proximate but do not overlap [77,79]. Moreover,
ARTS also binds to the UBA domain and has contact points in the BIR1 and BIR2 domains of XIAP [80].
Importantly, ARTS is the only IAP-antagonist that can induce degradation of XIAP through the ubiquitin
proteasome-system (UPS) [67,69,80]. ARTS promotes the auto-ubiquitylation and degradation of
XIAP in addition to serving as an adaptor bringing the E3-ligase Siah to stimulate the degradation of
XIAP [80]. Moreover, ARTS acts as a scaffold by bringing XIAP with its E3-ligase activity, into close
proximity with Bcl-2, promoting UPS-mediated- degradation of Bcl-2 (Figure 1) [67]. Thus, ARTS
functions as a dual antagonist of both XIAP and Bcl-2 to initiate MOMP and apoptosis. Furthermore,
the translocation of ARTS from the mitochondrial outer membrane (MOM) to the cytosol precedes
MOMP and the release of Cyto c and Smac, and is required for it [67,69]. The localization of ARTS at the
MOM, facilitates its rapid translocation to the cytosol and binding to XIAP, minutes following apoptotic
stimuli [69]. The direct binding of ARTS to XIAP enables de-repression of caspases which are required
for MOMP, and the subsequent release of Cyto c and Smac [63,66–69,81–84]. We termed this pre-MOMP
stage of releasing active caspases from their inhibition by XIAP, the initiation phase (Figure 1). This
initial de-repression of non-lethal active caspases from XIAP can now mediate the cleavage of protein
substrates, such as Bid, and possibly other pro-apoptotic Bcl-2 family members, which are known to
promote MOMP (Figure 1) [69]. The process of MOMP allows the release of Cyto c and Smac from the
inner membrane space of the mitochondria. This will now promote further amplification of caspase
activation through formation of the apoptosome complex, and Smac antagonizing IAPs. We termed
this stage the amplification stage (Figure 1). ARTS-deficient cells exhibit a significant inhibition in
MOMP and delayed release of both Smac and Cyto c [69]. Thus, ARTS acts upstream of mitochondria to
initiate caspase activity, which is important for the proper execution of mitochondrial outer-membrane
permeabilization (MOMP) (Figure 1).

Over-expression of ARTS alone is sufficient to induce cell death in a variety of cultured cancer cell
lines in addition to increasing the susceptibility of cells toward apoptotic inducers [47,52]. Human and
mice studies have shown that ARTS functions as a potent tumor suppressor protein. ARTS expression
is lost in more than 70% of acute lymphoblastic leukemia (ALL) patients [51], in 50% of lymphoma
patients [85], and in a significant fraction of hepatocellular carcinoma (HCC) patients. Studies using
Sept4/ARTS-null mice showed that ARTS is a physiological antagonist of XIAP in vivo. In particular,
Sept4/ARTS null mice have increased numbers of hematopoietic stem and progenitor cells (HSPCs),
which are resistant to apoptosis [85]. Deletion of Sept4/ARTS equips the intestinal stem cells (ISCs) niche
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with increased resistance against apoptosis [41]. In addition, Sept4/ARTS deficient mice have elevated
numbers of hair follicle stem cells (HFSCs) that are protected against apoptosis and display marked
improvement in wound healing and regeneration of hair follicles [40]. These mice exhibit spontaneous
accelerated tumor development and elevated XIAP levels [40,41,85,86]. These data suggest that the
pro-apoptotic function of ARTS as an XIAP-antagonist along with its function in stem cells may serve
to inhibit the emergence of cancer [86]. Moreover, the resistance of Sept4/ARTS-null hematopoietic stem
and progenitor cells (HSPCs) to apoptosis and the cell-autonomous lymphoproliferation is suppressed
by the loss of XIAP function in Sept4/ARTS/XIAP double-knockout mice [75]. Collectively, these results
demonstrate the important physiological role of ARTS in regulating apoptosis and tumor suppressor
in vivo through its role as a specific XIAP-antagonist (Table 1). A detailed comparison of the features
of Smac and ARTS is shown in (Table 1).
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released from the inner membrane space of the mitochondria into the cytosol. This further stimulates 
the activation of caspases, and contributes to a cascade of caspase activation-amplification loop. Smac 
binds to XIAP and promote degradation of cIAPs which results in caspase activation. cIAPs also 
interact with TRAF and help activate the TNFR signaling pathway. B. Extrinsic pathway: Death 
ligands binding to death receptors cause the activation of caspases and cell death. The extrinsic and 
intrinsic pathways crosstalk via caspase-induced-cleavage of BID. Truncated Bid (tBID) promotes 
MOMP and further activation of caspases leading to apoptosis. Figures were generated using 
biorender.com. 
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Figure 1. Schematic representation of the role of ARTS and Smac in induction of apoptosis. A. Intrinsic
mitochondrial pathway: Initiation phase: Upon induction of apoptosis, ARTS binds directly to XIAP and
brings it into a ternary complex with Bcl-2. This stimulates ubiquitin-proteasome-mediated degradation
of Bcl-2 and XIAP resulting in de-repression of pre-apoptosome active caspases. Amplification
phase: According to this model, non-lethal amounts of active caspases, cleave Bid (and possibly other
pro-apoptotic Bcl-2 family members) and promote mitochondrial outer membrane permeabilization
MOMP). During MOMP, Smac/Diablo (Smac) and cytochrome c (Cyto c) are released from the inner
membrane space of the mitochondria into the cytosol. This further stimulates the activation of caspases,
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and contributes to a cascade of caspase activation-amplification loop. Smac binds to XIAP and promote
degradation of cIAPs which results in caspase activation. cIAPs also interact with TRAF and help
activate the TNFR signaling pathway. B. Extrinsic pathway: Death ligands binding to death receptors
cause the activation of caspases and cell death. The extrinsic and intrinsic pathways crosstalk via
caspase-induced-cleavage of BID. Truncated Bid (tBID) promotes MOMP and further activation of
caspases leading to apoptosis. Figures were generated using biorender.com.

Table 1. Comparison of the two IAP-antagonists Smac and ARTS.

Criteria ARTS Smac

Sub-cellular localization Mitochondrial outer-membrane [47] Mitochondrial inner membrane
space [43]

Requirement for MOMP Acts upstream of MOMP [69]. Acts downstream of MOMP
[43,63]

Translocation/release from
mitochondria to the cytosol

Caspase-independent, occurs within
minutes after apoptotic stimuli [69]

Caspase-dependent, occurs hours
after apoptotic stimuli [63]

Binding to BIR3/XIAP X [78] X [43]

Different binding sites within
BIR3/XIAP BIR3/XIAP (aa 272–292) [78,87]

BIR3/XIAP (aa Leu307,
Trp310,Glu314,Trp323, Gly306)

[43,56]

Containing different binding
sequences to XIAP

Contains a unique C-terminal
sequence (AIBM) [78,87]

Contains an IBM (AVPI/F)
sequence [43,63,88]

Degradation of XIAP via the
ubiquitin proteasome-system X [67] X [71]

Degradation of cIAPs via the
ubiquitin proteasome-system X [67,77] X [71]

Over-expression phenotype
Sufficient to induce apoptotic cell
death in a variety of cultured cell

lines [52,69]

Enhances apoptosis in
combination with additional

apoptotic stimuli [43].

Knockout (KO) mouse
phenotype

Sept4/ARTS deficiency promotes
spontaneous tumorigenesis.

Sept4/ARTS KO mice develop
various types of tumors, mainly
lymphoma and leukemia [51,85].
MOMP and the release of Cyto
c/Smac from mitochondria are

delayed in Sept4/ARTS KO cells [69].
Sept4/ARTS KO mice contain

elevated XIAP levels [86].
Sept4/ARTS KO mice have increased

numbers of stem and progenitor
cells, which are resistant to

apoptosis [40,41,85,86].
The resistance of Sept4/ARTS-null

hematopoietic stem and progenitor
cells (HSPCs) to apoptosis and the

cell-autonomous
lymphoproliferation is suppressed

by the loss of XIAP function in
Sept4/ARTS/XIAP double-knockout

mice [75].

Smac deficiency does not cause
spontaneous tumorigenesis

[73–75].

Knockout mice have no detectable
apoptotic defects in vivo [73,74].

Loss of Smac in mice led to
elevated levels of cIAP1 and cIAP2
and XIAP expression levels remain

intact in Smac KO cells [74,75].
Smac-KO cells were resistant to

apoptosis induced by NSAIDs and
TRAIL [74].

The differences between the two IAP-antagonists, ARTS and Smac, are summarized in Table 1.
These data indicate that Smac functions as a more specialized cIAP- antagonist, significantly effecting the
TNFα (tumor necrosis factor)/TRAIL pathway, whereas ARTS acts as a physiological XIAP- antagonist.
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3. Targeting XIAP for Cancer Therapy; Developing Smac and ARTS Small Molecule Mimetics

Many tumors over-express XIAP and cIAP1, thereby allowing cancer cells to escape apoptosis [3,
89,90]. XIAP is overexpressed in leukemia, lung, colon, melanoma, ovarian, bladder, renal, breast,
prostate, and thyroid carcinomas [91–93]. cIAP1 is over-expressed in colon, bladder carcinomas,
and cervical B-cell chronic lymphocytic leukemia [91,93]. Therefore, XIAP and cIAPs have become
attractive targets for cancer therapy [45,51,88,94]. Most of the efforts to target IAPs were focused
on developing Smac (IBM) mimetics [64,65,95–99]. Here we will review the progress in developing
Smac-based IAP-antagonists, and the initial efforts to develop ARTS-based small-molecule mimetics.
In recent years, intense efforts were made to target IAPs and in particular XIAP for cancer therapy.
Most approaches have focused on derivatives of the IBM tetra-peptide, but anti-sense oligonucleotides
(ASO) have been generated as well [97,100]. AEG35156 is an ASO that was designed to bind to
XIAP with maximal stability and potency. AEG35156 has an acceptable safety profile with some
signs of anti-cancer activity. However, treatment was limited to only two cycles in average due to
the appearance of transaminitis (liver toxicity). Furthermore, the combination of AEG35156 with
different standard-of-care cytotoxic agents caused a reversible peripheral neuropathy [101]. Therefore,
more studies are needed to define appropriate indications and drug combinations for AEG35156
therapy [101,102]. Small-molecule Smac mimetics were based on the conserved IBM (AVPI/F) of
natural IAP-antagonists that is found in reaper, hid and grim, Smac and Omi [54,55,57,58,64,95,96].
Smac mimetic (SM) small molecules were initially designed to bind and inhibit XIAP [53,98,103–105].
However, these compounds turned out to be primarily active against cIAPs (Figure 2A) [28,99,106,107].
There are two types of Smac mimetics, monovalent and bivalent. The monovalent compounds utilize a
single AVPI binding motif to bind IAP proteins, while the bivalent compound has two AVPI binding
motifs linked together through a linker. The bivalent Smac mimetics are 100–1000 times more potent
than the monovalent Smac mimetic, and the ability of bivalent compounds to bind both BIR2 and BIR3
of XIAP provide better inhibition of XIAP [97,108]. Significantly, both monovalent and bivalent Smac
mimetics induce proteasomal degradation of cIAPs but not XIAP [71,109,110]. Degradation of cIAPs by
Smac mimetics inhibit the NF-κB canonical pathway by preventing ubiquitylation of RIPK1 by cIAPs.
This leads to the formation of a complex containing RIPK1, caspase 8 and FADD, which promotes
apoptosis (Figure 2A) [31,32,111,112]. In addition, the depletion of cIAPs by Smac mimetics results in
stabilization of NIK (NF-κB inducing kinase) and constitutively activates the non-canonical NF-κB
signaling pathway [28,30–35]. This results in the expression of NF-kB target genes, such as TNFα
which induces the formation complex II which induces apoptosis (Figure 2A) [110,113–117]. However,
in cells expressing high levels of RIPK3, RIPK3 is recruited to the RIPK1, caspase-8 and FADD complex
to induce necroptosis (Figure 2A) [109,118–122]. Furthermore, in certain cancer cells the absence of
XIAP, cIAPs, death receptor stimulation, and treatment with Smac mimetics results in formation of a
ripoptosome complex. This ripotosome complex contains FADD, Caspase 8, and RIPK1/3 inducing
either apoptosis or necroptosis depending on RIPK3 levels [114,123–127]. In particular, Smac mimetic
compounds SM130 and SM114 are selective for degradation of cIAP1 with reduced binding affinity
for XIAP [99]. Birinapant (TL32711) is a bivalent compound that displays preferential binding to
cIAP1 relative to cIAP2 and XIAP, which is currently being tested in clinical trials [128–131]. It is
a potent IAP-inhibitor and was well-tolerated at doses that sustained target inhibition [91,128,132].
The mechanism by which Smac mimetics (BV6, MV1) induce the degradation of cIAPs is through
inducing a conformational change in cIAPs that causes their ubiquitylation and degradation [28,133].
However, most cancer cell lines tested were resistant to the treatment of Smac mimetic [113,134,135].
To overcome the resistance of these cancers to anti-tumorigenic drugs, combination therapies with
other anticancer drugs are being explored [136–138]. Some studies have reported accelerated disease
growth after treatment with the monovalent Smac mimetic LCL161 in a lymphoma mouse model,
and a cytokine release syndrome that showed an increased TNFα levels in patients treated with
LCL161 [139,140]. These observations raise the important question whether Smac-mimetics exert their
effects through apoptosis, inflammation, or necroptosis [122,141,142].
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Figure 2. Models for Smac-mimetic (SM) and ARTS-mimetic (AM) mode of action. (A) Smac-mimetic
(SM) mode of action. Treatment with Smac mimetics inhibits the NF-κB canonical pathway (right) by
binding and degrading cIAPs. This prevents the ubiquitylation of RIPK1 (non-degradative, brown
Ub) and leads to the formation of a complex containing RIPK1, caspase 8, and FADD, which promotes
apoptosis. In addition, Smac mimetics-induced-degradation of cIAPs prevent the degradation of NIK
(NF-κB inducing kinase), which in turn stabilizes NIK and activates the non-canonical NF-κB pathway
(left). The stabilized NIK phosphorylates IKKα, which in turn phosphorylates p100 and generates
the p52 protein. RelB-p52 heterodimers then translocate to the nucleus and activate the expression of
NF-kB pro-apoptotic target genes. NF-kB-mediated-induction of TNFα results in activation of the TNF-
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receptor (TNFR) extrinsic pathway. This activation induces formation of the complex containing RIPK1,
caspase-8, and FADD, which promotes apoptosis. Cells expressing high levels of RIPK3 undergo
necroptosis. Smac mimetics can also bind XIAP and hence may contribute to de-repression of caspases
to induce apoptosis. Figures were generated using biorender.com. (B) ARTS-mimetics (AM) mode of
action. AM bind XIAP, which may induce an allosteric conformational change resulting in activation
of XIAP E3 ligase activity. This leads to auto-ubiquitylation and proteasomal degradation of XIAP.
In addition, the XIAP-AM complex can bring XIAP into close proximity with Bcl-2 which allows its
ubiquitylation and proteasome-mediated degradation leading to apoptosis. Figures were generated
using biorender.com.

The current small molecule IAP antagonists bind and degrade cIAPs while binding XIAP with
lower affinity [99,128–131]. A major unmet goal of the pharmaceutical industry is therefore, to develop
potent and specific small molecules that selectively degrade XIAP [87,143]. To address this need,
we generated small-molecule ARTS-mimetics that can bind directly to the unique sequence of ARTS
in the BIR3 domain of XIAP, but not to cIAPs. These compounds promote XIAP ubiquitylation and
degradation via the UPS (Figure 2B) [79].

We previously showed that small peptides encompassing the binding site of ARTS to XIAP
can promote cell death in cancer cells [78,144]. This provides proof-of-concept that mimicking the
function of ARTS to antagonize XIAP can promote apoptosis. Next, we performed a structure-based
computational screen analyzing 600,000 compounds to identify candidates predicted to bind the unique
binding pocket for ARTS in XIAP/BIR3 (performed by BioSolveIt Ltd.). We identified 100 molecules
with highest affinity scores of docking to the unique binding site of ARTS in BIR3/XIAP. We then
synthesized and tested several compounds for their ability to degrade XIAP and promote apoptosis.
The small-molecule ARTS mimetics can degrade XIAP and induce apoptosis, as shown by its ability to
promote caspase-3 cleavage and PARP cleavage in A375 melanoma and in T-ALL Jurkat cell lines [79].
Some ARTS-mimetics can directly bind to BIR3/XIAP and promote the degradation of XIAP, but not
cIAP1 [79]. Moreover, overexpression of XIAP reduced the effect of ARTS mimetics, suggesting that
XIAP is the main target of this ARTS mimetic small molecule [79]. ARTS mimetics decrease XIAP
and Bcl-2 levels in Sept4/ARTS-null MEFs, indicating that they act similar to ARTS [79]. Furthermore,
both ARTS and Smac proteins serve as substrates of XIAP [87,145]. ARTS mimetics directly bind and
degrade XIAP. It is expected that ARTS-mimetics increase levels of XIAP-substrates, such as ARTS and
Smac themselves, and thereby amplify the efficacy of ARTS-mimetics for cancer cell killing.

These ARTS mimetics provide the basis for developing a new class of specific XIAP-antagonist,
which can potently antagonize XIAP by degrading it. Degrading XIAP, as opposed to allosteric
inhibition, should require smaller amounts of drugs to promote tumor killing. Moreover, this may
facilitate the development of compounds with reduced systemic load and less unspecific cytotoxic
effects [143].

In conclusion, IAPs are promising targets for cancer therapy since many types of cancer exhibit
high levels of IAPs to evade cell death. Here we compare two main antagonists of IAPs, namely Smac
and ARTS, and discuss their distinct properties, mode of action, and function. These data indicate
that Smac functions as a more specialized cIAPs antagonist, significantly effecting the TNFα/TRAIL
pathway, whereas ARTS functions as a tumor suppressor protein (studied in human patients and
Sept4/ARTS KO mice) and acts as a physiological XIAP antagonist. Therefore, Smac-mimetics can be
primarily useful for targeting tumors with high levels of cIAPs, whereas ARTS-mimetics are expected
to be effective against cancers with high levels of XIAP.
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