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Abstract: The chronic factor of the Hepatitis B Virus (HBV), specifically the covalently closed circular
DNA (cccDNA), is a highly stable and active viral episomal genome established in the livers of
chronic hepatitis B patients as a constant source of disease. Being able to target and eliminate cccDNA
is the end goal for a genuine cure for HBV. Yet how HBV cccDNA is formed from the viral genomic
relaxed circular DNA (rcDNA) and by what host factors had been long-standing research questions.
It is generally acknowledged that HBV hijacks cellular functions to turn the open circular DNA
conformation of rcDNA into cccDNA through DNA repair mechanisms. With great efforts from the
HBV research community, there have been several recent leaps in our understanding of cccDNA
formation. It is our goal in this review to analyze the recent reports showing evidence of cellular
factor’s involvement in the molecular pathway of cccDNA biosynthesis.
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1. Introduction

The hepatitis B virus (HBV) infection continues to be a global health burden with nearly 300 million
people living with chronic hepatitis B (CHB), the primary disease causing around a million HBV-related
deaths annually [1]. The horizontal transmission of HBV is achieved, for the most part, through sexual
contact, the use of contaminated syringes, or contaminated blood transfusion. The disease in this
context is, for the most part, realized through an acute self-limiting infection with approximately 5% of
individuals progressing to chronic infection [2,3]. Vertical transmission, in stark contrast, is the major
source of CHB carriers, who will likely live with the disease their entire lives and without treatment
will in all likelihood succumb to the disease and its complications, including fulminant hepatitis,
cirrhosis, and hepatocellular carcinoma [2,4–6].

The infectious HBV particle consists of a lipid bilayer membrane enveloped virus with three
isoforms of the HBV surface protein: Large, Medium, and Small (Figure 1A). Within the envelope lies
the HBV capsid made up of the HBV core protein. The capsid contains a partial double-stranded HBV
genome called relaxed circular DNA (rcDNA). This form of the virus genome is made up by a short
cohesive overlap between the 5′ ends of the two DNA strands. The minus (−) strand DNA molecule
with a redundant portion on each terminal end results in an overhang flap of around eight nucleotides
long. It is currently unknown whether the 3′ or 5′ end forms the flap. The viral polymerase is covalently
attached to the 5′ end of the (−) strand via a tyrosyl-DNA phosphodiester bond. The plus(+) strand is
rarely completed, with a gap ranging hundreds of nucleotides wide between the 3′ and 5′ end, and the
latter is occupied by a capped RNA primer as a remnant of HBV reverse transcription [7–9]. The repair
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of these terminal peculiarities is essential for the progression of the virus life cycle, as they prevent
HBV mRNA transcription (Figure 1B).

Figure 1. HBV structure and genome. (A) The envelope of HBV virion consists of lipids and the
large, medium, and small viral surface proteins. Within the lumen of the virus, core protein forms an
icosahedral capsid around the rcDNA genome which has the viral polymerase covalently attached to
the 5′ end of the (−) strand and a capped RNA primer (red) attached to the 5′ end of the (+) strand.
(B) The 3.2 kb HBV genome encodes four overlapping ORFs (Pre-Core/Core (Pre-C/C), Polymerase (P),
Pre-S1/Pre-S2/S, and X) and four mRNA transcripts with an overlapping 3′ end (3.5 kb, 2.4 kb, 2.1 kb,
and 0.7 kb).

HBV primarily infects hepatocytes. The infection begins with low-affinity binding of the virion
particle to the heparan sulfate proteoglycans (HSPG) [10]. Upon the binding of the pre-S1 domain of
viral large surface protein to the liver-specific receptor, sodium taurocholate co-transporting polypeptide
(NTCP), the virion is endocytosed [11–14] (Figure 2). Within the endosome the viral particle fuses to
the endosomal membrane, releasing the viral capsid into the cytoplasm, where it unfolds to expose
the nuclear localization signal (NLS) of the core protein [15–17]. It is then, in turn, brought to the
nuclear pore complex where the rcDNA is imported into the nucleus [18–20]. The rcDNA undergoes
several enzymatic steps to repair its terminal peculiarities, resulting in the formation of covalently
closed circular DNA (cccDNA). Following its formation, cccDNA proceeds to transcribe its 3′-end
overlapping mRNAs, including the 3.5 kb precore mRNA and pregenomic RNA (pgRNA), 2.4 kb and
2.1 kb surface mRNA, and 0.7 kb X mRNA (Figures 1B and 2). In the cytoplasm, pgRNA translates viral
core proteins and polymerase. The viral polymerase binds to the epsilon structure on the pgRNA and
is encapsidated. Within the viral capsid, the viral polymerase begins to reverse transcribe the pgRNA
into the (−) strand DNA. The reverse transcription is initiated via polymerase’s protein priming activity
against the epsilon structure, resulting in the covalent attachment of polymerase to (−) strand DNA.
Next, three sequential template switches take place to produce rcDNA: (1) the Polymerase-primed
nascent DNA translocates to direct repeat (DR) 1 at the 3′ end of pgRNA to continue the full-length (−)
strand DNA synthesis, and the pgRNA template is degraded simultaneously by the RNase H activity
of polymerase; (2) the undigested DR1-containing sequence at 5′ end of pgRNA translocates to DR2
at the 5′ end of (−) strand DNA and serves as a primer to start (+) strand DNA synthesis; (3) the
elongation of (+) strand DNA rapidly reaches the 5′ end of (−) strand DNA, then switches over to the
3′ end of (−) stand DNA for further synthesis and thus circularizes the DNA into a rcDNA format
(Figure 3). The 2nd template switch can fail to occur in a low frequency, resulting in an in situ priming
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of (+) strand DNA and a double-stranded linear DNA (dslDNA) product. During the (+) strand DNA
synthesis, the capsid is enveloped at the multivesicular body (MVB) [21,22], and the nucleotide supply
is perhaps exhausted prior to (+) strand completion [23]. The enveloped virus is then transported to
the cell membrane and secreted as progeny virion. In addition, the cytoplasmic mature capsid can be
redirected into the nucleus to supply more rcDNA for cccDNA formation, which is called intracellular
rcDNA recycling or cccDNA amplification [7,23–25] (Figure 2).

Figure 2. The HBV replication cycle. The HBV virion binds to the hepatic NTCP protein and is
endocytosed. The viral membrane then fuses with the endosome, releasing the capsid into the
cytoplasm, followed by nuclear import. The rcDNA is released into the nucleus where it uses host
DNA repair mechanisms to form cccDNA. Viral mRNAs are transcribed from the cccDNA and are
translated to viral proteins. In the cytoplasm, the viral polymerase binds to the epsilon (ε) structure of
pgRNA and is encapsidated by core proteins. Within the nucleocapsid the pgRNA undergoes reverse
transcription to form rcDNA. The mature capsid is enveloped and secreted as a virion particle through
the MVB secretory pathway. The mature capsid can also be shuttled to the nucleus where it will amplify
cccDNA through a process termed the rcDNA recycling pathway.

Although the rcDNA in virion particles is infectious, it cannot replicate itself or express its
open reading frames without “healing” these inhibitory terminal structures first. Therefore, to begin
the viral replication process, it is essential to form its cccDNA. cccDNA, as its name implies, is the
completed double-stranded circular form of the virus genome. While the dslDNA, a byproduct of
rcDNA synthesis, can be converted into cccDNA or integrated into the host genome and still have
active transcription for certain viral mRNAs, the only source of genuine novel infectious HBV particles
is cccDNA expression [9,26–28]. Despite the virus’ complete reliance on cccDNA for reproduction,
none of its proteins have been shown to have an essential role in rcDNA to cccDNA conversion in the
nucleus [24,25,29–36]. Instead, the virus relies heavily, if not completely, on nuclear host factors for
converting rcDNA into cccDNA [9,37–40].
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Figure 3. HBV rcDNA and dslDNA synthesis. (A) The encapsidated pgRNA is the template for HBV
reverse transcription. (B) Inside of viral capsid, HBV polymerase binds to the ε structure of the pgRNA
and begins priming with 3 nucleotides. (C) The first template switch occurs and the polymerase along
with the covalently attached primed DNA move to the direct repeat 1 (DR1) motif at the 3′ end of the
pgRNA. (D,E) The polymerase continues to synthesize the (−) strand DNA and digest the read RNA
until it reaches the 5′ end of the pgRNA. (F) The second template switch occurs when the uncleaved 5′

DR1 region of pgRNA moves to the DR2 region of the newly synthesized (−) strand DNA. (G,H) Plus
strand DNA synthesis then begins and undergoes a 3rd template switch to the 3′ end of the (−) strand,
circularizing the double-stranded DNA and forming the rcDNA. (J) At a low frequency, the second
template switch fails to occur, and the RNA primer undergoes an in situ priming to synthesize the HBV
dslDNA. Adapted from Flint et al. [41].

Currently, there are limited options for treatments of CHB and the most effective way to stop
the spread of CHB continues to be vaccination programs [4]. There are two main methods of
treating CHB: Pegylated IFN-alpha and Nucleos(t)ide analogues (NUCs). Pegylated IFN-alpha is an
immunomodulatory treatment for a minority of CHB patients but is usually ceased after a year due
to side effects and low responses; only approximately one-third of the treated patients respond to
IFN-alpha treatment [42]. NUCs inhibit the viral polymerases and therefore the reverse-transcription
step and are successful in reducing the viral titer in CHB patients, functionally curing them of a majority
of the viral pathology. This, however, is not a true cure, as the cessation of treatment will most often
result in a rapid viral rebound, requiring patients with CHB to be on NUC treatment for their entire
lives, and the development of drug-resistance is not uncommon [43–45]. Nonetheless, NUCs are rarely
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able to completely clear the virus. This is because NUCs inhibit the virus during its reverse transcription
step, which occurs after the establishment of cccDNA, and therefore have no or little effect on the first
round of cccDNA formation during de novo infection [32,33,46,47]. Once cccDNA is established it
will continuously express viral RNA and proteins throughout NUC treatment, which can still cause
pathology without robust viral replication. Similarly, the integrated HBV DNA, which is unable to
produce progeny virus, can be an additional source of pathology via altering host chromosome stability
and expressing HBsAg [26]. Without targeting HBV cccDNA, the virus can maintain a reservoir of
cccDNA in hepatocytes that will remain safe from the standard treatments [9,38,39]. It is, therefore,
a consensus within the HBV research community that a genuine cure to HBV will have to involve
targeting and eliminating cccDNA reservoirs [1,43]. Despite the necessity of targeting HBV cccDNA,
very limited knowledge about cccDNA formation was available until several recent studies began to
pull back the veil on the virus-host interactions in charge of this essential HBV life cycle step.

2. HBV cccDNA Formation

2.1. General Steps of cccDNA Formation

To kick off cccDNA formation, the cytoplasmic viral capsid containing the mature rcDNA, either
from the incoming virus or the de novo viral DNA replication, needs to prepare for the nuclear
transportation via a conformational change to expose its C-terminal Domain (CTD) nuclear localization
signals (NLS) for karyopherin binding [17,48,49]. The viral and host mechanism(s) regulating HBV
capsid NLS exposure is unclear; however, previous studies suggest that the rcDNA maturation,
deproteination, and/or the binding of karyopherin with capsid could be a trigger [17,50–53]. The entire
capsid is then imported through the nuclear pore complex into the nucleus where it then releases the
rcDNA into the karyoplasm [48,49]. From cytoplasm to the nucleus, HBV rcDNA must undergo a series
of enzymatic reactions to repair/remove the previously described obstructive terminal peculiarities:
the viral polymerase must be removed presumably by unlinking the tyrosyl-5′-DNA phosphodiester
bond, RNA primer needs to be removed, (+) strand DNA needs to be completed, one copy of the
terminal redundant sequence on the (−) strand DNA must be removed and, finally, the (+) and (−)
strands must be ligated close to form cccDNA (Figure 4A).

Figure 4. Proposed pathway of cccDNA formation. (A) Genuine cccDNA would be classified as cccDNA
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converted from rcDNA and would therefore have to undergo a relatively high-fidelity DNA repair.
The host factors listed have been heavily implicated in the formation of genuine cccDNA. It is important
to note the exact temporal/mechanistic relationship these factors have with cccDNA formation is yet
to be fully explored or explained. DP-rcDNA and CM-rcDNA have been thoroughly shown to be
downstream of rcDNA. Though there is credible evidence to suggest DP-rcDNA, or an unclassified
subset of DP-rcDNA, is necessary for cccDNA formation, it remains uncertain if these populations
including CM-rcDNA are actual genuine intermediates to cccDNA. The lines drawn between the
HBV DNA populations correspond to the certainty (solid lines) and uncertainty (dotted lines) of their
relationships, and the host DNA repair enzymes that have been implicated in each DNA transitions are
indicated. (B) Through non-homologous end joining (NHEJ) mechanism, the HBV dslDNA can be
integrated into the host genome or circularized to a pseudo cccDNA with substantial indels.

2.2. cccDNA Intermediates/Precursors

The order in which these catalytic events occur is not completely understood. Due to the
complexity of rcDNA to cccDNA conversion, it is expected that DNA intermediate(s) may exist during
cccDNA formation.

dsl-ltr-DNA: More than two decades ago, a hypothetical linear hepadnavirus genome,
termed double-stranded linear HBV DNA with long terminal repeats (dsl-ltr-DNA), which contains
terminal duplication of the cohesive region (between DR1 and DR2) from rcDNA by displacement synthesis
through the cohesive overlap, has been proposed to be a cccDNA precursor. Through homologous
recombination of these LTRs, the dsl-ltr-DNA could bypass the removal of the terminal structures of
rcDNA and form cccDNA directly [54]. However, it has not been directly detected and thus remains
mysterious [54]. Instead, cccDNA species with extensive insertion/deletions (indels) have been
discovered and would somewhat indicate that a dsl-ltr-DNA intermediate may occur but is transient
and is ligated through non-homologous end joining (NHEJ). However, it is now well acknowledged
that the viral dslDNA replicative intermediate is the predominant precursor for indels-containing
cccDNA formation through NHEJ [24,55–58].

DP-rcDNA (PF-rcDNA): More than one decade ago, we and others systematically characterized a
rcDNA species without the covalently attached viral polymerase, which was termed as deproteinized
rcDNA (DP-rcDNA) also known as protein-free rcDNA (PF-rcDNA) (Figure 4A) [24,25]. It is worth
noting that DP-rcDNA had shown up in even earlier studies but did not draw much attention at
that time [59,60]. Deproteinated dslDNA (DP-dslDNA) also exists but protein-free ssDNA does not,
and multiple reports indicate that deproteination occurs selectively on mature double-stranded viral
DNA [17,24,25,57]. The DP-rcDNA can be extracted by Hirt DNA extraction method, which is also used
to extract cccDNA [61,62]. In the absence of protease digestion, a phenol treatment during Hirt DNA
extraction from HBV replicating cells allows for the polymerase covalently bound rcDNA to become
soluble in the phenol fraction, leaving behind the DP-rcDNA and cccDNA as protein-free DNA. The cell
fractionation showed a significant population of DP-rcDNA in the cytoplasm as well as the nucleus,
suggesting that the rcDNA deproteination step occurs prior to nuclear import [25]. Further studies on
cytoplasmic DP-rcDNA suggested that the completion of viral (+) strand DNA inside the nucleocapsid
triggers rcDNA deproteination and nucleocapsid conformational shift, resulting in the exposure of
the nuclear localization signals (NLS) on the C-terminus of capsid protein, followed by binding of
karyopherins and nuclear import of DP-rcDNA containing capsid [17]. The conformational change or
partial disassembly of cytoplasmic DP-rcDNA-containing capsid was also inferred by the accessibility
of encapsidated DP-rcDNA by DNase I [17,25]. In line with this, another study reported that DP-rcDNA
was predominantly found in nucleus, which was likely due to the treatment of cytoplasm samples
with Turbonuclease before Hirt DNA extraction [24]. Further analyses of the cytoplasmic DP-rcDNA
demonstrated that the (+) strand DNA is complete or almost complete with the RNA primer being
removed from the 5′ end, and the viral polymerase is completely removed from the 5′ end of (−) strand
DNA through unlinking the tyrosyl-DNA phosphodiester bond with the terminal redundant sequence
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remaining on both ends (Figure 4A) [63]. In the nucleus, DP-rcDNA is released from the capsid and
converted into cccDNA by employing the host DNA repair machinery [17,25,57,64].

The existing evidence supporting DP-rcDNA as a functional precursor of cccDNA includes but
may not be limited to: (1) it always appears earlier than cccDNA in HBV-transfected or -infected
cells [24,25,47,65,66]; (2) inhibition of rcDNA deproteination by compounds or blocking DP-rcDNA
nuclear transportation resulted in the accumulation of cytoplasmic DP-rcDNA but a reduction of nuclear
DP-rcDNA and cccDNA [17,67]; (3) inhibition of non-homologous end joining (NHEJ) DNA repair
pathway in cells exclusively replicating duck HBV (DHBV) dslDNA genome resulted in accumulation
of nuclear DP-dslDNA but reduction of cccDNA [57]; (4) transfection of purified DP-rcDNA into cells
resulted in viral DNA replication, suggesting a successful conversion of DP-rcDNA into cccDNA [25].
Nevertheless, whether DP-rcDNA is the major precursor for cccDNA remains uncertain. In the HBV
stably transfected cells, such as HepG2.2.15, HepAD38 cells and HepDE(S)19 cells, that support cccDNA
formation exclusively through the intracellular amplification route, nuclear DP-rcDNA normally
accumulates to a much higher level than cccDNA [24,25,59,64,67,68], indicating that the majority of
nuclear DP-rcDNA may be a dead-end product or there is a rate-limiting mechanism for converting
DP-rcDNA into cccDNA. However, the levels of DP-rcDNA are similar to or even less than cccDNA in
HBV-infected cells in vitro and in vivo [35,66,69–72], indicating that the production, role, or conversion
efficiency of DP-rcDNA in cccDNA formation may be different between HBV transfection and infection
systems. The DHBV system is helpful in the study of HBV cccDNA formation as the viruses are closely
related and therefore have similar genomes and lifecycles [40]. One major advantage is that the DHBV
model produces more cccDNA than HBV even in transfected human hepatocyte-derived cells, in which
HBV cccDNA is often difficult to detect due to low copy numbers [58,64]. Previous studies using
DHBV system have identified similar DP-rcDNA intermediate and certain host DNA repair factors
shared by HBV in cccDNA formation [17,24,25,57,58]. However, it is worth noting that the robust
cccDNA formation capacity of DHBV through the rcDNA recycling pathway is likely dependent upon
a virus-specific mechanism(s) [64], thus there may be different regulations at the early steps of cccDNA
formation between DHBV and HBV.

CM-rcDNA: A recent study has reported observing another possible cccDNA intermediate believed
to be a closed (−) strand rcDNA (CM-rcDNA) population (Figure 4A) [73]. In this study, by treating
Hirt DNA extraction samples with exonucleases Exo I/III that digest non-circular DNA with unblocked
3′ end, the DP-rcDNA was removed but cccDNA was preserved, and a minor DNA species of (−)
polarity was evident on the Southern blot below single-stranded linear DNA position. This minor
species was identified as a single-stranded circular DNA derived from the CM-rcDNA by removing
the open circular (+) strand DNA through Exo I/III digestion. The absence of single-stranded circular
(+) DNA upon Exo I/III treatment of Hirt DNA implied that the circular (−) DNA was not a result of
randomly nicked cccDNA which would have resulted in two equally sized populations. The presence
of CM-rcDNA indicates that the peculiarities on the (−) strand DNA are repaired and the termini
are ligated earlier than (+) strand of rcDNA during cccDNA formation, though it remains unclear
whether CM-rcDNA is a genuine precursor for cccDNA or a byproduct during cccDNA formation. It
is also unknown whether CM-rcDNA is a derivative of the aforementioned DP-rcDNA or co-produced
together with DP-rcDNA from rcDNA.

2.3. DNA Repair Factors Involved in cccDNA Formation

Once the rcDNA is delivered in the nucleus and uncoated, it is expected that the structural
peculiarities on the termini of rcDNA will be recognized as DNA damage signals by the host
DNA repair apparatus and converted into cccDNA [9,37,39,74]. Through a variety of experimental
approaches, a handful of cellular DNA repair factors involved in cccDNA formation have been
identified as follows.

ATR-Chk1: There are two major high-fidelity cellular DNA damage response (DDR) pathways,
the ataxia telangiectasia mutated (ATM) pathway and the ataxia telangiectasia and Rad3-related (ATR)
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pathway, which are two distinct kinase signaling cascades leading to DNA damage checkpoints [75].
To assess whether DDR is involved in rcDNA to cccDNA conversion, Luo et al. treated HBV-infected
HepG2-NTCP cells and primary human hepatocytes with ATR and Chk1 inhibitors (ATR/Chk1
inhibitors: AZD6738, VE-821, and CHIR-124) and observed a marked decrease in cccDNA levels,
but not under ATM inhibitor treatment (ATM inhibitors: KU-55933 and KU-60019) [76]. HBV stable cell
lines AML12HBV10 and HepAD38, which support cccDNA formation through the rcDNA recycling
pathway, also illustrated a similar inhibition of cccDNA production when treated with the ATR-Chk1
inhibitors or siRNA. Thus, the role of the ATR-Chk1 pathway is not limited to the initial round of
cccDNA formation but also the internal cccDNA amplification. Considering that ATM-Chk2 and
ATR-Chk1 pathways are activated by double-strand breaks and persistent single-stranded DNA [77],
the involvement of ATR-Chk1 in cccDNA formation is likely due to the single-strand gaps on rcDNA.
Interestingly, the study found that PF-rcDNA (aka DP-rcDNA) levels increased under the ATR-Chk1
inhibitor conditions, but CM-rcDNA was reduced to a similar degree of cccDNA, indicating that
CM-rcDNA may be processed from DP-rcDNA by ATR-Chk1 machinery. Under the condition of
ATR-Chk1 inhibition, a smear also appeared between the DP-rcDNA and cccDNA bands on Southern
blot, which were determined to be the DP-rcDNA intermediates lacking large portions of their 5′ end
of (−) strand DNA, indicating that ATR-Chk1 pathway may protect the deproteinated rcDNA from
cellular nuclease digestion.

DNA Polymerases: It has been reported that inhibiting hepadnavirus polymerase by NUCs did not
block the first round cccDNA formation in in vitro virus infection, indicating that host polymerase(s)
are responsible for repairing rcDNA into cccDNA [32,33]. In one study, a siRNA knockdown screen of
15 cellular polymerases in HepG2-NTCP cells was carried out. HBV 3.5kb RNA and HBeAg were used
as markers of cccDNA formation and successful infection. The knockdown of Pol κ, Pol η, or Pol λ
significantly reduced both 3.5 kb RNA and HBeAg, with Pol κ knockdown having the most significant
reduction [35]. Co-inhibition of Pol κ and other polymerases showed enhanced inhibition of infection,
but Pol κwas observed to have the most critical role. Pol κwas knocked out using the CRISPR/Cas9
system in HepG2-NTCP cells. Infection assays were performed on the Pol κ knockout cells and cccDNA
was observed through a Southern blot. There was no observable cccDNA band in the −/− Pol κ cells
and a reduced band in the +/− Pol κ cells. A knockout of Pol λ in HepG2-NTCP cells was also made
using similar methods and was also observed through Southern blotting to reduce cccDNA formation.
While not as significant of a reduction as the Pol κ knockout, Pol λ was still shown to have a role in
cccDNA formation. Pol κ, of the Pol Y family, is known for its role in trans-lesion DNA synthesis and
the nucleotide excision repair (NER) pathway [78]. Although the exact mechanism of its involvement
was left unexplored, it is implied by Pol κ’s function that it is perhaps involved in the completion of (+)
strand DNA of nuclear rcDNA.

In another study, Tang et al. investigated the role of polymerase alpha in cccDNA formation
and uncovered its crucial role in cccDNA formation through the rcDNA recycling pathway [79].
Phosphonoformic acid (PFA), a reversible HBV polymerase inhibitor, was used to arrest HBV replication
in HepAD38 cells. Once PFA is removed, there is synchronized mass production of cccDNA from
newly synthesized rcDNA, allowing for transient treatment of potential toxic inhibitors of cellular
polymerases. Pol B family polymerases α, δ, and ε were inhibited using pan-inhibitor Aphidicolin
(APH). This resulted in a marked decrease in cccDNA formation. To investigate the individual
polymerases further, a CRISPR/Cas9 knockout of Pol δ was made in HepAD38 cells. The knockout
caused a modest decrease in cccDNA formation, however, when paired with APH there was a marked
decrease in cccDNA levels. Although Pol κ is involved in de novo cccDNA formation as mentioned
above [35], these results suggest that it is not the main effector in the intracellular cccDNA amplification
pathway. The role of Pol α in cccDNA formation was further inspected by specifically inhibiting it
using CD437. The specific inhibition of Pol α showed a large decrease in cccDNA formation without
changing cccDNA stability, together with a co-reduction of CM-rcDNA, indicating that Pol α may be
involved in the process of rcDNA (−) strand ligation. The requirement for different cellular polymerases
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in de novo cccDNA formation and the intracellular cccDNA amplification is less understood but may
be related to the potentially different structures of enveloped capsid compared to intracellular naked
capsid or their rcDNA content. Pol B family polymerases are the primary subunits of cellular DNA
replication and are most active during the S phase of replicating cells [80]. This could suggest that the
intracellular cccDNA amplification, through the rcDNA recycling pathway, may occur specifically in
dividing cells, lending a plausible explanation of how cccDNA reservoirs are conserved amid mitosis.

FEN1: When rcDNA or DP-rcDNA is imported into the nucleus, one copy of the terminal
redundancies must be removed before the ligation of the (−) strand. Flap endonuclease 1 (FEN1) is a
eukaryotic 5′-flap endonuclease involved in DNA replication and repair, and its major function is to
remove the 5′-flap structure of Okazaki fragments during lagging strand DNA synthesis [81]. In this
regard, the terminal redundant sequences at both ends of the rcDNA (−) strand represent the junction
of two Okazaki fragments if a 5′-flap is formed (Figures 1B and 4A). Kitamura et al. performed an
in vitro FEN1 activity assay using a synthetic DNA substrate mimicking a putative 5′-flap structure
of the terminal redundancy of HBV rcDNA and demonstrated FEN1′s ability to bind and cleave the
synthetic HBV rcDNA 5′-flap [82]. Two catalytically defective FEN1 proteins were unable to cleave the
5′-flap and a FEN1 inhibitor, 3-hydroxy-5-methyl-1-phenylthieno[2,3-d]pyrimidine-2,4(1H,3H)-dione
(PTPD), inhibited the synthetic HBV DNA cleavage. CRISPR/Cas9 knockdown and PTPD inhibition of
FEN1 in HepAD38.7 cells reduced cccDNA levels, suggesting FEN1′s enzymatic activity is involved
in the formation of cccDNA. The chemical inhibition of FEN1 through PTPD in HepG2-NTCP cells
showed a consistent decrease in cccDNA formation in an infection model cell line. A FEN1-HBV
ChIP qPCR confirmed FEN1 binds to HBV DNA in cells. The proposed role of FEN1 in removing
the 5′ terminal redundancy of HBV rcDNA is consistent with a previous study indicating that the
5′ terminal redundancy of DHBV rcDNA is preferentially removed during cccDNA formation [83].
Considering that FEN1 recognizes the free 5′-end of the flap and threads the ssDNA strand through its
helical arch and enzymatic site to create a configuration for cleavage [81], this threading requirement
suggests that FEN1 cannot directly cleave the rcDNA with polymerase attached, and DP-rcDNA can
serve as the substrate for FEN1. However, since a complete inhibition of HBV cccDNA formation
was not achieved through FEN1 inhibition, it remains unknown whether other 5′-flap endonucleases,
including Dna2 and XPG, or even exonucleases, are playing an overlapping role in cccDNA formation.

DNA ligases: Our previous study investigated possible DNA repair factors involved in cccDNA
formation through a large shRNA screen of DNA repair related proteins in HepDES19 cells [58].
The screen revealed host ligases as potential host factors for cccDNA formation. This result was
investigated further in an in vitro cell-free cccDNA formation assay. DHBV rcDNA was collected
and incubated with nuclear extracts and cccDNA formation was measured through a sensitive PCR
assay. When the system was treated with ligase inhibitors, the cccDNA amplicon was completely
blocked, suggesting the ligases were involved in forming the cccDNA. The pan ligase inhibitor, L189,
inhibited DHBV cccDNA formation in a DHBV inducible cell line, HepDG10, consistent with the results
of the in vitro assay. Specific knockouts of LIG1 and LIG3 were made with CRISPR/Cas9 in HepDG10
cells. The depletion of LIG1 and LIG3 significantly reduced cccDNA formation but did not seem to
affect rcDNA levels, suggesting they have a specific role in cccDNA formation. Similar knockouts of
LIG1 and LIG3 were made in the HBV inducible cell line, HepDES19, and showed a similar reduction
in cccDNA formation. This phenotype was also replicated in infection assays with HepG2-NTCP cells
when LIG1 and LIG3 were individually knocked down by shRNA. Therefore, the study indicated that
LIG1 and LIG3 play an overlapping role in HBV cccDNA formation, likely acting on the last step of
rcDNA to cccDNA conversion by ligating the ligatable ends of rcDNA. It remains unknown whether
LIG1 and LIG3 have DNA strand-specificity on rcDNA ligation, including the formation of CM-rcDNA.
In addition, LIG4, a component of NHEJ pathway, has been shown to be responsible for noncanonical
cccDNA formation from dslDNA [58].

DNA topoisomerases: Topoisomerase (TOP) 1 and 2 transiently nick/cut DNA to release torsion
built up during DNA replication occurring in splitting cells or DNA repair [84], which were recently



Cells 2020, 9, 2430 10 of 18

shown to be involved in cccDNA formation [85]. A PFA arrest and synchronized release in HepAD38
cells similar to that previously described was also used in this study to allow short-term treatment
of normally toxic TOP inhibitors. Interestingly, inhibition of TOP1 by Topotecan or Camptothecin
reduced cccDNA and CM-rcDNA levels. On the other hand, when TOP2 was inhibited with Idarubicin
and Doxorubicin, it only affected cccDNA levels. This study suggests that TOP1 and 2 have potentially
separate roles in cccDNA formation, which TOP1 is potentially involved in the repair/ligation of the
rcDNA (−) strand during CM-rcDNA formation if CM-rcDNA is indeed a precursor for cccDNA.
However, the detailed molecular mechanism underlying TOP1/2-mediated cccDNA formation remains
elusive, including how and where TOP1/2 interact with rcDNA/cccDNA, how TOP1/2 cooperate
with DNA ligases to close rcDNA, and whether other topoisomerases play overlapping roles in
cccDNA formation.

Tyrosyl-DNA phosphodiesterase 2 (TDP2): At times topoisomerases can fail to release the cut
and untwined DNA and remain covalently bonded to the strands. To avoid the potentially lethal
consequences, tyrosyl-DNA phosphodiesterases are recruited to cleave the covalent phosphor-tyrosyl
bond, allowing the DNA to be ligated shut [86,87]. Tyrosyl-DNA phosphodiesterase 2 (TDP2) specifically
cleaves the 5′ bound TOP2 [88,89], which resembles the 5′ tyrosyl-DNA phosphodiester bond between
HBV polymerase and rcDNA (Figure 1). It was for this similarity that researchers investigated TDP2′s
potential to be involved in the removal of the viral polymerase from rcDNA and subsequently the
formation of HBV cccDNA. The in vitro biochemical assays demonstrated that human TDP2 exhibited
an ability to cleave the 5′-tryosyl bound DHBV and HBV Polymerases from newly primed nascent
ssDNA or mature rcDNA [90–93]. A knockdown of TDP2 was then carried out with shRNAs in
DHBV-transfected Huh7 cells. The result showed that a knockdown of TDP2 was associated with a
delay in cccDNA formation, and ectopic expression of TDP2 in the TDP2 knockdown cells restored
cccDNA formation kinetics [93]. This potential role of TDP2 in cccDNA formation, however, has been
refuted by other studies. Cui et al. established a HepG2/NTCP TDP2 knockout cell line and observed
the cells to be permissive to HBV infection [91]. The study also showed that TDP2 knockdown in
HepAD38 via siRNA resulted in a modest increase of cccDNA, and overexpression of TDP2 resulted
in a modest decrease in cccDNA formation in HBV transiently transfected cells. However, when a
DHBV replication plasmid was transfected into TDP2 knockout HepG2 cells, the group observed
a moderate decrease in DHBV cccDNA formation. Furthermore, the chemical inhibitors of TDP2
failed to inhibit HBV infection in a hepatic co-culture system [94]. Our recent study on mapping the
termini of cytoplasmic DP-rcDNA suggested a role of tyrosyl-DNA phosphodiesterase in removing
viral polymerase from rcDNA; however, the knockout of TDP2 in HepAD38 cells did not markedly
reduce the levels of DP-rcDNA and cccDNA [63]. These observations cast doubt on whether TDP2
is essentially involved in the cleavage of the viral polymerase on rcDNA during the formation of
DP-rcDNA and/or cccDNA, or there is a cellular compensatory activity from a TDP2-like protein in the
absence of TDP2.

Lagging strand synthesis machinery: As above mentioned, the terminal structures on HBV rcDNA
can resemble Okazaki fragments, the phenomena resulting from 5′ to 3′ DNA synthesis on the “lagging”
strand DNA. It takes the coordination of multiple proteins to repair these fragments. Due to their
similarity, one group recently investigated if the lagging strand synthesis machinery was involved
in the repair of rcDNA [36]. First, a synthetic DNA substrate mimicking the structure and terminal
modifications of rcDNA was created. When incubated with yeast and human cellular extracts,
the synthetic recombinant rcDNA (RrcDNA) was able to form cccDNA. Five core components involved
in lagging strand synthesis, including PCNA, RFC, FEN1, Pol δ, and LIG1, were then immunodepleted
in yeast extracts, resulting in complete or significant inhibition of cccDNA formation. The absence
of any one of these proteins completely inhibited the formation of cccDNA in vitro. This research
corroborates and enhances the evidence showing certain DNA repair factors having important roles in
cccDNA formation. While in vivo cell culture assessment did not show the complete loss of cccDNA
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compared to these yeast and hepatic cell extract in vitro assays, they still lend themselves to these host
factors’ potentially crucial roles in the virus’s lifecycle.

NHEJ: While NHEJ is the most readily available form of DNA repair to host cells, it is unlikely
the main pathway utilized by the virus to repair its rcDNA due to the error-prone propensity of
NHEJ [95]. However, as previously mentioned, it has been reported to be an accessory pathway for
cccDNA formation from aberrant or unusual precursors. Precursors such as dsl-ltr-DNA and dslDNA
can be converted into cccDNA utilizing NHEJ mechanism [27,54–56]. Previous studies have explicitly
demonstrated the essential role of NHEJ core components, including Ku80 and LIG4, in DHBV cccDNA
formation from viral dslDNA precursor (Figure 4B) [57,58]. Insertions and deletions (indels) between
DR1 and DR2 are common in this DNA repair pathway and have been observed in dslDNA-derived
cccDNA [24,55,58]. It is therefore a dead end for rcDNA replication purposes due to the gross indels,
though illegitimate dslDNA replication may still occur via subsequent rounds of NHEJ-mediated
cccDNA formation from the newly synthesized dslDNA mutants [55]. In addition, NHEJ is also
responsible for dslDNA integration into the host chromosomes at the double-strand break sites
(Figure 4B) [27,96].

2.4. Non-DNA Repair Factors Involved in cccDNA Formation

DNA repair factors have the most direct relationship with HBV cccDNA formation; however,
many complicated and indirect interactions with host machinery and HBV cccDNA formation are
being discovered.

PRPF31: A spliceosome component, Pre-mRNA Processing Factor 31 (PRPF31), was discovered
to be involved in cccDNA formation through a siRNA screening of 1,000 genes involved in DNA
damage response and epigenetic and nucleic acid binding pathways [97]. The study demonstrated that
PRPF31 associates with cccDNA and colocalizes with HBx in the nucleus, but whether PRPF31 interacts
with nuclear rcDNA was not investigated in this study. When overexpressed together, PRPF31 and
HBx, showed a marked increase in cccDNA formation that is not observed when either protein is
overexpressed on their own. The exact mechanism of how a PRPF31-HBx complex enhances cccDNA
formation remains unknown.

CDK9: The cyclin-dependent kinase (CDK) family proteins are largely responsible for the regulation
of cell division or gene transcription [98]. CDK9 specifically is known to be involved in the transcription
or replication of several viruses [99–101]. A CDK9-specific inhibitor, FIT-039, was able to reduce
HBV replication in a dose-dependent manner without cytotoxicity [102]. Pan-inhibitors of the CDK
family resulted in high toxicity and subsequent cell death. A time-to-addition treatment of infected
HepG2-NTCP cells with FIT-039 showed the compound inhibited an early step in cell infection.
Inhibition of NTCP was ruled out through an in vitro preS1 binding assay while Southern blot and
qPCR analysis of cccDNA formation confirmed that FIT-039 reduced the level of cccDNA. HBV-infected
chimeric mice showed a greater reduction of serum HBV DNA when treated with a combination of
entecavir and FIT-039 compared to entecavir alone. These results imply that CDK9 may play a role in
HBV cccDNA formation or stability.

SAMHD1: SAM and HD Domain Containing Deoxynucleoside Triphosphate Triphosphohydrolase
1 (SAMHD1) is stimulated by IFN and acts as a dNTPase to inhibit viral replication [103]. Vpx from the
SIVSMM/HIV-2 lentiviruses was used to target and degrade SAMHD1 in infected HepG2-NTCP cells
and resulted in a decrease of cccDNA levels [104]. Exogenous dNTPs were provided indicating the
reduction of cccDNA levels was not dependent on dNTP levels. A CRISPR/Cas9 knockout of SAMHD1
resulted in a similar phenotype that was reversed by ectopic wild type SAMHD1 but failed with the
expression of a mutated SAMHD1 lacking the nuclear localization signal. It has been reported that
SAMHD1 can bind ssDNA and act as a scaffolding protein to promote both homologous recombination
and DNA resection [105], indicating that the nuclear SAMHD1 may be involved in repairing rcDNA
into cccDNA, but this study did not provide any direct evidence [104]. On the other hand, mRNA levels
of APOBECs, MXA, and ISG20 were all observed to be higher in the SAMHD1 knockout cells when
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compared to the control, inferring a role of SAMHD1 in restricting host innate immunity. APOBEC3A/B,
in particular, were shown to degrade cccDNA through cytidine deamination and apurinic/apyrimidinic
site formation [72,106]. In this regard, SAMHD1 may also indirectly maintain the stability of cccDNA.

3. Summary and Perspectives

The picture being painted by these studies shows the formation of cccDNA relies heavily on the
host DNA repair mechanisms and their surrounding pathways. The mystery of cccDNA formation is
no longer as ambiguous as previously thought. Based on the findings, a proposed model of cccDNA
formation would be: The mature rcDNA is deproteinated in the cytoplasm and transported into
the nucleus, followed by nuclear uncoating of DP-rcDNA, which in turn activates ATR-Chk1 DNA
damage response [9,17,24,25,64,76]. One copy of the (−) strand terminal redundant repeats is cleaved
from the 5′ terminus by FEN1 or other nuclease(s) [73,82], followed by DNA resynthesis catalyzed by
polymerase α and/or δ [36,79]. The (−) strand is then ligated shut to form CM-rcDNA [73]. Host DNA
polymerases (α, δ, κ, η, etc.) then complete the (+) strand DNA for ligation [35,36,79]. Host DNA
ligases (LIG1/3) and topoisomerases are involved in the ligation steps, while topoisomerases may
have other functions beyond ligation [58,85] (Figure 4A). Although this cccDNA formation pathway
seems possible, it is important to note that the participating host factors and the order of DNA repair
reactions are likely to be appended and redefined as the research proceeds. It remains possible that
these identified DNA intermediates (DP-rcDNA, CM-rcDNA) are minor or even byproducts of cccDNA
formation, and major or additional intermediate(s) may exist and await further exploration. In addition,
nearly the entirety of these studies failed to completely inhibit cccDNA formation when the host factors
of interest were either knocked out or inhibited. This casts some doubt whether these are the essential
factors for cccDNA formation and could suggest there are alternative host factors and/or pathways
that serve redundant roles at each steps of the cccDNA formation pathway. In this regard, there is a
plausible scenario of “all roads lead to Rome” during the conversion of rcDNA to cccDNA. In contrast,
the involvement of NHEJ pathway in dslDNA-based cccDNA formation and integration seems more
straightforward and well-documented (Figure 4B).

Yet another major cloud hanging over these studies on cccDNA formation is that most were
performed using variants of the HepG2 or Huh7 cell line, derived from human hepatoma cells.
The process of oncogenesis is well documented to have substantial alterations of cell functions,
especially in DNA replication/repair and the cell cycle [107,108]. DNA repair pathways are closely
regulated to the cell cycle, and therefore it is possible the DNA repair pathways of a hepatoma cell
line are compromised and do not match wild-type DNA repair, leading to incomplete or inaccurate
information. We believe it is pertinent, moving forward, to confirm these results and expand our
search in more physiologically relevant human hepatocyte model systems.

It is worth noting that a major hurdle of establishing a mouse model for HBV infection is the failure
of cccDNA establishment in mouse hepatocytes, which is likely due to the lack of a human hepatocyte
cellular factor(s) required for cccDNA formation [109–111]. However, it has been shown that HBV
cccDNA could be made in an immortalized mouse hepatocyte cell line AML12 upon HBV stable
transfection or infection [109,112,113], thus a better understanding of cccDNA formation in human
hepatocytes and mouse AML12 cells will help to identify the missing factor(s) in mouse hepatocytes
for cccDNA formation and facilitate the development of a mouse model for HBV infection.

As an essential step in HBV infection establishment and persistence, cccDNA formation offers
multiple potential antiviral targets for developing novel HBV therapeutics. Based on the current state
of knowledge, inhibiting the formation or stability of cccDNA intermediates such as DP-rcDNA
and CM-rcDNA, and/or inhibiting the host DNA repair enzymes/factors involved in cccDNA
formation, would be expected to further reduce cccDNA copy numbers and prevent virus spread in
infected livers, ideally in combination with the available HBV replication inhibitors. In this regard,
previous studies have identified compounds that reduce cccDNA formation via inhibiting DP-rcDNA
production [67,114], and DNA repair targeted drugs are available in cancer therapy [115–117], which are
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candidates for antiviral assessment in cccDNA formation assays. Nonetheless, considering the longevity
of cccDNA, the redundant activity of host DNA repair factors in cccDNA formation, and the nature
of host targeting agents, the long-term efficacy and safety of cccDNA formation inhibitors should be
closely monitored in future studies.

Taken together, it is envisioned that further investigations will delineate a coherent molecular
pathway of HBV cccDNA formation, thereby providing new insights into cccDNA biology and novel
antiviral targets for the development of therapeutics to cure hepatitis B.

Author Contributions: Conceptualization, A.L.M. and H.G.; writing—original draft preparation, A.L.M. and
H.G.; writing—review and editing, A.L.M. and H.G.; funding acquisition, H.G. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was supported by the U.S. National Institutes of Health (NIH) grants R01AI110762,
R01AI123271, R01AI134818, and R01AI150255 (to H.G.). A.M. was partly supported by a training grant from NIH
(T32AI060519).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Revill, P.A.; Chisari, F.V.; Block, J.M.; Dandri, M.; Gehring, A.J.; Guo, H.; Hu, J.; Kramvis, A.; Lampertico, P.;
Janssen, H.L.A.; et al. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol. Hepatol. 2019, 4, 545–558.
[CrossRef]

2. Hyun Kim, B.; Ray Kim, W. Epidemiology of hepatitis B virus infection in the United States. Clin. Liver Dis.
2018, 12, 1–4. [CrossRef] [PubMed]

3. Ganem, D.; Prince, A.M. Hepatitis B virus infection—Natural history and clinical consequences. N. Engl.
J. Med. 2004, 350, 1118–1129. [CrossRef] [PubMed]

4. Locarnini, S.; Hatzakis, A.; Chen, D.S.; Lok, A. Strategies to control hepatitis B: Public policy, epidemiology,
vaccine and drugs. J. Hepatol. 2015, 62, S76–S86. [CrossRef] [PubMed]

5. Ott, J.J.; Stevens, G.A.; Groeger, J.; Wiersma, S.T. Global epidemiology of hepatitis B virus infection:
New estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 2012, 30, 2212–2219. [CrossRef]
[PubMed]

6. Trépo, C.; Chan, H.L.Y.; Lok, A. Hepatitis B virus infection. Lancet 2014, 384, 2053–2063. [CrossRef]
7. Seeger, C.; Mason, W.S. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. MMBR 2000, 64, 51–68. [CrossRef]

[PubMed]
8. Block, T.M.; Guo, H.; Guo, J.T. Molecular virology of hepatitis B virus for clinicians. Clin. Liver Dis.

2007, 11, 685–706. [CrossRef] [PubMed]
9. Guo, J.T.; Guo, H. Metabolism and function of hepatitis B virus cccDNA: Implications for the development

of cccDNA-targeting antiviral therapeutics. Antivir. Res. 2015, 122, 91–100. [CrossRef]
10. Schulze, A.; Gripon, P.; Urban, S. Hepatitis B virus infection initiates with a large surface protein-dependent

binding to heparan sulfate proteoglycans. Hepatology 2007, 46, 1759–1768. [CrossRef]
11. Yan, H.; Zhong, G.; Xu, G.; He, W.; Jing, Z.; Gao, Z.; Huang, Y.; Qi, Y.; Peng, B.; Wang, H.; et al. Sodium

taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife
2012, 1, e00049. [CrossRef]

12. Huang, H.C.; Chen, C.C.; Chang, W.C.; Tao, M.H.; Huang, C. Entry of hepatitis B virus into immortalized
human primary hepatocytes by clathrin-dependent endocytosis. J. Virol. 2012, 86, 9443–9453. [CrossRef]

13. Herrscher, C.; Pastor, F.; Burlaud-Gaillard, J.; Dumans, A.; Seigneuret, F.; Moreau, A.; Patient, R.; Eymieux, S.;
de Rocquigny, H.; Hourioux, C.; et al. Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-mediated
endocytosis. Cell. Microbiol. 2020, 22, e13205. [CrossRef]

14. Iwamoto, M.; Saso, W.; Nishioka, K.; Ohashi, H.; Sugiyama, R.; Ryo, A.; Ohki, M.; Yun, J.H.; Park, S.Y.;
Ohshima, T.; et al. The machinery for endocytosis of epidermal growth factor receptor coordinates the transport
of incoming hepatitis B virus to the endosomal network. J. Biol. Chem. 2020, 295, 800–807. [CrossRef]

15. Liao, W.; Ou, J.H. Phosphorylation and nuclear localization of the hepatitis B virus core protein: Significance
of serine in the three repeated SPRRR motifs. J. Virol. 1995, 69, 1025–1029. [CrossRef]

http://dx.doi.org/10.1016/S2468-1253(19)30119-0
http://dx.doi.org/10.1002/cld.732
http://www.ncbi.nlm.nih.gov/pubmed/30988901
http://dx.doi.org/10.1056/NEJMra031087
http://www.ncbi.nlm.nih.gov/pubmed/15014185
http://dx.doi.org/10.1016/j.jhep.2015.01.018
http://www.ncbi.nlm.nih.gov/pubmed/25920093
http://dx.doi.org/10.1016/j.vaccine.2011.12.116
http://www.ncbi.nlm.nih.gov/pubmed/22273662
http://dx.doi.org/10.1016/S0140-6736(14)60220-8
http://dx.doi.org/10.1128/MMBR.64.1.51-68.2000
http://www.ncbi.nlm.nih.gov/pubmed/10704474
http://dx.doi.org/10.1016/j.cld.2007.08.002
http://www.ncbi.nlm.nih.gov/pubmed/17981225
http://dx.doi.org/10.1016/j.antiviral.2015.08.005
http://dx.doi.org/10.1002/hep.21896
http://dx.doi.org/10.7554/eLife.00049
http://dx.doi.org/10.1128/JVI.00873-12
http://dx.doi.org/10.1111/cmi.13205
http://dx.doi.org/10.1074/jbc.AC119.010366
http://dx.doi.org/10.1128/JVI.69.2.1025-1029.1995


Cells 2020, 9, 2430 14 of 18

16. Eckhardt, S.G.; Milich, D.R.; McLachlan, A. Hepatitis B virus core antigen has two nuclear localization
sequences in the arginine-rich carboxyl terminus. J. Virol. 1991, 65, 575–582. [CrossRef]

17. Guo, H.; Mao, R.; Block, T.M.; Guo, J.T. Production and function of the cytoplasmic deproteinized relaxed
circular DNA of hepadnaviruses. J. Virol. 2010, 84, 387–396. [CrossRef] [PubMed]

18. Rabe, B.; Delaleau, M.; Bischof, A.; Foss, M.; Sominskaya, I.; Pumpens, P.; Cazenave, C.; Castroviejo, M.;
Kann, M. Nuclear entry of hepatitis B virus capsids involves disintegration to protein dimers followed by
nuclear reassociation to capsids. PLoS Pathog. 2009, 5, e1000563. [CrossRef] [PubMed]

19. Gallucci, L.; Kann, M. Nuclear import of hepatitis B virus capsids and genome. Viruses 2017, 9, 21. [CrossRef]
20. Jiang, B.; Hildt, E. Intracellular trafficking of HBV particles. Cells 2020, 9, 2023. [CrossRef]
21. Lambert, C.; Doring, T.; Prange, R. Hepatitis B virus maturation is sensitive to functional inhibition of

ESCRT-III, Vps4, and gamma 2-adaptin. J. Virol. 2007, 81, 9050–9060. [CrossRef]
22. Watanabe, T.; Sorensen, E.M.; Naito, A.; Schott, M.; Kim, S.; Ahlquist, P. Involvement of host cellular multivesicular

body functions in hepatitis B virus budding. Proc. Natl. Acad. Sci. USA 2007, 104, 10205–10210. [CrossRef]
23. Seeger, C.; Mason, W.S. Molecular biology of hepatitis B virus infection. Virology 2015, 479–480, 672–686.

[CrossRef]
24. Gao, W.; Hu, J. Formation of hepatitis B virus covalently closed circular DNA: Removal of genome-linked

protein. J. Virol. 2007, 81, 6164–6174. [CrossRef]
25. Guo, H.; Jiang, D.; Zhou, T.; Cuconati, A.; Block, T.M.; Guo, J.T. Characterization of the intracellular

deproteinized relaxed circular DNA of hepatitis B virus: An intermediate of covalently closed circular DNA
formation. J. Virol. 2007, 81, 12472–12484. [CrossRef]

26. Tu, T.; Budzinska, M.A.; Shackel, N.A.; Urban, S. HBV DNA integration: Molecular mechanisms and clinical
implications. Viruses 2017, 9, 75. [CrossRef]

27. Yang, W.; Summers, J. Integration of hepadnavirus DNA in infected liver: Evidence for a linear precursor.
J. Virol. 1999, 73, 9710–9717. [CrossRef]

28. Wooddell, C.I.; Yuen, M.F.; Chan, H.L.; Gish, R.G.; Locarnini, S.A.; Chavez, D.; Ferrari, C.; Given, B.D.;
Hamilton, J.; Kanner, S.B.; et al. RNAi-based treatment of chronically infected patients and chimpanzees
reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci. Transl. Med. 2017, 9. [CrossRef]

29. Summers, J.; Smith, P.M.; Horwich, A.L. Hepadnavirus envelope proteins regulate covalently closed circular
DNA amplification. J. Virol. 1990, 64, 2819–2824. [CrossRef]

30. Lentz, T.B.; Loeb, D.D. Roles of the envelope proteins in the amplification of covalently closed circular DNA and
completion of synthesis of the plus-strand DNA in hepatitis B virus. J. Virol. 2011, 85, 11916–11927. [CrossRef]

31. Seeger, C.; Leber, E.H.; Wiens, L.K.; Hu, J. Mutagenesis of a hepatitis B virus reverse transcriptase yields
temperature-sensitive virus. Virology 1996, 222, 430–439. [CrossRef] [PubMed]

32. Kock, J.; Schlicht, H.J. Analysis of the earliest steps of hepadnavirus replication: Genome repair after
infectious entry into hepatocytes does not depend on viral polymerase activity. J. Virol. 1993, 67, 4867–4874.
[CrossRef]

33. Moraleda, G.; Saputelli, J.; Aldrich, C.E.; Averett, D.; Condreay, L.; Mason, W.S. Lack of effect of antiviral
therapy in nondividing hepatocyte cultures on the closed circular DNA of woodchuck hepatitis virus. J. Virol.
1997, 71, 9392–9399. [CrossRef]

34. Lucifora, J.; Arzberger, S.; Durantel, D.; Belloni, L.; Strubin, M.; Levrero, M.; Zoulim, F.; Hantz, O.; Protzer, U.
Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol.
2011, 55, 996–1003. [CrossRef]

35. Qi, Y.; Gao, Z.; Xu, G.; Peng, B.; Liu, C.; Yan, H.; Yao, Q.; Sun, G.; Liu, Y.; Tang, D.; et al. DNA polymerase
kappa is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus.
PLoS Pathog. 2016, 12, e1005893. [CrossRef]

36. Wei, L.; Ploss, A. Core components of DNA lagging strand synthesis machinery are essential for hepatitis B
virus cccDNA formation. Nat. Microbiol. 2020, 5, 715–726. [CrossRef]

37. Mitra, B.; Thapa, R.J.; Guo, H.; Block, T.M. Host functions used by hepatitis B virus to complete its life cycle:
Implications for developing host-targeting agents to treat chronic hepatitis B. Antivir. Res. 2018, 158, 185–198.
[CrossRef]

38. Xia, Y.; Guo, H. Hepatitis B virus cccDNA: Formation, regulation and therapeutic potential. Antivir. Res.
2020, 180, 104824. [CrossRef] [PubMed]

http://dx.doi.org/10.1128/JVI.65.2.575-582.1991
http://dx.doi.org/10.1128/JVI.01921-09
http://www.ncbi.nlm.nih.gov/pubmed/19864387
http://dx.doi.org/10.1371/journal.ppat.1000563
http://www.ncbi.nlm.nih.gov/pubmed/19714236
http://dx.doi.org/10.3390/v9010021
http://dx.doi.org/10.3390/cells9092023
http://dx.doi.org/10.1128/JVI.00479-07
http://dx.doi.org/10.1073/pnas.0704000104
http://dx.doi.org/10.1016/j.virol.2015.02.031
http://dx.doi.org/10.1128/JVI.02721-06
http://dx.doi.org/10.1128/JVI.01123-07
http://dx.doi.org/10.3390/v9040075
http://dx.doi.org/10.1128/JVI.73.12.9710-9717.1999
http://dx.doi.org/10.1126/scitranslmed.aan0241
http://dx.doi.org/10.1128/JVI.64.6.2819-2824.1990
http://dx.doi.org/10.1128/JVI.05373-11
http://dx.doi.org/10.1006/viro.1996.0440
http://www.ncbi.nlm.nih.gov/pubmed/8806527
http://dx.doi.org/10.1128/JVI.67.8.4867-4874.1993
http://dx.doi.org/10.1128/JVI.71.12.9392-9399.1997
http://dx.doi.org/10.1016/j.jhep.2011.02.015
http://dx.doi.org/10.1371/journal.ppat.1005893
http://dx.doi.org/10.1038/s41564-020-0678-0
http://dx.doi.org/10.1016/j.antiviral.2018.08.014
http://dx.doi.org/10.1016/j.antiviral.2020.104824
http://www.ncbi.nlm.nih.gov/pubmed/32450266


Cells 2020, 9, 2430 15 of 18

39. Nassal, M. HBV cccDNA: Viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut
2015, 64, 1972–1984. [CrossRef]

40. Hu, J.; Seeger, C. Hepadnavirus genome replication and persistence. Cold Spring Harbor Perspect. Med.
2015, 5, a021386. [CrossRef]

41. Flint, S.J. Principles of Virology: Molecular Biology, Pathogenesis, and Control; ASM Press: Washington, DC, USA,
2000; p. 804.

42. Janssen, H.L.; van Zonneveld, M.; Senturk, H.; Zeuzem, S.; Akarca, U.S.; Cakaloglu, Y.; Simon, C.; So, T.M.;
Gerken, G.; de Man, R.A.; et al. Pegylated interferon alfa-2b alone or in combination with lamivudine for
HBeAg-positive chronic hepatitis B: A randomised trial. Lancet 2005, 365, 123–129. [CrossRef]

43. Alter, H.; Block, T.; Brown, N.; Brownstein, A.; Brosgart, C.; Chang, K.M.; Chen, P.J.; Chisari, F.V.; Cohen, C.;
El-Serag, H.; et al. A research agenda for curing chronic hepatitis B virus infection. Hepatology 2018, 67, 1127–1131.
[CrossRef]

44. Zoulim, F.; Durantel, D. Antiviral therapies and prospects for a cure of chronic hepatitis B. Cold Spring Harbor
Perspect. Med. 2015, 5. [CrossRef]

45. Zoulim, F.; Locarnini, S. Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology
2009, 137, 1593–1608.e2. [CrossRef]

46. Hu, J.; Protzer, U.; Siddiqui, A. Revisiting hepatitis B virus: Challenges of curative therapies. J. Virol. 2019, 93.
[CrossRef]

47. Ko, C.; Chakraborty, A.; Chou, W.M.; Hasreiter, J.; Wettengel, J.M.; Stadler, D.; Bester, R.; Asen, T.; Zhang, K.;
Wisskirchen, K.; et al. Hepatitis B virus genome recycling and de novo secondary infection events maintain
stable cccDNA levels. J. Hepatol. 2018, 69, 1231–1241. [CrossRef]

48. Rabe, B.; Vlachou, A.; Pante, N.; Helenius, A.; Kann, M. Nuclear import of hepatitis B virus capsids and
release of the viral genome. Proc. Natl. Acad. Sci. USA 2003, 100, 9849–9854. [CrossRef]

49. Schmitz, A.; Schwarz, A.; Foss, M.; Zhou, L.; Rabe, B.; Hoellenriegel, J.; Stoeber, M.; Pante, N.; Kann, M.
Nucleoporin 153 arrests the nuclear import of hepatitis B virus capsids in the nuclear basket. PLoS Pathog.
2010, 6, e1000741. [CrossRef]

50. Chen, C.; Wang, J.C.; Pierson, E.E.; Keifer, D.Z.; Delaleau, M.; Gallucci, L.; Cazenave, C.; Kann, M.;
Jarrold, M.F.; Zlotnick, A. Importin beta can bind hepatitis B virus core protein and empty core-like particles
and induce structural changes. PLoS Pathog. 2016, 12, e1005802. [CrossRef]

51. Cui, X.; Ludgate, L.; Ning, X.; Hu, J. Maturation-associated destabilization of hepatitis B virus nucleocapsid.
J. Virol. 2013, 87, 11494–11503. [CrossRef]

52. Cui, X.; Luckenbaugh, L.; Bruss, V.; Hu, J. Alteration of mature nucleocapsid and enhancement of covalently
closed circular DNA formation by hepatitis B virus core mutants defective in complete-virion formation.
J. Virol. 2015, 89, 10064–10072. [CrossRef]

53. Luo, J.; Xi, J.; Gao, L.; Hu, J. Role of hepatitis B virus capsid phosphorylation in nucleocapsid disassembly
and covalently closed circular DNA formation. PLoS Pathog. 2020, 16, e1008459. [CrossRef]

54. Yang, W.; Mason, W.S.; Summers, J. Covalently closed circular viral DNA formed from two types of linear
DNA in woodchuck hepatitis virus-infected liver. J. Virol. 1996, 70, 4567–4575. [CrossRef] [PubMed]

55. Yang, W.; Summers, J. Illegitimate replication of linear hepadnavirus DNA through nonhomologous
recombination. J. Virol. 1995, 69, 4029–4036. [CrossRef] [PubMed]

56. Yang, W.; Summers, J. Infection of ducklings with virus particles containing linear double-stranded duck
hepatitis B virus DNA: Illegitimate replication and reversion. J. Virol. 1998, 72, 8710–8717. [CrossRef]

57. Guo, H.; Xu, C.; Zhou, T.; Block, T.M.; Guo, J.T. Characterization of the host factors required for hepadnavirus
covalently closed circular (ccc) DNA formation. PLoS ONE 2012, 7, e43270. [CrossRef]

58. Long, Q.; Yan, R.; Hu, J.; Cai, D.; Mitra, B.; Kim, E.S.; Marchetti, A.; Zhang, H.; Wang, S.; Liu, Y.; et al.
The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation. PLoS Pathog.
2017, 13, e1006784. [CrossRef]

59. Sells, M.A.; Zelent, A.Z.; Shvartsman, M.; Acs, G. Replicative intermediates of hepatitis B virus in HepG2
cells that produce infectious virions. J. Virol. 1988, 62, 2836–2844. [CrossRef]

60. Raney, A.K.; Eggers, C.M.; Kline, E.F.; Guidotti, L.G.; Pontoglio, M.; Yaniv, M.; McLachlan, A. Nuclear
covalently closed circular viral genomic DNA in the liver of hepatocyte nuclear factor 1 alpha-null hepatitis
B virus transgenic mice. J. Virol. 2001, 75, 2900–2911. [CrossRef]

http://dx.doi.org/10.1136/gutjnl-2015-309809
http://dx.doi.org/10.1101/cshperspect.a021386
http://dx.doi.org/10.1016/S0140-6736(05)17701-0
http://dx.doi.org/10.1002/hep.29509
http://dx.doi.org/10.1101/cshperspect.a021501
http://dx.doi.org/10.1053/j.gastro.2009.08.063
http://dx.doi.org/10.1128/JVI.01032-19
http://dx.doi.org/10.1016/j.jhep.2018.08.012
http://dx.doi.org/10.1073/pnas.1730940100
http://dx.doi.org/10.1371/journal.ppat.1000741
http://dx.doi.org/10.1371/journal.ppat.1005802
http://dx.doi.org/10.1128/JVI.01912-13
http://dx.doi.org/10.1128/JVI.01481-15
http://dx.doi.org/10.1371/journal.ppat.1008459
http://dx.doi.org/10.1128/JVI.70.7.4567-4575.1996
http://www.ncbi.nlm.nih.gov/pubmed/8676483
http://dx.doi.org/10.1128/JVI.69.7.4029-4036.1995
http://www.ncbi.nlm.nih.gov/pubmed/7769660
http://dx.doi.org/10.1128/JVI.72.11.8710-8717.1998
http://dx.doi.org/10.1371/journal.pone.0043270
http://dx.doi.org/10.1371/journal.ppat.1006784
http://dx.doi.org/10.1128/JVI.62.8.2836-2844.1988
http://dx.doi.org/10.1128/JVI.75.6.2900-2911.2001


Cells 2020, 9, 2430 16 of 18

61. Hirt, B. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 1967, 26, 365–369.
[CrossRef]

62. Cai, D.; Nie, H.; Yan, R.; Guo, J.T.; Block, T.M.; Guo, H. A southern blot assay for detection of hepatitis B
virus covalently closed circular DNA from cell cultures. Methods Mol. Biol. 2013, 1030, 151–161. [CrossRef]

63. Cai, D.; Yan, R.; Xu, J.Z.; Zhang, H.; Shen, S.; Mitra, B.; Marchetti, A.; Kim, E.S.; Guo, H. Characterization of
the termini of cytoplasmic hepatitis B virus deproteinated relaxed circular DNA. J. Virol. 2020. [CrossRef]

64. Kock, J.; Rosler, C.; Zhang, J.J.; Blum, H.E.; Nassal, M.; Thoma, C. Generation of covalently closed circular
DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner. PLoS Pathog.
2010, 6, e1001082. [CrossRef]

65. Dezhbord, M.; Lee, S.; Kim, W.; Seong, B.L.; Ryu, W.S. Characterization of the molecular events of covalently
closed circular DNA synthesis in de novo Hepatitis B virus infection of human hepatoma cells. Antivir. Res.
2019, 163, 11–18. [CrossRef]

66. Gripon, P.; Rumin, S.; Urban, S.; Le Seyec, J.; Glaise, D.; Cannie, I.; Guyomard, C.; Lucas, J.; Trepo, C.;
Guguen-Guillouzo, C. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA
2002, 99, 15655–15660. [CrossRef]

67. Cai, D.; Mills, C.; Yu, W.; Yan, R.; Aldrich, C.E.; Saputelli, J.R.; Mason, W.S.; Xu, X.; Guo, J.T.; Block, T.M.; et al.
Identification of disubstituted sulfonamide compounds as specific inhibitors of hepatitis B virus covalently
closed circular DNA formation. Antimicrob. Agents Chemother. 2012, 56, 4277–4288. [CrossRef]

68. Zhou, T.; Guo, H.; Guo, J.T.; Cuconati, A.; Mehta, A.; Block, T.M. Hepatitis B virus e antigen production is
dependent upon covalently closed circular (ccc) DNA in HepAD38 cell cultures and may serve as a cccDNA
surrogate in antiviral screening assays. Antivir. Res. 2006, 72, 116–124. [CrossRef]

69. Yan, R.; Zhang, Y.; Cai, D.; Liu, Y.; Cuconati, A.; Guo, H. Spinoculation enhances HBV infection in
NTCP-reconstituted hepatocytes. PLoS ONE 2015, 10, e0129889. [CrossRef]

70. Miller, R.H.; Robinson, W.S. Hepatitis B virus DNA forms in nuclear and cytoplasmic fractions of infected
human liver. Virology 1984, 137, 390–399. [CrossRef]

71. Niu, C.; Livingston, C.M.; Li, L.; Beran, R.K.; Daffis, S.; Ramakrishnan, D.; Burdette, D.; Peiser, L.; Salas, E.;
Ramos, H.; et al. The Smc5/6 complex restricts HBV when localized to ND10 without Inducing an innate
immune response and is counteracted by the HBV X protein shortly after infection. PLoS ONE 2017, 12, e0169648.
[CrossRef]

72. Lucifora, J.; Xia, Y.; Reisinger, F.; Zhang, K.; Stadler, D.; Cheng, X.; Sprinzl, M.F.; Koppensteiner, H.;
Makowska, Z.; Volz, T.; et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA.
Science 2014, 343, 1221–1228. [CrossRef]

73. Luo, J.; Cui, X.; Gao, L.; Hu, J. Identification of an intermediate in hepatitis B virus covalently closed circular
(CCC) DNA formation and sensitive and selective CCC DNA detection. J. Virol. 2017, 91. [CrossRef]

74. Schreiner, S.; Nassal, M. A role for the host DNA damage response in hepatitis B virus cccDNA formation-and
beyond? Viruses 2017, 9, 125. [CrossRef]

75. Blackford, A.N.; Jackson, S.P. ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response.
Mol. Cell 2017, 66, 801–817. [CrossRef]

76. Luo, J.; Luckenbaugh, L.; Hu, H.; Yan, Z.; Gao, L.; Hu, J. Involvement of host ATR-CHK1 pathway in hepatitis
B virus covalently closed circular DNA formation. mBio 2020, 11. [CrossRef]

77. Smith, J.; Tho, L.M.; Xu, N.; Gillespie, D.A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage
signaling and cancer. Adv. Cancer Res. 2010, 108, 73–112. [CrossRef]

78. Lehmann, A.R. DNA polymerases and repair synthesis in NER in human cells. DNA Repair 2011, 10, 730–733.
[CrossRef]

79. Tang, L.; Sheraz, M.; McGrane, M.; Chang, J.; Guo, J.T. DNA Polymerase alpha is essential for intracellular
amplification of hepatitis B virus covalently closed circular DNA. PLoS Pathog. 2019, 15, e1007742. [CrossRef]
[PubMed]

80. Lehman, I.R.; Kaguni, L.S. DNA polymerase alpha. J. Biol. Chem. 1989, 264, 4265–4268.
81. Balakrishnan, L.; Bambara, R.A. Flap endonuclease 1. Annu. Rev. Biochem. 2013, 82, 119–138. [CrossRef]
82. Kitamura, K.; Que, L.; Shimadu, M.; Koura, M.; Ishihara, Y.; Wakae, K.; Nakamura, T.; Watashi, K.; Wakita, T.;

Muramatsu, M. Flap endonuclease 1 is involved in cccDNA formation in the hepatitis B virus. PLoS Pathog.
2018, 14, e1007124. [CrossRef]

http://dx.doi.org/10.1016/0022-2836(67)90307-5
http://dx.doi.org/10.1007/978-1-62703-484-5_13
http://dx.doi.org/10.1128/JVI.00922-20
http://dx.doi.org/10.1371/journal.ppat.1001082
http://dx.doi.org/10.1016/j.antiviral.2019.01.004
http://dx.doi.org/10.1073/pnas.232137699
http://dx.doi.org/10.1128/AAC.00473-12
http://dx.doi.org/10.1016/j.antiviral.2006.05.006
http://dx.doi.org/10.1371/journal.pone.0129889
http://dx.doi.org/10.1016/0042-6822(84)90231-9
http://dx.doi.org/10.1371/journal.pone.0169648
http://dx.doi.org/10.1126/science.1243462
http://dx.doi.org/10.1128/JVI.00539-17
http://dx.doi.org/10.3390/v9050125
http://dx.doi.org/10.1016/j.molcel.2017.05.015
http://dx.doi.org/10.1128/mBio.03423-19
http://dx.doi.org/10.1016/B978-0-12-380888-2.00003-0
http://dx.doi.org/10.1016/j.dnarep.2011.04.023
http://dx.doi.org/10.1371/journal.ppat.1007742
http://www.ncbi.nlm.nih.gov/pubmed/31026293
http://dx.doi.org/10.1146/annurev-biochem-072511-122603
http://dx.doi.org/10.1371/journal.ppat.1007124


Cells 2020, 9, 2430 17 of 18

83. Sohn, J.A.; Litwin, S.; Seeger, C. Mechanism for CCC DNA synthesis in hepadnaviruses. PLoS ONE
2009, 4, e8093. [CrossRef]

84. Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem.
2001, 70, 369–413. [CrossRef]

85. Sheraz, M.; Cheng, J.; Tang, L.; Chang, J.; Guo, J.T. Cellular DNA topoisomerases are required for the
synthesis of hepatitis B virus covalently closed circular DNA. J. Virol. 2019, 93. [CrossRef]

86. Kawale, A.S.; Povirk, L.F. Tyrosyl-DNA phosphodiesterases: Rescuing the genome from the risks of relaxation.
Nucleic Acids Res. 2018, 46, 520–537. [CrossRef]

87. Pommier, Y.; Huang, S.Y.; Gao, R.; Das, B.B.; Murai, J.; Marchand, C. Tyrosyl-DNA-phosphodiesterases
(TDP1 and TDP2). DNA Repair 2014, 19, 114–129. [CrossRef]

88. Cortes Ledesma, F.; El Khamisy, S.F.; Zuma, M.C.; Osborn, K.; Caldecott, K.W. A human 5’-tyrosyl DNA
phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 2009, 461, 674–678. [CrossRef]

89. Zeng, Z.; Cortes-Ledesma, F.; El Khamisy, S.F.; Caldecott, K.W. TDP2/TTRAP is the major 5’-tyrosyl DNA
phosphodiesterase activity in vertebrate cells and is critical for cellular resistance to topoisomerase II-induced
DNA damage. J. Biol. Chem. 2011, 286, 403–409. [CrossRef]

90. Jones, S.A.; Hu, J. Protein-primed terminal transferase activity of hepatitis B virus polymerase. J. Virol.
2013, 87, 2563–2576. [CrossRef]

91. Cui, X.; McAllister, R.; Boregowda, R.; Sohn, J.A.; Ledesma, F.C.; Caldecott, K.W.; Seeger, C.; Hu, J. Does
tyrosyl DNA phosphodiesterase-2 play a role in hepatitis B virus genome repair? PLoS ONE 2015, 10, e0128401.
[CrossRef]

92. Jones, S.A.; Boregowda, R.; Spratt, T.E.; Hu, J. In vitro epsilon RNA-dependent protein priming activity of
human hepatitis B virus polymerase. J. Virol. 2012, 86, 5134–5150. [CrossRef]

93. Koniger, C.; Wingert, I.; Marsmann, M.; Rosler, C.; Beck, J.; Nassal, M. Involvement of the host DNA-repair
enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses.
Proc. Natl. Acad. Sci. USA 2014, 111, E4244–E4253. [CrossRef]

94. Winer, B.Y.; Huang, T.S.; Pludwinski, E.; Heller, B.; Wojcik, F.; Lipkowitz, G.E.; Parekh, A.; Cho, C.; Shrirao, A.;
Muir, T.W.; et al. Long-term hepatitis B infection in a scalable hepatic co-culture system. Nat. Commun.
2017, 8, 125. [CrossRef] [PubMed]

95. Chang, H.H.Y.; Pannunzio, N.R.; Adachi, N.; Lieber, M.R. Non-homologous DNA end joining and alternative
pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017, 18, 495–506. [CrossRef]

96. Bill, C.A.; Summers, J. Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration.
Proc. Natl. Acad. Sci. USA 2004, 101, 11135–11140. [CrossRef]

97. Kinoshita, W.; Ogura, N.; Watashi, K.; Wakita, T. Host factor PRPF31 is involved in cccDNA production in
HBV-replicating cells. Biochem. Biophys. Res. Commun. 2017, 482, 638–644. [CrossRef] [PubMed]

98. Malumbres, M. Cyclin-dependent kinases. Genome Biol. 2014, 15, 122. [CrossRef]
99. Ou, M.; Sandri-Goldin, R.M. Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral

transcription. PLoS ONE 2013, 8, e79007. [CrossRef]
100. Feichtinger, S.; Stamminger, T.; Muller, R.; Graf, L.; Klebl, B.; Eickhoff, J.; Marschall, M. Recruitment of

cyclin-dependent kinase 9 to nuclear compartments during cytomegalovirus late replication: Importance of
an interaction between viral pUL69 and cyclin T1. J. Gen. Virol. 2011, 92, 1519–1531. [CrossRef]

101. Kim, Y.K.; Bourgeois, C.F.; Isel, C.; Churcher, M.J.; Karn, J. Phosphorylation of the RNA polymerase II
carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1
Tat-activated transcriptional elongation. Mol. Cell. Biol. 2002, 22, 4622–4637. [CrossRef]

102. Tanaka, T.; Okuyama-Dobashi, K.; Murakami, S.; Chen, W.; Okamoto, T.; Ueda, K.; Hosoya, T.; Matsuura, Y.;
Ryo, A.; Tanaka, Y.; et al. Inhibitory effect of CDK9 inhibitor FIT-039 on hepatitis B virus propagation.
Antivir. Res. 2016, 133, 156–164. [CrossRef]

103. Chen, S.; Bonifati, S.; Qin, Z.; St Gelais, C.; Wu, L. SAMHD1 suppression of antiviral immune responses.
Trends Microbiol. 2019, 27, 254–267. [CrossRef]

104. Wing, P.A.; Davenne, T.; Wettengel, J.; Lai, A.G.; Zhuang, X.; Chakraborty, A.; D’Arienzo, V.; Kramer, C.;
Ko, C.; Harris, J.M.; et al. A dual role for SAMHD1 in regulating HBV cccDNA and RT-dependent particle
genesis. Life Sci. Alliance 2019, 2. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0008093
http://dx.doi.org/10.1146/annurev.biochem.70.1.369
http://dx.doi.org/10.1128/JVI.02230-18
http://dx.doi.org/10.1093/nar/gkx1219
http://dx.doi.org/10.1016/j.dnarep.2014.03.020
http://dx.doi.org/10.1038/nature08444
http://dx.doi.org/10.1074/jbc.M110.181016
http://dx.doi.org/10.1128/JVI.02786-12
http://dx.doi.org/10.1371/journal.pone.0128401
http://dx.doi.org/10.1128/JVI.07137-11
http://dx.doi.org/10.1073/pnas.1409986111
http://dx.doi.org/10.1038/s41467-017-00200-8
http://www.ncbi.nlm.nih.gov/pubmed/28743900
http://dx.doi.org/10.1038/nrm.2017.48
http://dx.doi.org/10.1073/pnas.0403925101
http://dx.doi.org/10.1016/j.bbrc.2016.11.085
http://www.ncbi.nlm.nih.gov/pubmed/27864147
http://dx.doi.org/10.1186/gb4184
http://dx.doi.org/10.1371/journal.pone.0079007
http://dx.doi.org/10.1099/vir.0.030494-0
http://dx.doi.org/10.1128/MCB.22.13.4622-4637.2002
http://dx.doi.org/10.1016/j.antiviral.2016.08.008
http://dx.doi.org/10.1016/j.tim.2018.09.009
http://dx.doi.org/10.26508/lsa.201900355


Cells 2020, 9, 2430 18 of 18

105. Daddacha, W.; Koyen, A.E.; Bastien, A.J.; Head, P.E.; Dhere, V.R.; Nabeta, G.N.; Connolly, E.C.; Werner, E.;
Madden, M.Z.; Daly, M.B.; et al. SAMHD1 promotes DNA end resection to facilitate DNA repair by
homologous recombination. Cell Rep. 2017, 20, 1921–1935. [CrossRef]

106. Xia, Y.; Stadler, D.; Lucifora, J.; Reisinger, F.; Webb, D.; Hosel, M.; Michler, T.; Wisskirchen, K.; Cheng, X.;
Zhang, K.; et al. Interferon-gamma and tumor necrosis factor-alpha produced by T cells reduce the HBV
persistence form, cccDNA, without cytolysis. Gastroenterology 2016, 150, 194–205. [CrossRef]

107. Loeb, L.A.; Loeb, K.R.; Anderson, J.P. Multiple mutations and cancer. Proc. Natl. Acad. Sci. USA
2003, 100, 776–781. [CrossRef] [PubMed]

108. Zhou, B.; Ho, S.S.; Greer, S.U.; Spies, N.; Bell, J.M.; Zhang, X.; Zhu, X.; Arthur, J.G.; Byeon, S.; Pattni, R.; et al.
Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2. Nucleic Acids Res.
2019, 47, 3846–3861. [CrossRef]

109. Lempp, F.A.; Mutz, P.; Lipps, C.; Wirth, D.; Bartenschlager, R.; Urban, S. Evidence that hepatitis B virus
replication in mouse cells is limited by the lack of a host cell dependency factor. J. Hepatol. 2016, 64, 556–564.
[CrossRef]

110. He, W.; Ren, B.; Mao, F.; Jing, Z.; Li, Y.; Liu, Y.; Peng, B.; Yan, H.; Qi, Y.; Sun, Y.; et al. Hepatitis D
virus infection of mice expressing human sodium taurocholate co-transporting polypeptide. PLoS Pathog.
2015, 11, e1004840. [CrossRef]

111. Guidotti, L.G.; Matzke, B.; Schaller, H.; Chisari, F.V. High-level hepatitis B virus replication in transgenic
mice. J. Virol. 1995, 69, 6158–6169. [CrossRef]

112. Cui, X.; Guo, J.T.; Hu, J. Hepatitis B virus covalently closed circular DNA formation in immortalized mouse
hepatocytes associated with nucleocapsid destabilization. J. Virol. 2015, 89, 9021–9028. [CrossRef]

113. Qiao, L.; Sui, J.; Luo, G. Robust human and murine hepatocyte culture models of hepatitis B virus infection
and replication. J. Virol. 2018, 92. [CrossRef]

114. Liu, C.; Cai, D.; Zhang, L.; Tang, W.; Yan, R.; Guo, H.; Chen, X. Identification of hydrolyzable tannins
(punicalagin, punicalin and geraniin) as novel inhibitors of hepatitis B virus covalently closed circular DNA.
Antivir. Res. 2016, 134, 97–107. [CrossRef]

115. Gavande, N.S.; VanderVere-Carozza, P.S.; Hinshaw, H.D.; Jalal, S.I.; Sears, C.R.; Pawelczak, K.S.; Turchi, J.J. DNA
repair targeted therapy: The past or future of cancer treatment? Pharmacol. Ther. 2016, 160, 65–83. [CrossRef]

116. Tomkinson, A.E.; Howes, T.R.; Wiest, N.E. DNA ligases as therapeutic targets. Transl. Cancer Res. 2013, 2, 1219.
117. Minchom, A.; Aversa, C.; Lopez, J. Dancing with the DNA damage response: Next-generation anti-cancer

therapeutic strategies. Ther. Adv. Med. Oncol. 2018, 10, 1758835918786658. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.celrep.2017.08.008
http://dx.doi.org/10.1053/j.gastro.2015.09.026
http://dx.doi.org/10.1073/pnas.0334858100
http://www.ncbi.nlm.nih.gov/pubmed/12552134
http://dx.doi.org/10.1093/nar/gkz169
http://dx.doi.org/10.1016/j.jhep.2015.10.030
http://dx.doi.org/10.1371/journal.ppat.1004840
http://dx.doi.org/10.1128/JVI.69.10.6158-6169.1995
http://dx.doi.org/10.1128/JVI.01261-15
http://dx.doi.org/10.1128/JVI.01255-18
http://dx.doi.org/10.1016/j.antiviral.2016.08.026
http://dx.doi.org/10.1016/j.pharmthera.2016.02.003
http://dx.doi.org/10.1177/1758835918786658
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	HBV cccDNA Formation 
	General Steps of cccDNA Formation 
	cccDNA Intermediates/Precursors 
	DNA Repair Factors Involved in cccDNA Formation 
	Non-DNA Repair Factors Involved in cccDNA Formation 

	Summary and Perspectives 
	References

