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Abstract: Metastasis is the primary cause of cancer-related mortality. Cancer cells primarily
metastasize via blood and lymphatic vessels to colonize lymph nodes and distant organs, leading to
worse prognosis. Thus, strategies to limit blood and lymphatic spread of cancer have been a focal
point of cancer research for several decades. Resistance to FDA-approved anti-angiogenic therapies
designed to limit blood vessel growth has emerged as a significant clinical challenge. However,
there are no FDA-approved drugs that target tumor lymphangiogenesis, despite the consequences
of metastasis through the lymphatic system. This review highlights several of the key resistance
mechanisms to anti-angiogenic therapy and potential challenges facing anti-lymphangiogenic therapy.
Blood and lymphatic vessels are more than just conduits for nutrient, fluid, and cancer cell transport.
Recent studies have elucidated how these vasculatures often regulate immune responses. Vessels that
are abnormal or compromised by tumor cells can lead to immunosuppression. Therapies designed
to improve lymphatic vessel function while limiting metastasis may represent a viable approach to
enhance immunotherapy and limit cancer progression.
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1. Introduction

Angiogenesis, the development of new blood vessels, is a feature of many solid cancers [1].
Recruitment of blood vessels is critical to support tumor growth past 1–2 mm in diameter [2]. Vascular
endothelial growth factor-A (VEGF-A) is the most comprehensively studied and perhaps potent
mediator of sprouting angiogenesis. Through binding to VEGFR-2 vascular endothelial growth
factor receptor-2 (VEGFR-2)/human kinase insert domain receptor, VEGF-A triggers activation of
VEGFR-2 and intracellular signaling mediators that promote endothelial cell proliferation, migration,
and survival, as well as vascular permeability and ultimately neovascularization [3]. New blood
vessels not only deliver nutrients and oxygen to growing tumors but also provide a route of cancer
cell exit to distant organs [4]. Many preclinical models using anti-angiogenesis therapies blocking
VEGF-A signaling have broadly prohibited or slowed tumor growth and reduced metastatic spread.
There are over 20 drugs with anti-angiogenic activity approved by the FDA for cancer indications [5],
with Avastin—humanized anti-VEGF-A monoclonal antibody—being the first granted approval in
2004. Hundreds of clinical trials for multiple solid cancers targeting VEGF-A alone or in combination
with other therapies have been initiated. However, despite the growing list of FDA approvals,
anti-angiogenesis drugs have had a modest impact on patient survival. For example, Avastin only
adds a 4–5 month survival benefit in patients with advanced colorectal cancer [6]. Such discrepancies
between mouse and human provide the impetus for understanding the molecular and cellular resistance
mechanisms of anti-angiogenic therapy.
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Lymphangiogenesis also occurs in many preclinical cancer models and in some human cancers
mainly through the production of vascular endothelial growth factor-C (VEGF-C) and VEGF-D, which
signal through VEGFR-2 and VEGFR-3 and drive lymphatic endothelial cell (LEC) proliferation,
migration, and survival [3]. Unlike inhibiting angiogenesis, blunting lymphangiogenesis—the
formation of new lymphatic vessels—has mixed results on primary tumor growth in preclinical
models [7–9], mainly indirectly due to modulation of the anti-tumor immune response. Several drugs
that inhibit VEGFR-3 have been used for cancer indications [10] and overlap exists between the targets
of anti-angiogenesis drugs and molecules on lymphatic vessels [11]. Recently, an early stage clinical trial
targeting VEGFR-3 was completed, but showed minimal efficacy against tumor growth [12]. However,
lymphatic vessels provide a major route for cancer cell dissemination. The expression of VEGF-C
and VEGF-D correlates with increased metastasis, invasion, and poor prognosis in several types of
cancer [13], in part due to tumor-associated lymphangiogenesis. After invading initial lymphatic
capillaries, cancer cells migrate through collecting lymphatic vessels and enter regional lymph nodes,
where they form secondary tumors. A fraction of nodal metastases can then exit lymph nodes and
spread to distant sites [14,15]. The majority of cancer patients die from distant metastasis [16] and thus
treating metastatic disease remains a challenging clinical problem. Since most cancer cells need to access
the primary or secondary tumor vasculature to metastasize, inhibiting the growth of tumor-associated
vasculature remains an attractive therapeutic strategy.

Bergers and Hanahan [17] describe how tumor cells adapt to anti-angiogenic treatment or are
intrinsically resistant to such therapy. Over the past decade, additional experimental data have shed
light on anti-angiogenesis resistance mechanisms. Here, we review evidence that suggests targeting
tumor-associated lymphatic vessels poses similar challenges as targeting tumor blood vessels.

2. Timing

Primary tumor lymphangiogenesis is an early event in cancer progression and may present a
narrow window of therapeutic intervention. Unfortunately, about a third of breast, colorectal, and lung
cancer patients are lymph node positive at diagnosis [18,19], missing an opportunity to block initial
lymphangiogenesis in these patients. In addition to the primary site, lymphangiogenesis also occurs
in metastatic organs. In many preclinical studies, lymphangiogenesis can occur in regional lymph
nodes and distant organs before metastases have occurred and is thought to create a “lymphovascular
niche” that creates a favorable environment for disseminated cells [20]. VEGFR-3 reporter mice
revealed lymphangiogenesis in lymph nodes, liver, lungs, and spleens of tumor-bearing mice [21]
before metastatic spread. High lymphatic density and lymphatic invasion in metastatic lungs was
associated with poor outcome of melanoma patients [22]. Blocking pro-lymphangiogenic VEGF-C
signaling after cancer cell colonization of tumor-draining lymph nodes prevented further spread to
lungs [23] and inhibiting lymphangiogenesis in distant organs may prevent further dissemination of
metastatic cells. However, validated biomarkers predictive of lymphangiogenesis are lacking.

3. Target

VEGF-A mediates traditional sprouting angiogenesis, while VEGF-C is a critical regulator of
lymphangiogenesis. However, over 40 molecules other than VEGF have been shown to play a role
in blood vessel growth [24], illustrating the complexity of inhibiting angiogenesis where alternative
angiogenic pathways exist. Likewise, the formation of postnatal lymphatic vessels is not limited to
VEGF-C dependent mechanisms. Many factors other than VEGF-C have been shown to stimulate
lymphangiogenesis. These include other growth factors, cytokines, hormones, proteins, and peptides,
many of which induce lymphangiogenesis independently of VEGFR-3 signaling [25,26]. Together,
these data suggest that neutralizing VEGF-C alone may lead to drug resistance facilitated by alternative
pro-lymphangiogenic molecules.
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In addition to multiple growth factor pathways that are activated and promote vascular sprouting in
the tumor microenvironment, molecular crosstalk exists between the blood and lymphatic endothelium.
VEGFR-2, a key transducer of angiogenic signaling, is expressed on LECs as well as blood endothelial
cells. Likewise, VEGFR-3 is expressed on lymphatic endothelium and also on the endothelium of tumor
blood vessels [27]. In a reversal of traditional functions, VEGF-A can promote lymphangiogenesis
while VEGF-C stimulates tumor angiogenesis [28]. Neutralization of VEGF-A signaling reduced
lymphangiogenesis in models of inflammation and tumor growth [3,29,30]. It is unclear whether
histological samples from patients treated with anti-angiogenic therapy have been comprehensively
evaluated to assess an effect on tumor-associated lymphatic vessels.

4. Metastasis Independent of Lymphatic Endothelial Cell Sprouting

One mechanism that accounts for tumor resistance to anti-angiogenic therapy is blood vessel
co-option, where tumors utilize pre-existing blood vessels from the surrounding tissue for nutrients.
Highly vascularized tissues such as lymph nodes, where up to 10% of the organ volume is blood
vessels [31], are thought to be conducive to blood vessel co-option by tumors [32]. En route to co-opting
local vessels, some cancer cells exhibit a replacement pattern [33]; in this case cancer cells replace
normal tissue but spare blood vessels. Peritumoral lymphatic vessel density is often significantly
higher than intratumoral lymphatic vessel density [34]. In fact, intratumoral lymphatic vessels are
often absent [35], suggesting that cancer growth can be destructive to intratumoral lymphatic vessels.
Although lymphangiogenesis is found in pre-metastatic tumor draining lymph nodes, we measured
a reduction in lymphatic vessel density within metastatic lymph nodes relative to pre-metastatic
nodes [32].

Lymphatic vessel density around the primary tumor and lymphatic vessel invasion are predictors
of lymph node metastasis and poor prognosis [36]. However, tumor lymphangiogenesis may be
cancer and subtype-specific [7]. Proliferating tumor-associated lymphatic vessels were identified
in human squamous cell carcinoma and melanoma [37,38]. In contrast, despite human data and
numerous preclinical models that show lymphangiogenesis promotes lymphatic metastasis, analyses
of human breast, prostate, and esophageal cancer tissue suggest that cancer cells can invade existing
lymphatic vessels (Figure 1) rather than induce proliferation [39–43]. The prognostic significance of
lymphangiogenesis in triple negative breast cancer is unclear, yet lymphatic invasion is associated
with poor prognosis [44]. Thus, there is still debate as to whether lymphangiogenesis is a pre-requisite
for lymphatic metastasis. Tumors that develop in tissues with a dense lymphatic vascular network
may exploit pre-existing lymphatic vessels for invasion and metastasis.

Other mechanisms of tumor blood vessel vascularization include intussusception, endothelial
progenitor cell-mediated vasculogenesis, vascular mimicry by cancer cells, and differentiation of
cancer stem cells into endothelial cells [1,45]. Similarly, lymphatic beds may consist of LECs derived
from heterogeneous sources. Recent findings [46] show that the level of circulating myeloid derived
lymphatic endothelial progenitor cells, as determined by co-staining of myeloid and LEC markers,
strongly correlate with lymphatic metastasis in breast cancer patients. These progenitor cells were
shown to incorporate into lymphatic vessels in human and mouse tumors (Figure 1). While there is
debate concerning the extent of the contribution of bone marrow derived cells to lymphangiogenesis,
these recent studies add to existing data showing that certain populations of bone marrow cells express
LEC markers and can function as putative LEC progenitors in pathologic settings such as corneal and
kidney transplantation, wound injury, and tumor progression [47–51].
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Figure 1. Metastasis via tumor-associated lymphatic vessels. (a) Tumor cells express chemokine 
receptors (e.g., CXCR4, CCR7) which bind chemokines produced by lymphatic endothelium (e.g., 
CXCL12, CCL21). Lymphatic vessel-derived CCL21 attracts cancer cells that can enter initial 
lymphatic vessels through interendothelial cell gaps. (b) Cancer cells and tumor-associated 
macrophages secrete pro-lymphangiogenic factors such as VEGF-C, leading to an increase initial 
lymphatic vessel density and collecting lymphatic vessel diameter. In addition, VEGF-C upregulates 
CCL21 and increases lymphatic vessel permeability, resulting in enhanced lymphatic metastasis. Of 
note, bone marrow derived cells can closely associate with or incorporate into lymphatic vessels. 

5. Cancer Cells Use Existing Migratory Cues 

A physiological function of lymphatic vessels is to provide chemical signals, or chemokines, for 
immune cell migration. In addition, many cancer cells overexpress chemokine receptors [52] that 
allow them to migrate toward lymphatic capillaries, employing the same chemoattraction 
mechanism used by dendritic cells and T cells. An example is high expression of CCR7 found in 
various human cancer cells [53–55]. C–C chemokine ligand 21 (CCL21), the ligand for CCR7, is 
constitutively expressed by lymphatic vessels and in secondary lymphoid organs [56] and can be 
upregulated in response to increased lymphatic flow and inflammatory stimuli [57]. Likewise, 
lymphatic vessel derived CXCL12 in physiological systems directs dendritic cell migration to lymph 
nodes [58]. Lymphatic vessels can attract CXCR4-expressing tumor cells to promote lymphatic 
metastasis [59], and CXCR4 expression is also associated with lymphatic metastasis [60]. 
Lymphangiogenic signaling can enhance chemokine-driven metastasis, but it appears that tumor 
cells can independently “hijack” host mechanisms of leukocyte trafficking to facilitate metastasis 
(Figure 1). 

6. Myeloid Cell Recruitment 

Tumor-associated macrophages (TAMs) are an abundant population in preclinical cancer 
models and human tumors [61]. Pro-angiogenic monocytes recruited from the bone marrow promote 
tumor vascularization, growth, and cause resistance to therapy [17]. TAMs are also associated with 
high lymphatic vessel density and lymphatic metastasis (Figure 1). Macrophages may contribute 
directly to the lymphatic vasculature through transdifferentiation [49], progenitor differentiation 
[46], and vascular mimicry [62,63] or indirectly by secretion of pro-lymphangiogenic factors [64]. 
VEGF-C acts as a chemotactic factor for VEGFR-3 expressing macrophages [65]. In response to 
paclitaxel, VEGFR-3+ macrophages were recruited to breast and lung tumors and mediated 
chemotherapy resistance by enhancing VEGF-C production that stimulated lymphangiogenesis [66]. 
Surprisingly, an anti-VEGFR-3 antibody alone did not reduce tumor volume, VEGF-C expression, or 

Figure 1. Metastasis via tumor-associated lymphatic vessels. (a) Tumor cells express chemokine
receptors (e.g., CXCR4, CCR7) which bind chemokines produced by lymphatic endothelium
(e.g., CXCL12, CCL21). Lymphatic vessel-derived CCL21 attracts cancer cells that can enter initial
lymphatic vessels through interendothelial cell gaps. (b) Cancer cells and tumor-associated macrophages
secrete pro-lymphangiogenic factors such as VEGF-C, leading to an increase initial lymphatic vessel
density and collecting lymphatic vessel diameter. In addition, VEGF-C upregulates CCL21 and increases
lymphatic vessel permeability, resulting in enhanced lymphatic metastasis. Of note, bone marrow
derived cells can closely associate with or incorporate into lymphatic vessels.

5. Cancer Cells Use Existing Migratory Cues

A physiological function of lymphatic vessels is to provide chemical signals, or chemokines,
for immune cell migration. In addition, many cancer cells overexpress chemokine receptors [52] that
allow them to migrate toward lymphatic capillaries, employing the same chemoattraction mechanism
used by dendritic cells and T cells. An example is high expression of CCR7 found in various human
cancer cells [53–55]. C–C chemokine ligand 21 (CCL21), the ligand for CCR7, is constitutively expressed
by lymphatic vessels and in secondary lymphoid organs [56] and can be upregulated in response to
increased lymphatic flow and inflammatory stimuli [57]. Likewise, lymphatic vessel derived CXCL12 in
physiological systems directs dendritic cell migration to lymph nodes [58]. Lymphatic vessels can attract
CXCR4-expressing tumor cells to promote lymphatic metastasis [59], and CXCR4 expression is also
associated with lymphatic metastasis [60]. Lymphangiogenic signaling can enhance chemokine-driven
metastasis, but it appears that tumor cells can independently “hijack” host mechanisms of leukocyte
trafficking to facilitate metastasis (Figure 1).

6. Myeloid Cell Recruitment

Tumor-associated macrophages (TAMs) are an abundant population in preclinical cancer models
and human tumors [61]. Pro-angiogenic monocytes recruited from the bone marrow promote tumor
vascularization, growth, and cause resistance to therapy [17]. TAMs are also associated with high
lymphatic vessel density and lymphatic metastasis (Figure 1). Macrophages may contribute directly
to the lymphatic vasculature through transdifferentiation [49], progenitor differentiation [46], and
vascular mimicry [62,63] or indirectly by secretion of pro-lymphangiogenic factors [64]. VEGF-C acts
as a chemotactic factor for VEGFR-3 expressing macrophages [65]. In response to paclitaxel, VEGFR-3+

macrophages were recruited to breast and lung tumors and mediated chemotherapy resistance by
enhancing VEGF-C production that stimulated lymphangiogenesis [66]. Surprisingly, an anti-VEGFR-3
antibody alone did not reduce tumor volume, VEGF-C expression, or the number of lymphatic vessels
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in the absence of paclitaxel, suggesting that recruited macrophages mediate the lymphangiogenic
response to paclitaxel.

In breast cancer models, podoplanin-expressing TAMs promote metastasis [67] by remodeling
the extracellular matrix, leading to the release of VEGF-C and VEGF-D to direct lymphangiogenesis.
Recently, Evans et al. identified a population of Beta-4 integrin expressing TAMs that promote tumor
metastasis independent of VEGF-C and lymphangiogenesis [68]. These TAMs were closely associated
with existing lymphatic vessels through β4 integrin interactions with laminin-5. TGF-β1 produced by
TAMs promoted TAM attachment to LECs and also reorganized LEC architecture to favor metastasis.

VEGF-C/VEGFR-3 signaling within TAMs also drives immune tolerance within the colorectal
tumor microenvironment [69]. VEGFR-3 signaling was critical for the development of pro-inflammatory
macrophages, which was associated with decreased presence of CD8 T cells within colorectal tumors.
Blocking VEGFR-3 decreased the presence of TAMs, but increased their antigen processing and
cross-presentation, leading to decreased tumor growth.

7. Alternative Routes of Metastatic Dissemination

In addition to lymphatic transport, cancer cells at the primary tumor or distant site may take a
different route to distant organs, primarily through blood vessels. It is unclear whether cancer cells
preferentially disseminate from the primary site through blood or lymphatic vessels, but the frequency
and site of metastatic spread is cancer-dependent [70]. Once in secondary organs, again cancer cells
may further metastasize by lymphogenous or hematogenous route. Whole-exome sequencing of
samples from 20 breast cancer patients suggested that nodal breast metastases did not seed distant
metastasis. Instead, the authors conclude that distant organ metastases arise primarily from primary
tumors, likely through a hematogenous route [71]. In another study, biopsied tissue of 17 colorectal
cancer patients was sequenced to identify polyguanine repeats. The repeats allowed tracing of the
evolutionary history of metastatic lymph nodes and liver metastases from the primary tumor [72].
This study found that 35% of distant metastases were seeded by metastatic lymph nodes, while 65%
were seeded from the primary tumor, likely through a hematogenous route. These data show the
heterogeneity in possible outcomes for cancer cells that arrive in the lymph node.

Once in lymph nodes, cancer cells can move along with lymph drainage or re-access the lymphatic
system within the lymph node parenchyma [73] and may eventually enter the blood circulation through
lymphovenous connections. Two recent studies suggest that cancer cells can directly enter the blood
stream through blood vessels in lymph nodes. Once cancer cells exit nodes through blood vessels,
they are able to colonize distant organs [14,15]. Immunohistochemical staining of human specimens
show similar associations between cancer cells and blood vessels within metastatic nodes, but more
work is needed to definitively track this route of dissemination in human cancer. Unlike targeting
lymphangiogenesis in lung [22], inhibiting lymphangiogenesis in metastatic lymph nodes may not
attenuate further metastatic spread.

8. Abnormal Tumor-Associated Lymphatic Vessels

8.1. Increased Lymphatic Permeability

Tumor-associated lymphatics are structurally and functionally abnormal, as are tumor blood
vessels. The inability of lymphatic vessels to remove interstitial fluid from tumors is a contributing
factor to the elevated interstitial fluid pressure and edema found in most tumors [74]. Although initial
lymphatic vessels have a discontinuous basement membrane, tumor-associated lymphatic vessels
become more permeable and less able to create and retain lymph (Figure 1). The discontinuities in
lymphatic capillary walls not only allow transport of extracellular content both into and out of the
vessel, but also allow entry by cancer cells, providing a route for metastatic dissemination. In addition
to stimulating lymphangiogenesis, VEGF-C can render lymphatic vessels more permeable, as shown
by dextran leakage from lymphatic vessels of mice transduced with adenoviral VEGF-C [75]. VEGF-C
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increased the permeability of intestinal lymphatic vessels, resulting in enhanced colorectal cancer
metastasis [76]. Macrophages, which are also a source of VEGF-C, promote interendothelial gaps in
LEC monolayers, providing an opportunity for enhanced cancer cell intravasation [67]. In addition,
macrophages associated with LECs reduce the spread area of individual LECs, thus increasing lymphatic
vessel permeability that may promote lymphatic metastasis [68]. Inflammation [77], chemotherapy [78],
obesity [79], and tumor metabolites [73] have all been shown to increase lymphatic permeability.
A recent study demonstrated that age can also affect lymphatic permeability. In older melanoma
patients, cancer cells enter initial lymphatic capillaries but extravasate from collecting lymphatic
vessels due to a loss of lymphatic vessel integrity. Consequently, melanoma cells avoid accumulation
in tumor-draining lymph nodes but dissemination to distant sites is increased [80].

Few studies have sought to reverse lymphatic vessel permeability in vivo. Vascular cell adhesion
molecule 1 (VCAM-1) is upregulated on LECs by tumor inflammation and was shown to regulate
lymphatic vessel permeability [81]. Blocking VCAM-1 in vitro and in vivo reduced tumor-mediated
lymphatic permeability and lymphatic invasion, suggesting reducing tumor-induced lymphatic vessel
permeability may be a feasible approach to regulate lymphatic metastasis.

8.2. Altered Lymphatic Flow

Tumors increase both the number and size of surrounding tumor lymphatic vessels. VEGF-C
and VEGF-D promote lymphangiogenesis and hyperplasia of small peritumoral lymphatic vessels,
which increases the opportunity for cancer cells to enter lymphatic vessels. However, some nascent
lymphatic vessels have been shown to be dysfunctional as they exhibit valve defects [82] and abnormal
flow patterns. Although tumor inflammation can reduce contraction of tumor-draining collecting
lymphatic vessels, lymphatic dilation due to VEGF-C and VEGF-D increases lymph flow and lymph
node metastasis [82–84]. The impact of lymph drainage on remodeling the microenvironment and
suppressing the host immune response have been described elsewhere [85]. Blocking VEGFR-2
or VEGFR-3 signaling reduced collecting lymphatic vessel dilation, which was associated with
decreased lymph flow and nodal metastasis [84]. However, anti-VEGFR-3 treatment did not correct the
multidirectional lymph flow pattern in peritumoral lymphatic vessels [82] and it is unclear whether
immunosuppression is reversible after attenuating lymph/interstitial flow.

Transgenic mice with lymphatic insufficiency show that lymphatics are critical for drainage of
extracellular fluid to prevent tumor edema [8,86,87]. Peritumoral edematous fluid contains high
concentrations of cytokines that recruit leukocytes, immune-suppressive regulatory T cells, and
myeloid derived suppressor cells [86]. Lymphatic vessels likely provide an exit for immune cells
during inflammation, although lymphatics may also be important for initiating and modulating
inflammation [86,87].

9. Immunomodulation by Lymphatics

Effector T cells home to tumors via blood vessels. Abnormal blood vessels caused by
excessive VEGF-A and other pro-angiogenic factors interfere with T cell trafficking [88]. Recently,
anti-angiogenesis therapy has been used to reverse the immunosuppressive microenvironment of
tumors [89]. A challenge for anti-lymphangiogenic therapy is uncoupling tumor-associated lymphatic
vessels from their roles in lymphatic metastasis and immune modulation. Lymphatic vessels are critical
for the transport of tumor antigens by dendritic cells (DCs) to initiate anti-tumor immunity in lymph
nodes and thus mice lacking dermal lymphatic vessels fail to mount adaptive immune responses
against tumors [87].

Moreover, lymphangiogenesis can enhance the efficacy of cancer immunotherapy. High serum
levels of VEGF-C are indicative of melanoma patients’ responses to immunotherapy, suggesting that
elevated VEGF-C levels in circulation may be a biomarker for immunotherapy, despite its association
with lymphatic metastasis [90]. Mechanistically, tumor-associated lymphatic vessels recruit T cells into
melanoma tumors through CCL21. VEGF-C/VEGFR-3 signaling increased the number of activated T
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cells within primary melanoma lesions. Similarly, meningeal lymphangiogenesis induced by VEGF-C
resulted in an enhanced immune response against glioblastoma tumors [91]. This response was
more profoundly beneficial in combination with immune checkpoint inhibitors and VEGF-C. Thus,
anti-lymphangiogenesis therapy may be incompatible with immune checkpoint blockade.

In contrast to the beneficial effects on immune surveillance, lymph from solid tumors delivers
immunosuppressive molecules to attenuate anti-tumor immunity [92]. Antigen transported by
lymphatic vessels can be presented by LECs, which use it to tolerize T cells [93]. Moreover, LECs actively
dampen T cell mediated responses through PD-L1 expression [94]. The differential effects of lymphatic
vessels on anti-tumor immunity must be considered with the use of anti-lymphangiogenic therapy.

10. Summary and Future Directions

Modulating lymphatic vessels to reduce metastatic spread has great therapeutic potential.
However, the multiple functions of lymphatic vessels must be considered for targeting the process
of lymphangiogenesis associated with cancer. In additional to the role of lymphatic vessels in fluid
and cancer transport, evidence is emerging on how lymphatic vessels regulate innate and adaptive
immunity, which may affect cancer progression. While blocking VEGFR-3 has been thought to not have
an effect on existing lymphatic vessels, it was shown that VEGFR-3 is necessary for the maintenance
of adult meningeal lymphatics [95]. An ongoing challenge is to identify pathways that decrease
cancer cell recruitment and access to lymphatic vessels while preserving the physiological function
of lymphatic vessels. Identifying and targeting pathways to normalize, or restore, tumor-associated
lymphatic vessels may represent a viable therapeutic strategy. Finally, more work needs to be done to
study the effects of blocking lymphangiogenesis in metastatic settings in order to address whether
anti-lymphangiogenic drugs will be beneficial to patients with established metastases.
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