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Abstract: The ultimate goal of gene expression regulation is on the protein level. However, because
the amounts of mRNAs and proteins are controlled by their synthesis and degradation rates, the
cellular amount of a given protein can be attained by following different strategies. By studying omics
data for six expression variables (mRNA and protein amounts, plus their synthesis and decay rates),
we previously demonstrated the existence of common expression strategies (CESs) for functionally
related genes in the yeast Saccharomyces cerevisiae. Here we extend that study to two other eukaryotes:
the yeast Schizosaccharomyces pombe and cultured human HeLa cells. We also use genomic data from
the model prokaryote Escherichia coli as an external reference. We show that six-variable profiles
(6VPs) can be constructed for every gene and that these 6VPs are similar for genes with similar
functions in all the studied organisms. The differences in 6VPs between organisms can be used to
establish their phylogenetic relationships. The analysis of the correlations among the six variables
supports the hypothesis that most gene expression control occurs in actively growing organisms at
the transcription rate level, and that translation plays a minor role. We propose that living organisms
use CESs for the genes acting on the same physiological pathways, especially for those belonging to
stable macromolecular complexes, but CESs have been modeled by evolution to adapt to the specific
life circumstances of each organism.

Keywords: transcription rate; mRNA stability; translation rate; protein stability; phenogram

1. Introduction

The central dogma of molecular biology states that information flows from DNA to
protein [1]. The information flux for protein-coding genes has an obligate intermediary:
mRNA. The regulation of the expression for these genes ultimately addresses the control of
protein levels in the cell because the final goal is readily available protein. In fact, protein
abundance (PA) seems to correlate much more between different organisms than mRNA
abundance (RA; [2]). However, given the central position of mRNA, and because both RA
and PA are controlled by synthesis and degradation rates (Figure 1), the desired PA can be
obtained through different strategies [3] that balance the contribution of productive and
destructive steps, as well as the relative importance of transcriptional and translational
regulation [4]. Recent evidence shows that transcription, and not translation, determines PA
under steady-state conditions from yeast [5,6] to mammals [7,8]. Moreover, several studies
have suggested that changes in mRNA levels in dynamic scenarios strongly determine
protein dynamics (discussed in [9]). This topic, however, is open to discussion [4,10–12]. In
fact, it has been argued that under severe pleiotropic stress conditions, the contributions of
protein-level regulation, translation rate (TLR) and protein stability (PS) are more important.
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Hence, the relative contribution of mRNA-level and protein-level regulation can be context-
dependent [4]. It is clear that PA depends on a dynamic balance among these processes,
but how this balance is achieved and to what extent all these processes contribute to the
regulation of cellular PA are still open questions.

Figure 1. The six variables of the gene expression flux. The genetic information (genes = genotype) is
transcribed to mRNAs, of which the concentration (RA), under steady-state conditions, depends on
the equilibrium between synthesis (TR) and the degradation rates (herein expressed as the reverse
parameter, mRNA stability: RS). The phenotype is, however, dependent mainly on the protein
concentration (PA), which, in turn, depends on their synthesis (TLRi) and degradation rates (or
stabilities, PS). See the main text for additional explanations.

The evolution of extant cells should have taken into account the energy costs of each
step of gene expression. Proteins are thousands of times more abundant than mRNAs
and have a larger dynamic range [3,10], which makes their synthesis and regulation much
more costly processes. This may be the reason for selecting gene expression mechanisms at
the mRNA level [13]. Other variables that influence the selection of specific strategies of
gene expression are appropriate speediness and the required level and gradation of the
response to potential changes in the environment [14], the feasibility of post-transcriptional
and/or post-translational regulatory mechanisms [15] and the optimal biological noise
associated with each step [15–17]. In this sense the respective influence of transcription
rates and mRNA stabilities on biological noise has been studied in yeast, showing that the
two different mRNA decay machineries, Xrn1 and the exosome, contribute differently to
the extrinsic noise of gene expression [18].

In a previous study conducted with the model yeast Saccharomyces cerevisiae, we
addressed these questions by comparing omics data for the abundances of mRNAs and
proteins, and their synthesis and degradation rates (studied herein as their reverse variable:
stabilities) [3]. We found that yeast cells use common expression strategies (CESs) for genes
belonging to the same physiological pathways. Thus we defined a six-variable profile (6VP)
for each functional group of genes to illustrate the particular average expression strategy
it followed. Our results also showed that synthesis rates and molecule amounts tend to
have higher correlations between one another than with stabilities, which suggests a more
important role for synthesis rates in the regulation of gene expression.

In the present study, we checked if the results obtained in budding yeast were general
to other organisms. To answer this question, we selected three additional model cells
for which omics data were available for the six variables: transcription rate (TR), RNA
stability (RS), RA, TLR, PS and PA. Thus, we chose another single cell eukaryote, the fission
yeast Schizosaccharomyces pombe, because it is distantly related to budding yeast, but has
converged with it in lifestyle [19–22]. As a higher eukaryote model, we selected HeLa cells,
because this is the human cell line with the best and most extensive omics data [23]. Finally,
we chose the model bacterium Escherichia coli to be representative of prokaryotes for similar
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reasons. Our results show that all the investigated organisms have common expression
strategies for functionally related gene groups and that CESs are especially robust for
genes coding for subunits of stable macromolecular complexes. 6VPs have similarities and
differences between organisms that allow phenetic dendograms (phenograms) based on
them to be constructed, which, recapitulate the evolutionary tree to a great extent. There
are, however, interesting features which indicate that functional divergence is not always
strictly proportional to sequence divergence. Finally, our results support the notion that
most gene regulation takes place at the mRNA synthesis level, whereas translation plays a
minor role, serving to potentiate the effect of transcription.

2. Materials and Methods
2.1. Selection and Features of the Original Data

We used data from several publications that have followed, in many cases, different
methodologies or different experimental setups. In all cases, data were obtained from the
standard reference strains of the four organisms. For some organisms, the data available
came from a single study. However, for others, some of the six variables were measured
in more than one study (see Supplementary Table S1 for a summary of datasets used). In
order to check the compatibility of the datasets we used the Pearson correlation. If the
Pearson correlation was above 0.3, we used them all (see below for specific details). If not,
we used the dataset having the highest number of gene data. When having more than
one valid dataset, in order to manage missing data for some genes, the k-nearest neighbor
method (KNN), available in the Bioconductor library impute [24], was used with all the
parameters set to their default values. Then, the medians of all datasets were matched.
Finally, the average was calculated between the values represented for each gene in the
different datasets to obtain the final values of the amounts, synthesis rates or stabilities.
Once the data to be used were selected, we created 4 arrays, one for each organism. The
actual data employed for the comparisons are shown in Supplementary Table S2.

In particular, for S. cerevisiae (S288c background), we updated the data used in our
previous study [3]. These data contained two sources for RS [25,26] obtained through
dynamic transcriptome analysis (DTA) and the RNA approach to equilibrium sequencing
(RATE-seq), respectively. The correlation for RS in both sources was R = 0.31, just above the
established limit. Moreover, despite not having a large correlation, they were combined for
convenience, since although RATE-seq technology is the most reliable in methodological
terms, analysis with DTA included the RA and TR data from the experiment, which
improves correspondence (decreases noise) compared to other parameters. For the RA
variable, we used the data from [25,27]. These were combined to give a file with 4985
analyzed genes. The PS data were obtained from [28]. For PA, we used the data from [29].
The TR data came from averaging the results of [25,30]. Finally, we employed individual
translation rate data (TLRi) collected from [31]. We used the gene identifiers described in
Saccharomyces Genome Database (SGD) (http://www.yeastgenome.org/ (accessed on 1
February 2021)).

For the S. pombe data, we utilized the following datasets. For the RS variable, the data
came from [32–34] (DNA microarrays). Data were combined in a single dataset. For RA,
data were obtained from [34,35] (RNA-seq), as well as [36]. Data were combined into a
single dataset. For TR, data were obtained from [34–36]. The TLRi data were collected
from [36]. The PA data were obtained from [35,37]. Finally, the PS data were from [28]. We
used the gene identifiers described in pomBase (https://www.pombase.org/ (accessed on
1 February 2021)).

For HeLa cells, we employed the following data. For RS, the data were obtained
from [38]. With RA, data were available from three sources [39–41], which were combined
to create a final dataset. The PS data came from analyzing [41]. For PA, data came from
three sources that correlated well (R > 0.3). As what actually matters is the relative expres-
sion of each protein compared to the others, although two of them presented expression
data as number of protein copies per cell (PCN) [42,43] and the other as intensity-Based
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Absolute Quantification (iBAQ) [39], the latter was converted into PCN with a conversion
factor obtained from the plot between them. As a result, a single dataset was obtained.
Finally, there is no published HeLa TR and TLRi data; therefore, these were calculated
mathematically from the quantity and synthesis data using Equations (1) and (2):

TR =
RA
RS

(1)

TLR = PA
PS

TLR = RA × TLRi

Hence:
TLRi = PA

RA × PS (2)

The gene identifiers were converted into the HUGO nomenclature (http://www.
genenames.org/ (accessed on 1 February 2021)) because it is the most widely used one
among different sources.

For E. coli, we used the following data obtained from the K12 strain exponentially
grown at 37 ◦C in M9 or LB media. For RS, we used the data from [44,45]. They were
combined, creating a single dataset. For RA, we utilized the datasets from [44–47]. They
were combined to give a single dataset. For TLRi, we used the data from [46]. For PA, we
employed the data from [45,47,48]. They were combined to give a single dataset. The TR
and PS data were obtained mathematically from other data using Equations (1) and (2). We
used the gene identifiers described in the EcoCyc Database [49].

2.2. Correlation Analyses

To test the global correlation among all the pairwise combinations of the six variables
(obtained as explained in the previous section), Pearson’s correlation coefficients (R) and
their associated p-values were calculated using the data from the genes for which com-
plete information was available (Spearman rank correlations yielded equivalent results,
not shown).

However, in a complex process like this, Pearson’s correlations are not enough to
capture how the 5 considered variables are related to PA, taking into account the fact
that they are correlated among them. Hence it is more appropriate to consider a multiple
regression analysis in order to capture this interdependence. Moreover, it is important
to keep in mind that there exist many different linear combinations of these 5 variables
and some of them may be more suitable than others. That is, not all variables may be
directly related with PA in the presence of the rest and these relations may change among
organisms. Hence, we decided to incorporate the uncertainty about the suitability of the
model by using a Bayesian model averaging (BMA) procedure [50].

BMA uses the strength of Bayesian analysis by averaging estimations and predictions
from different models weighted by the posterior probabilities of each model. In particular,
the analysis was performed using the BayesVarSel R package [51], allowing us to make a
robust estimation of the coefficients of each variable. It worth mentioning that this type of
procedure cannot be performed using classical statistics since we need to determine the
posterior probability of each possible combination of covariates, which is only available
when using the Bayesian approach. Moreover, BMA estimation of a coefficient takes
into account the potential correlations among the independent variables included in the
linear regression. Note that in order to make all the coefficients comparable, data were
transformed using Z-scores (since Z-scores maintain the internal structure of the data,
still accounting for their dispersion within and among organisms). Accordingly, the
posterior mean and 95% credible interval for each coefficient and organism were calculated.
Certain variables were not included in the analysis for some organisms given their direct
mathematical calculation from the response variable (PA), which was the case for TLRi in
HeLa and PS in E. coli.

http://www.genenames.org/
http://www.genenames.org/
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2.3. Six-Variable Profiles (6VPs)

For 6VPs we followed the protocol previously described in [3]: we analyzed the behav-
ior of the genes from all four organisms using rank data values (0 was the lowest value, and
1 was the highest). Ranking, similarly to Z-scores, serves to avoid the wide dispersion in the
unit ranges seen when comparing the different datasets for the six variables obtained with
very distinct experimental techniques. In addition, for the comparison of 6VPs between
different organisms, the use of ranking offers an advantage over Z-scores that use the
same scale (0–1) for all groups and organisms. In this way, although some information
was lost, the results were much more robust. Matrices were obtained with 3613, 4139,
3350 and 1643 genes represented for HeLa, S. cerevisiae, S. pombe and E. coli, respectively
(Supplementary Table S3).

To show the performance of the 6VP protocol we selected some Gene Ontology (GO)
terms with enough genes (>50) in all three eukaryotes or groups of functionally related
genes that were obtained from a previous selection, described in [3]. The definition of
groups was based on S. cerevisiae genes. The orthologous genes from the other eukaryotes
were obtained from the YeastMine database (http://yeastmine.yeastgenome.org/ (accessed
on 1 February 2021)) for HeLa and from pomBase (https://www.pombase.org/ (accessed
on 1 February 2021)) for S. pombe.

We calculated the average rank value and represented these values for the six variables
in this order—TR, RS, RA, TLRi, PS and PA, to yield a 6VP for each studied group. We
also calculated the standard error (SE) associated with each average and represented it
in the profile as error bars. A control test was done by averaging values of 1000 random
samplings with the same sample size as the analyzed functional group. In all cases they
appeared as a flat line at the 0.5 score. They have been omitted in the graphs for clarity.

2.4. Cluster Analyses

In order to identify the groups of genes with similar expression profiles, gene clus-
tering was done according to their 6VP (Figure 3). In this way, we settled characteristic
expression profiles with the data of the six variables for the genes with at least four repre-
sented variables (of which at least two had to be of mRNA and the other two of protein).

For the clustering analysis, to allow a better comparison with the previous study we
used the same algorithm that was used in that study [3]: the sota() function of the R clValid
package [52]. This function performs clustering with the self-organizing tree algorithm
(SOTA) [53] using the linear correlation coefficient among the six variable vectors as the
distance between genes, following a splitter scheme that allows the algorithm to be stopped
at any point to gain the desired number of clusters. This algorithm does not allow any
variable with missing data, so the Bioconductor impute package [24] was used to impute
unrepresented data by means of the k-nearest neighbors method (KNN). The algorithm
was settled in order to avoid clusters with less than five genes.

Trees were allowed to grow until 10, 15, 20 or 30 clusters were produced. Then,
clusters were manually selected from any clustering level by considering the p-value of the
enrichment for GO terms by looking for the best ones, and in such a way that clusters do
not overlap. The whole set of clusters and its GO searches can be seen in Supplementary
Files S1–S4.

2.5. Gene Ontology Category Searches

To test potential enrichment in GO terms in the different clusters obtained by SOTA,
and as previously explained, we used the GOstats R package. For this purpose, a test based
on hypergeometric distribution was run for the terms or divisions of ontologies Cellular
Component (CC) and Biological Process (BP). Only GO terms were considered significant
when applying the false discovery rate (FDR) method [54] for multiple comparisons, and
they yielded an adjusted p-value of < 0.001. These terms were filtered by a semantic
comparison process with the help of the GOSemSim package [55] to avoid redundant GO

http://yeastmine.yeastgenome.org/
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terms. Using this package, a function was designed to select the GO group with the lowest
adjusted p-value of all those with a semantic similarity greater than 70%.

2.6. Comparison of the Proximity in 6VPs among the Genes Belonging to Macromolecular
Complexes and Those Belonging to GO Categories Not Forming Macromolecular Complexes

We selected the 18 stable protein complexes in S. cerevisiae that had more than five and
less than 150 genes from the MIPS database described in the previous study [3]. We also
selected the 15 GO categories that included less than 350 genes and were known not to
include complexes. Supplementary Table S4 indicates the selected GO terms and the genes
included in those for which complete data were available.

2.7. Phenogram Tree Construction

We performed both neighbor-joining (NJ) and hierarchical clustering by Unweighted
Pair Group Method with Arithmetic mean (UPGMA) using the information deriving from
our GO term-level 6VPs as input. We removed excessively broad GO terms and the GO
terms containing very few genes. Thus, in order to keep a functional category for the
downstream analysis, it had to contain a number of genes between 5 and 275 in all four
species. We only included those functional categories for which we had data about all
six variables.

We employed only Biological Process (BP) and Cellular Component (CC) ontologies
for searches, removing very closely related GO terms, which would probably present large
gene overlaps. First, we used the GOSemSim package [55], a package designed for the
semantic comparisons of Gene Ontology (GO) annotations. All the analyses were carried
out by taking the human GO database as a reference. From our list dataset of the GO terms,
we selected those found in the human GO database. Then for the list of retrieved GO terms,
we computed a matrix of pairwise similarity values using the Rel method. In short, the
Rel method combines Resnik’s and Lin’s methods [56,57] to compute semantic similarity
(SimREL) between any given pair of GO terms. SimREL values range from 0 to 1, and the
higher the value is, the greater the similarity between GO terms. The pairwise matrix of
the SimREL values were transformed into a distance matrix (SimREL-dist) by computing
1-SimREL. For each functional category, a parameter called uniqueness was computed as
1 minus the average of the SimREL values of each GO term to all the other terms. This
parameter indicates how different a specific GO term is compared to all the others.

The distance matrix, SimREL-dist, was then employed to perform hierarchical cluster-
ing using the average (UPGMA) method. The mean silhouette information was extracted
for any possible divisions from 1 to the number of the included functional categories −1.
The number of clusters yielding the highest average silhouette value was selected. Then for
each cluster of the GO terms, the term with the highest uniqueness value was selected as
the most representative element of each cluster. For those clusters with only one element,
this one element was selected. The set of representative elements of each cluster included
the GO terms used in the downstream analysis. Lists of the GO terms employed in each
tree are shown in Supplementary Table S5.

Using the whole set of GO terms yielded by the previous procedure, we carried out
a clustering analysis using two different methods: hierarchical average (UPGMA) and
neighbor-joining employing the NJ and hclust methods implemented in phangorn [58]
and stats packages. We also visually inspected the GO terms and created groups of GO
terms linked with the following cellular processes: cytoplasmic translation, mitochondrion,
transcription and replication to make the clustering analysis of selected terms shown in
Figure 5B and those of cytoplasmic Golgi, vacuole, ribosome biogenesis, nuclear pore,
proteasome and spliceosome in Supplementary Figure S2.
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3. Results
3.1. Datasets for the Variables Selected in This Study

In this work, we studied the six variables that control gene expression (see Figure 1)—
transcription rate (TR), mRNA amount (RA), mRNA stability (RS), translation rate per
mRNA (TLRi), protein amount (PA) and protein stability (PS)—using omics datasets under
a standard growth condition for each studied organism. When the published work studied
different growth conditions, we selected that with the highest growth rate because in
the rest of studies this condition was used. Although the right parameter to be used is
concentration rather than amount, we can assume that the cell volume for each organism
is constant for all their datasets obtained under the same culture conditions and, thus,
variations in the number of molecules and their concentrations are equivalent. As there
were large differences within the ranges of actual values among the six variables, we used
ranks and Z-scores instead of absolute values to make the results more robust.

In a previous study into S. cerevisiae [3], we used the datasets available for the omics
data at that time. We have updated some of the datasets from S. cerevisiae by taking special
care with the mRNA half-lives dataset (RS) that produces very different results from the
previous one (see below). For S. pombe, HeLa and E. coli we selected from the available
datasets. When two datasets or more were available, we took the average of the well-
correlated ones to be the final value (see Materials and Methods for a detailed protocol).
For human cells, we selected the HeLa datasets because this cultured cell line covers more
information about omics data. Although other human cells lines in culture may evidently
have different data for specific genes, we assume that the global behavior in HeLa cells is
the best available possibility and is a representative of human cells in culture.

The actual synthesis rates of mRNAs and proteins, TR and TLR are in fact the product
of individual rates (or rate constants), namely TRi and TLRi, multiplied by the number of
genes or mRNA copies, respectively. For mRNA synthesis rates, in practice TR and TRi
are equivalents for single-cell organisms because most genes have one (in haploids) or
two (diploids) copies. Hence, we use the acronym TR throughout this paper. Although
HeLa cells are considered mostly diploid, they have a high aneuploidy level and numerous
large chromosome structural variants [59]. Therefore, the TR in HeLa is not equivalent
to TRi, but is the right value to be used because is the actual determinant of mRNA
levels. For protein synthesis, TLR and TLRi are, however, essentially different. Given its
dependence on RA (see Materials and Methods), TLR is mathematically linked with it.
Yet TLRi reflects an intrinsic property of mRNA and has been calculated experimentally,
usually as ribosome density, by ribosome profiling [31]. For this reason, we employed TLRi
values for our analyses.

Finally, it should be noted that the quality of the datasets is not the same for the four
organisms. These kinds of omics studies have been conducted more frequently in yeasts.
This is because the gene coverage in both yeasts for most variables is much better than for
HeLa and E. coli. The existence of mRNA and protein isoforms also adds a complication to
the interpretation of the study. The number of this isoforms is higher in HeLa. In this study
we have grouped all isoforms present in datasets under a single gene name. The number
of datasets for both yeast species is much larger, and we could select several and make an
average dataset. Moreover, the yeast datasets for all variables consist of direct experimental
data. For HeLa and E. coli, however, some variable datasets were not available, and we
had to estimate them mathematically from others (see Materials and Methods). Therefore,
we consider that our conclusions are more robust when taken from budding and fission
yeast variables.

3.2. Comparisons and Correlations between Variables

It is believed that protein amounts depend mainly on mRNA amounts under steady-
state conditions [4,8], although the correlation value is still a matter of discussion [6,60,61].
Thus, a positive correlation between RA and PA datasets is expected. In fact, this has been
previously observed for the three eukaryotes studied herein [3,35,39,62]. Other correlations
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have been much less studied [3,6,9], but may illustrate the strategy adopted by cells to
determine a given PA.

In this study we obtained pairwise correlations (Pearson) among the six variables
considered for each organism (Figure 2). It is worth noting that the actual correlations
between variables may be underestimates of the true correlations due to measurement
errors in the employed datasets. For all the organisms, we found positive and statistically
significant correlations (red backgrounds in Figure 2A) between RS and TR with RA, which
means that both synthesis and degradation rates (i.e., mRNA stabilities) control mRNA
levels. The higher TR/RA correlations indicate a stronger influence of TR on mRNA levels.
RAs also positively correlate with their stabilities, and take lower values, in the three
eukaryotes, but not in E. coli. This indicates that stabilities are not as important as synthesis
rates for determining mRNA levels. In our previous work [3], we found a non-correlation
or even a negative correlation between RS and all the other variables in S. cerevisiae. This
time we used new more reliable RS datasets, and this result changed. We think that,
together with other authors [26,34,63–70], the RS datasets obtained by transcription shutoff
methods are affected by marked biases that invert the observed correlation [63]. Thus, we
consider that the current results reflect that mRNA stability has a positive role on mRNA
levels. In E. coli, we found no correlation or a negative correlation between RS and RA or
TR, probably due to the RS dataset having been obtained by transcription shutoff [44].

Figure 2. Correlations between the six variables of the gene expression in four model organisms. (A) The pairwise Pearson’s
correlations among the six variables in each organism. Exact values are indicated in frames. The background color scale
indicates positive (red) or negative (blue) correlations. Some correlations are less reliable because they are between the
variables calculated from some others in HeLa and E. coli (see the main text) and are marked with blue boxes. (B) Estimation
of the coefficients of a multiple regression model per organism using Bayesian model averaging (posterior mean and 95%
credible interval). These coefficients show the contribution of each variable across organisms to the final protein amount
(PA) using a Z-score scale to make them comparable. The TLRi for HeLa and the PS for E. coli are not shown because they
were mathematically calculated from PA values (see Materials and Methods).

The large correlations between RA and PA and the lesser correlations between PA and
TLRi suggest that, as recently suggested [5–8], mRNA levels are much more important
for determining protein levels than specific translation rates, although TLRi can be very
different between mRNAs and explain part of the actual PA level [6]. However, it should
be taken into account that, for HeLa, the TLRi values were derived as a mathematical
calculation involving PA, RA and PS (see Materials and Methods) and, therefore, the
corresponding correlations (marked with a blue box in Figure 2A) may be influenced
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by this fact. In any case, the message of the low positive, but statistically significant,
TLRi-PA correlation in the other three organisms supports the idea that abundant mRNAs
tend to be better translatable. This is probably because they are also enriched in optimal
codons [71], which has been called potentiation or the amplification exponent [5,8]. The
positive correlations of TLRi seen in the yeasts with RA, TR and RS also support the idea
that a potentiation effect occurs during translation. Following the same argument, we can
conclude from the TLRi-RS positive correlation that a direct proportionality appears in free
living cells (at least in eukaryotes) between the stability of an mRNA and its capacity to
be translated, which confirms the results from J. Coller’s [72] and other laboratories [63]
by showing that in S. cerevisiae mRNA enriched in optimal codons (better translatable)
are more stable than those depleted in such codons. Given that Coller’s results were
based on RS calculated by means of the transcription shutoff method, these results seem
contradictory with our previous results, showing that these kinds of methods provoke
unreliable RS datasets. However, the study of Carneiro et al. [63] and our own unpublished
studies (García-Martínez, Arnau, Choder and Perez-Ortín, in preparation) have shown
that, for the specific case of correlation between codon optimality and RS, some studies
(including Coller’s one) using transcription shutoff studies show a positive correlation and
appear reliable for this purpose. Similar results on the variability of RS datasets have been
obtained for S. pombe [73] in E. coli, zebrafish and mammalian cells (reviewed in [71]). Our
analysis cannot confirm this for E. coli and, especially HeLa, which may be due to a genuine
lack of correlation or to an artefactual bias due to the direct mathematical calculation of
some variables, as mentioned above.

The existence of much better correlations between TLRi and PA than between PS and
PA argues that for protein amount, and even more strongly than for the mRNA amount,
the total synthesis rate (TLR, e.g., multiplying RA by TLRi) is the main determinant. In fact,
it would seem that protein degradation is not used by any organism as a way to determine
the most steady-state protein levels. This is not surprising for fast living single cells in
which protein half-lives are usually much longer than generation times, which implies
that dilution by cell division is a much more important factor for protein disappearance
than protein degradation [13]. Moreover, for all organisms, including HeLa cells, where
the generation time is longer, the high energy cost of regulating abundant proteins by
degradation does not seem to be a suitable strategy [13].

In order to compare the differences in the contribution of each covariate among organ-
isms we performed a multiple regression analysis with the variables transformed using
a Z-score scale. However, given our reduced knowledge about the optimal combination
of variables with this purpose, we opted to consider them all by incorporating a Bayesian
model averaging approach [51]. This approach estimates the coefficient associated to each
variable by using a weighted average of its estimation under each possible model. In this
context, the weights are the posterior probability for each given model. Figure 2B then
shows the posterior weighted estimation for each parameter, together with a 95% credible
interval. This analysis confirms that for all four organisms, RA is the most important
contributor to PA. In the two yeasts, TR also makes a significant contribution. In E. coli and
HeLa, as previously explained, TR was mathematically calculated and is less reliable. The
other three parameters, RS, TLRi and especially PS contribute much less to PA.

These results support the conclusion that the main determinant of the protein level
in a cell is the corresponding mRNA level and that RA, in turn, depends mostly on the
transcription rate of the gene.

3.3. Clustering of Genes According to the Six Variables of Gene Expression into Four
Different Organisms

Our previous results obtained with S. cerevisiae demonstrated that functionally related
genes tend to be grouped according to their gene expression variables [3]. In this work, we
repeated the clustering for that yeast with new datasets, and for the other three organisms
studied using the previously described omics datasets. Here, however, we used ranked
values instead of the Z-scores used there [3] (see Supplementary Table S3) because the
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ranges for the six variables were quite different between the four organisms and variables
(see Materials and Methods). We employed the six values for clustering in this order: TR,
RS, RA, TLRi, PS and PA (6VP; see Figure 3A). We performed a clustering analysis of the
genes for which the data on at least four of the six variables were available (Supplementary
Table S3). In this way, we analyzed 4139 genes for S. cerevisiae, 3350 genes for S. pombe, 1653
genes for E. coli and 3613 genes for HeLa cells.

Figure 3. The 6-variable profile (6VP) allows researchers to cluster all genes according to their
expression strategy. (A) Genes were ranked from lowest (0) to highest (1) in each variable (TR, RS, RA,
TLRi, PS, PA). The shape of the line linking the six points is characteristic of an expression strategy: a
6VP. The strategy to gain a defined RA corresponds to the first part of the line (in blue): in the steady
state the mRNA level depends on both its transcription rate and stability. For the protein strategy
(in red), the final level depends on both the total translation rate (TLRi x RA) and protein stability.
(B) Many clusters selected from the four studied organisms show defined profiles and statistically
enriched GO terms. The individual gene profiles are shown in gray and the average profile of the
cluster on the colored line. Some of the GOs with the highest p-values are shown on the right for
the Biological Process (BP) and Cellular Component (CC) ontologies. Other examples are found in
Supplementary Figure S1 and the whole lists are given as Appendices.
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Thus we obtained a 6VP for each gene. This allowed us to compare all the genes for
common profiles by means of standard clustering methods. Through this procedure, we
found that clusters had genes with similar profiles that were statistically enriched in the
Gene Ontology (GO) categories (terms) in all four organisms (Figure 3B, Supplementary
Figure S1 and Supplementary Files). This result extends our previous results obtained
with S. cerevisiae [3] and demonstrates that common expression strategies (CES) for the
genes with a related biological function are a common feature of living beings. It should
be noted that the quality of the datasets for the four organisms (see above) can influence
clustering quality. We consider that the 6VP is more robust for the two yeasts, and in HeLa
at a lower level. For E. coli, the poorer quality of the datasets and the lower quality of the
information in the GO annotations for this organism [74] precluded the finding of strongly
enriched clusters.

3.4. Detailed Analysis of the Selected Functional Groups in Eukaryotes

If all the analyzed organisms have CES for at least part of their gene groups, we
may wonder if the particular CES (depicted as a particular 6VP) followed by a given gene
group is similar or different in distinct organisms. Given the low quality of the E. coli
annotations, we compared only the three eukaryotes. Figure 4 depicts some examples of
these comparisons. We studied either selected GOs (Figure 4A) or some of the manually
curated groups (Figure 4B) analyzed in a previous work on S. cerevisiae [3] to look for the
orthologous genes in S. pombe and HeLa.

It can be seen that the average 6VPs for the groups generally show a similar ranking for
all the variables in the three organisms. For instance, protein folding (GO:0006457) shows
that all the six variables rank 0.6–0.8 in all three organisms, whereas cytosolic ribosome
(GO:0022625) ranks higher than 0.8 for most variables and the nuclear pore (GO:0005643)
ranks mostly between 0.4 and 0.6. This demonstrates that the particular levels of mRNAs
and proteins for a given group of genes tend to be similar in all eukaryotes and, to a lesser
extent, that the strategies followed to this end are also similar. It is interesting to note
that some other groups differ. For instance, the spliceosomal complex (GO:0005681) ranks
higher in HeLa than in the two yeasts. This result is logical given the much more marked
importance of splicing for human genes [75].

Regarding the shape of profiles, we found similarities and differences. V-shaped
profiles (meaning lower stabilities than synthesis rates) are common in stable macromolec-
ular complexes in S. cerevisiae, especially for the mRNA part (see Figure 3A,B). This has
been previously noted [3]. This feature has also been noted for human THP-1 and C2C12
cells [76] but is not so common in S. pombe and HeLa cells, where only some stable com-
plexes behave as such. For instance, cytosolic and mitochondrial ribosomes have V-shaped
profiles in budding yeast, but are not so marked in fission yeast and HeLa for the protein
part. The spliceosomal complex is more clearly V-shaped in HeLa than in both yeasts but
proteasome is conversely V-shaped in both yeasts, but not in HeLa. To conclude, we can
state that the existence of cases with similar and different strategies in the three model
eukaryotes makes 6VPs suitable for comparing the expression strategies for the whole gene
sets between different organisms.
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Figure 4. 6VPs for the selected GOs and manually curated groups in S. cerevisiae, S. pombe and HeLa cells. (A) We selected
four GO terms corresponding to well-known groups of functionally related genes/proteins. The ID of the GO and its
name are shown for S. cerevisiae (left), S. pombe (center) and HeLa (right). The maximum number of genes used (maxN) to
determine the average value and standard error is shown. In some variables, this number may be lower due to the lack of
information for some particular genes in some datasets. In this figure, unlike Figure 3, we independently represent mRNA
and protein parts without a connecting line to better display the differences between them. (B) A similar analysis to that
in (A), but done with the manually-curated categories that were used in a previous study on S. cerevisiae [3]. (C) Violin
plots showing the mean of proximity (values shown on the plots) between the genes coding for the proteins acting in
macromolecular complexes (Complex, red) belonging to the same GO, but do not form complexes (Same_GO, green)
and other gene pairs that do not belong to the previous groups (No_group, blue). A t-test was applied for the statistical
significance of the difference. **** p-value < 2.2 × 10−16 (lowest numerical value displayed in R). An ANOVA also detected a
significant difference (p-value < 2.2 × 10−16) among the three gene groups in all the organisms the first time they were cited.
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Both this analysis and the previous one in S. cerevisiae [3] suggest that the genes
coding for proteins that are subunits of stoichiometric stable complexes tend to have
better defined 6VPs than other functionally related gene groups not forming complexes.
To test this hypothesis, we performed a comparative analysis of the profile distances
between the gene pairs belonging to protein macromolecular complexes and the genes
belonging to the GO categories not including macromolecular complexes (Figure 4C). The
S. cerevisiae distance matrix included information about 2592 gene pairs that participate in
the same protein complexes (Complex), 33558 gene pairs placed in the same selected GO
categories with no protein complexes (Same_GO) and 3537651 gene pairs which were not
included in either group (No_group). The mean pairwise distances for the genes included
in protein complexes was 0.597, whereas these distances were respectively 0.876 and 0.924
for the gene pairs included in the same GO category and the gene pairs not included in
either group. Given that the differences between Same_GO and No_group were small,
we used two statistical tests to check for the significance. ANOVA showed significant
differences between groups and the post hoc t-test determined that all the pairwise tests
were significant. With S. pombe, after the orthologous conversion, the distance matrix
included information on 2396 gene pairs that participate in the same protein complexes,
15,279 gene pairs placed in the same selected GO categories and 1,339,453 gene pairs not
included in either group. The mean pairwise distances for the genes included in protein
complexes was 0.554, whereas they were respectively 0.803 and 0.895 for the gene pairs
included in the same GO category and the gene pairs not included in either group. The
numbers for Hela were as follows: 2660 for the gene pairs in complexes, 8512 for the
gene pair distances in the same GO categories, and 793,374 gene pairs for the No Group
class. The mean pairwise distances for the genes included in protein complexes was 0.591,
whereas they were 0.855 and 0.923, respectively, for the gene pairs included in the same
GO category and the gene pairs not included in either group.

Therefore, it is clear in all three eukaryotes that 6VP distances are much lower between
the genes belonging to complexes, although the genes belonging to the same GO category
that do not form complexes are still closer than random gene pairs.

3.5. Trans-Organism Clusters Comparison: 6VP Phenograms

As we previously observed cases in which 6VPs for GO terms were similar between
some organisms, but different in others, we wondered if the whole similarity of the 6VPs
among the four studied organisms could be used to make a phenetic tree based on the
similarities of the expression strategies for the same functional groups among the four
organisms. In order to do this, we selected the GO terms with a number of genes between
5 and 275 to avoid excessively small groups, which can bias clustering, and the excessively
broad ones containing genes that were not true functionally related genes. In this set of GO
terms (from Biological Process, BP, and Cellular Component, CC, ontologies), we reduced
the redundancy of similar GO terms by applying a procedure inspired by the REVIGO
pipeline [77] (see Materials and Methods). The goal of the redundancy reduction step was
to avoid the information about genes present in highly redundant GO terms to excessively
influence the following cluster and tree construction.

As we can see in Figure 5A, the topology of the global neighbor joining (NJ) and
UPGMA trees is identical to the known topology of the DNA sequence-based tree [20,78].
Given the poor quality of the GO annotation in E. coli, the global tree can only use 53
common GO terms for the four organisms (51 BP + 2 CC), and we consider that the
branching of this prokaryote is less robust. However, E. coli can be considered an outgroup
for the eukaryote tree. We repeated the tree using only the three eukaryotes, which
extended the set of common GO terms to 437 (353 BP + 84 CC). The topology of this NJ
tree is identical and the relative branch lengths are similar to the previous one. The lengths
of the branches between the two yeasts and HeLa indicate that S. cerevisiae comes slightly
closer to human cells in gene expression strategies than S. pombe.
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Figure 5. Phenograms of the four organisms based on their 6VPs. (A) Global neighbor-joining (NJ) and UPGMA trees based
on the 6VPs derived from 53 GO Biological Process (BP) and 2 GO Cellular Component (CC) terms for S. cerevisiae (red dots),
S. pombe (blue dots), E. coli (green dots) and H. sapiens (HeLa cell line, yellow dots) (left and center), or only the NJ tree for
the three eukaryotes with 353 GO BP, plus 84 GO CC terms (right). (B) NJ and UPGMA trees based on the available GO
terms linked (manually curated) with cytoplasmic translation, transcription, mitochondrion and replication. All the NJ and
UPGMA unrooted trees are, respectively, on the same scale, but NJ and UPGMA are represented with a different kind of
branching to show complementary information. The lists of the GO terms used in each tree are provided in Supplementary
Table S5. Additional phenograms for other GO terms are shown in Supplementary Figure S2.

We wondered if the topology of the tree and the lengths of branches were the same
for the different functional categories of genes. We repeated the clustering and tree re-
construction by separately using groups of the GO terms belonging to broad eukaryotic
cellular functions, such as those related to macromolecule synthesis processes (replication,
transcription, cytoplasmic translation) or to the mitochondrion (Figure 5B), because this
is a large set of genes known to be coordinately regulated [3,79]. We also performed
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this analysis (Supplementary Figure S2) for other general GOs, comprising large protein
complexes (proteasome, spliceosome, nuclear pore), organelles (Golgi, vacuole) and wide
co-regulated groups (ribosome biogenesis, RiBi). Figure 5B and Supplementary Figure S2
illustrate that the UPGMA trees tend to repeat the topology of the global one. There
were, however, some exceptions in some groups (Supplementary Figure S2) that show
almost identical branch lengths for the three organisms (Golgi, proteasome, RiBi, vacuole).
Distances in NJ trees tend to be shorter between budding yeast and human cells, except
for the mitochondrion group (Figure 5B) and some of the cases noted in Supplementary
Figure S2 (spliceosome, Golgi), where the fission yeast comes closer to HeLa. Thus, we
can conclude that in terms of cell functions, the two yeasts are much more similar to one
another than to human cells, and budding yeast comes slightly closer to human cells than
the fission yeast. Finally, the lengths of the branches in both the UPGMA and NJ trees differ
for each broad group, which suggests that distinct cell functions and components are more
conserved (cytoplasmic translation, vacuole, proteasome, nuclear pore) than others (i.e.,
mitochondrion, transcription, spliceosome).

4. Discussion

A capital question in biology is how genetic information is converted into function—
how the variable copy number of a given protein is obtained from the constant copy
number of its gene. Cells have multiple steps in which the gene expression flux can be
regulated. In a series of relevant papers, M. Biggin’s group [8,9] and others [5,6] have
shown that protein levels under steady-state conditions are explained mostly by mRNA
levels in both yeasts and mammals, and that these levels depend mainly on synthesis
rates [9]. In a previous study in the model organism S. cerevisiae, we developed a pipeline
to compare the respective influences of mRNA and protein synthesis and degradation rates
to the final level of most of the proteins of this yeast. We found that the genes belonging
to functionally related groups followed a similar gene expression strategy, which can be
defined by a ‘six-variable profile (6VP)’ followed by the genes included in it [3]. In the
present study, we extended this pipeline to three other model cells to check the extensibility
of our previous conclusions.

Our results support the idea that the main pathway used for gene expression is based
on synthesis rates for all organisms. The transcription rate is the main determinant in all
four organisms of the mRNA level, which in turn is the main determinant of the protein
level (Supplementary Figure S3), as confirmed by the MBA analysis presented in Figure 2B,
which showed that for all four organisms studied, the mRNA level (RA) had the highest
coefficient. Obviously, this result does not exclude the existence of cases in which other
variables also have an effect or are even the main determinants of protein levels. By using
tRNA modification enzyme mutants in S. cerevisiae, Chou et al., [80] have demonstrated that
the number of translationally regulated genes is quite small (57 cases). In another recent
study, the careful analysis of RA and TLRi correlations with PA in the same yeast found
fewer than 200 proteins, apart from the general tendency of strict correlation between RA
and PA [81]. All these results suggest that translational regulation is statistically uncommon
and is therefore, globally, a minor participant in eukaryotic (and possibly prokaryotic)
gene expression regulation. However, it is worth noting that in the four organisms studied
herein, the data were obtained from actively growing cells. Nonetheless, it is rather possible
that the respective importance of the synthesis rates and stabilities vary under no active or
very slow growth conditions.

Another interesting topic is the positive correlation of the individual translation rate
of each mRNA molecule (TLRi) and the protein level (PA). If TLRi were the same for all
the mRNAs, the correlation between RA and PA would still be observed. Therefore, the
additional positive correlation of TLRi with RA and PA in all four organisms means that
more abundant mRNAs tend to be specifically better translated. This can be explained
using the known enrichment of abundant mRNAs in optimal codons, which makes them
more stable and translatable [71,72]. Another possibility would be that transcription
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imprints mRNAs at a level that depends on the actual TR, in which case mRNAs could
be more or less translatable (TLRi) according to their TR. This has been shown to occur in
mammalian cells, where methylation of adenines in position 6 (me6A) is greater for less
transcribed mRNAs and this feature is detrimental for their translation [82]. This cannot be
a reason for the potentiation effect on microorganisms because in those organisms, me6A
is not present in S. pombe and E. coli and occurs only during meiosis in S. cerevisiae [83].
Whatever the molecular reason, this can be considered a “potentiation” of the effect of RA
on PA because it provokes the exponential amplification of mRNA abundance [8]. Finally,
our study indicates that stabilities in mRNAs and especially proteins seem to play minor
roles in gene regulation in general (as previously stated by [9,62]). Nevertheless, they
may play important roles for some genes [12] or during dynamic processes such as cell
differentiation (discussed in [4,76]).

As the four studied organisms showed 6VP gene clusters that are statistically enriched
in genes by behaving as specific functional categories, we reaffirm the conclusion that
we drew in our previous study on S. cerevisiae: all kinds of cells use common expression
strategies for the genes acting in the same physiological pathways. A seminal work from P.
Brown’s laboratory [84] found that genes belonging to same pathways, especially those
belonging to stable stoichiometric protein complexes, tend to have similar RS values. Our
current study extends this idea to other organisms and to the rest of the gene expression
variables. However, CES are not always identical between organisms, which suggests
that evolution has adapted the particular expression strategies to the life styles and cell
organizations of different species.

These differences in CESs between species prompted us to employ a quantitative
parameter to classify organisms and to make 6VP phenograms. We are aware that a
phenogram based on four organisms provides limited information because it has relatively
few possible topologies. In the future, it would be necessary to use more organisms to draw
more in-depth conclusions. In any case, the topology of the 6VP phenogram is identical
to the phylogenetic tree obtained by the sequence comparison of 16/18S rRNA genes or
from the whole genome content [85,86]. This demonstrates the phylogenetic consistency
of our functional clustering, although the relative distance between the prokaryotes and
eukaryotes (compared to the internal distances between eukaryotes) is clearly shorter
than in sequence-based phylogenetic trees. This can reflect the fact that DNA sequences
have diverged much more than gene functions and gene regulatory mechanisms [87]. A
previous study [88] constructed a phenetic dendogram based on antibiotic resistance and
concluded that it should be seen as the outward manifestation of the evolutionary history
of the translational apparatus. In the same line, we conclude here that our 6VP dendogram
is a global meter of the evolutionary history of whole cell functions. However, we recognize
that the results from the bacterium E. coli are not as relevant as those obtained from the
three eukaryotes, but we think that this is due mainly the poor-quality GO annotation,
which lowered the number of analyzable GO terms. In any case, we used E. coli as an
outgroup for the comparative analyses of eukaryotes.

When comparing the three eukaryotes, namely two free-living yeasts separated by
about 330–600 My of evolution [19,21,22] and a multicellular higher eukaryote separated
from yeasts by about 1000–1100 My [19,21], the 6VP dendograms illustrate the respective
influence of gene sequence evolution (nucleotide or amino acid conservation) and gene
expression evolution (similarity of 6VPs). Once again, the distance between HeLa and
yeasts is relatively shorter than that predicted upon the evolutionary distance basis. In fact,
the high success rate in the systematic functional replacement of essential yeast genes with
their human counterparts [87] has already suggested that gene functions and regulatory
mechanisms are more conserved than gene sequences. As for human cells, it is clear that
HeLa cells represent a special kind of cells, which are useful for performing omics studies
but which are not representative of all kinds of human cells, especially of those with a
much lower or even zero growth rate. Our study thus reflects the similarities between
eukaryotic cells growing at their fastest capability.
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Regarding the similarity of the three eukaryotes in different cell components and
major physiological functions, it is interesting to see how our 6VP phenogram analysis
(Figure 5B, Supplementary Figure S2) suggests that some components and functions
have closer gene expression strategies than others. As we showed the identical scaling
for both UPGMA and NJ trees, it became evident how some broad GO groups show
globally less 6VP differences in the three organisms than others. Thus, in the major
macromolecular synthesis related to the central dogma, it would seem that translation
(cytoplasmic translation and ribosome biogenesis) has more regulatory strategy similarity
than replication or transcription (including splicing). It is necessary to point out, however,
that GO categories have been established arbitrarily by human curators [89], and it is
not easy to be sure about the homogeneity of them all being identical. For instance, our
transcription broad group includes many GO terms related to the transcription process,
including transcription factors, RNA polymerases, chromatin modifiers and others, which
are perhaps broader than the GO terms included in our “cytoplasmic translation” group.
In any case, we think that this kind of analysis may open a new window to investigate the
evolution of cellular functions.

The two yeasts were the most closely related organisms based on 6VP similarity
(Figure 5). It has been argued that they are almost as different from one another as from
animals [19]. Yet in spite of this statement, the evolutionary time-distance between them is
about half of that which both have in regard to animals [18,20]. Moreover, as they have
very similar lifestyles [20], a convergence in gene regulatory strategies would seem logical.
In spite of being separated from the common ancestor with humans at the same time,
globally, gene expression strategies are closer to HeLa in S. cerevisiae than in S. pombe.
This was unexpected, because it has often been stated that S. pombe is more similar to
higher eukaryotes as the cell cycle is more similar, and it has many more introns than
budding yeast and an RNAi mechanism, although it has no well-developed peroxisomes
and proliferates mainly in the haploid state, whereas S. cerevisiae has peroxisomes and in
the wild it proliferates as diploid [22]. However, it is necessary to point out that our study
deals with a different matter—gene regulatory mechanisms—which could have evolved
to converge between budding yeast and human cells. This suggestion can be supported
by the hypothesis that S. pombe is a more “ancient” yeast than S. cerevisiae based on its
biological features because it appears to have undergone fewer evolutionary changes since
diverging from their common ancestor [22].

We conclude that the comparative analysis of all the variables affecting the flow of
gene expression is a useful strategy for investigating the regulatory strategies used by
cells, at least by eukaryotes. We also conclude with our study that the transcription rate is
the main determinant of the amount of the corresponding protein, and that all kinds of
organisms, either prokaryotic, single-cell or higher eukaryotic cells, use CESs for genes
acting on the same physiological pathways. This feature can be reflected as a 6VP that
defines the average behavior of a given gene group. CESs are more clearly seen for genes
coding for large and stable protein complexes, such as the ribosome or the spliceosome,
but can be seen even in groups of genes that do not form stable complexes, but which
are functionally related, like those involved in different metabolic pathways. Some of the
6VPs are similar between different organisms, which reflects either a common evolutionary
origin or a convergent evolution due to similar functional constraints or horizontal gene
transfers. We propose that comparing 6VPs for a series of organisms is another way to draw
phenograms to reveal how the environment of cells influences gene expression strategies.
The use of omics data for phenetic classifications is not new [78,88,90], but our analysis
extends the available tools for phenetic classifications by allowing researchers to study
global expression strategies adapted to lifestyle.
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of macromolecular complexes and GOs not belonging to the macromolecular complexes used for
the Figure 4 comparison; Table S5: List of the GO terms used for the phenogram reconstruction in
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Abbreviations

6VP six variable profiles
ANOV Aanalysis of variance
BMA bayesian model averaging
BP biological process
CC cellular component
CES common expressions strategies
CHX cycloheximide
DTA dynamic transcriptome analysis
FDR false discovery rate
GFP green fluorescent protein
GO gene ontology
GRO genomic run on
HUGO human genome organization
iBAQ intensity-based absolute quantification
KNN k-nearest neighbor method
LB Luria-Bertani medium
LC-MS/MS liquid chromatography-tandem mass spectrometry
MIPS Munich information center for protein sequences
NJ neighbor-joining
PA proteín abundance
PCN protein copies per cell
PS proteín stability
RA mRNA abundance
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RATE-seq RNA approach to equilibrium sequencing
REVIGO reduce + visualize gene ontology
RiBi ribosome biogenesis
RNA-seq RNA sequencing
RS mRNA stability
SGD Saccharomyces Genome Database
SILAC stable isotope labeling by/with amino acids in cell culture
SOTA self-organizing tree algorithm
TLR translation rate
TLRi individual translation rate
TR transcription rate
UPGMA unweighted pair group method with arithmetic mean
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