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Abstract: Oral cavity squamous cell carcinoma (OSCC) is a common head and neck cancer character-
ized by a poor prognosis associated with locoregional or distant failure. Among the predictors of
prognosis, a dense infiltration of adaptive immune cells is protective and associated with improved
clinical outcomes. However, few tools are available to integrate immune contexture variables into
clinical settings. By using digital microscopy analysis of a large retrospective OSCC cohort (n = 182),
we explored the clinical significance of tumor-infiltrating CD8+ T-cells. To this end, CD8+ T-cells
counts were combined with well-established clinical variables and peripheral blood immune cell
parameters. Through variable clustering, five metavariables (MV) were obtained and included
descriptors of nodal (NODALMV) and primary tumor (TUMORMV) involvement, the frequency of
myeloid (MYELOIDMV) or lymphoid (LYMPHOIDMV) peripheral blood immune cell populations,
and the density of tumor-infiltrating CD8+ T-cells (TI-CD8MV). The clinical relevance of the MV
was evaluated in the multivariable survival models. The NODALMV was significantly associated
with all tested outcomes (p < 0.001), the LYMPHOIDMV showed a significant association with the
overall, disease-specific and distant recurrence-free survival (p < 0.05) and the MYELOIDMV with the
locoregional control only (p < 0.001). Finally, TI-CD8MV was associated with distant recurrence-free
survival (p = 0.029). Notably, the performance in terms of survival prediction of the combined effect of
NODALMV and immune metavariables (LYMPHOIDMV, MYELOIDMV and TI-CD8MV) was superior
to the TNM stage for most of the outcomes analyzed. These findings indicate that the analysis of the
baseline host immune features are promising tools to complement clinical features, in stratifying the
risk of recurrences.

Keywords: oral neoplasms; lymphocyte; CD8; biomarker; survival modeling; data reduction; PCA;
TIL; peripheral; head and neck
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1. Introduction

Oral cavity squamous cell carcinoma (OSCC) is one of the most frequent head and
neck tumors [1] with a rising incidence in the Western countries [2,3]. The clinical behavior
of OSCC is characterized by the occurrence of early lymphatic spreading to regional lymph
nodes. Among clinical and pathological features, nodal involvement is per se one of the
most relevant prognostic factors [4,5], with an upstage to Stage III–IV and 42–43% 5-year
estimated overall survival [5,6]. Furthermore, despite achieving early diagnosis, OSCC
is characterized by a poor prognosis when locoregional or distant failure occurs [7], thus
including the mandatory management of the neck with elective node dissection [8] or
sentinel node biopsy [9] also for low-stage tumors. The main treatment modality for naïve
tumors is still represented by radical surgery retaining radiotherapy (RT) or cisplatin-based
chemo-radiotherapy (CT-RT) as adjuvant treatments.

The spectrum of available treatment options in the metastatic/recurrent not resectable
setting, for which the median survival ranges between 6 and 15 months, is limited to conven-
tional cytotoxic therapy (platinum-based chemotherapy, fluorouracil and taxanes), molecu-
lar target agents as anti-EGFR monoclonal antibodies and immunotherapy with PD-L1/PD-
1 checkpoint inhibitors. The results obtained with the CheckMate 141, the KEYNOTE-012,
and the KEYNOTE-048 trials established the role and use of pembrolizumab or nivolumab
(PD-1 checkpoint inhibitors) with or without chemotherapy as first-line therapy in this
clinical scenario [10–12]. The evaluation of the PD-L1 expression on tumor cells and tumor
infiltrating cells, in the so-called CPS score [13], nowadays represent the key biomarker for
the choice of systemic therapy modality [14]. However, its efficacy in patients’ selection is
still debated. Several prognostic and predictive biomarkers have been recently proposed
and tested in a wide retrospective cohort of OSCC patients, including a measure of the
immune contexture on tissue slides. In addition to novel histological features [15,16] and
morphology-based immune contexture parameters [17], recent meta-analysis showed that,
in OSCC, a favorable overall outcome is associated with a high density of tumor infiltrating
lymphocytes (TIL) as NK-cells, CD45RO+ T-cells and CD8+ T-cells, mainly if measured in
the tumoral site [18,19], whereas tumor-associated CD68+ or CD163+ macrophages predict
a worse prognosis [19]. The routine availability of pre-treatment blood samples raised
the interest of studying circulating biomarkers. Among these, the neutrophil, lympho-
cyte, monocyte or platelet counts and the derived ratios have shown prognostic relevance
among solid tumors with myeloid predominance, mainly associated with the worse out-
comes [20–22]. One of the main limitations of the available literature is the paucity of
analysis considering specific oncologic outcomes, including the locoregional or distant
failures separately. For biomarkers analysis, the identification of cut-offs is still a matter of
debate [23], likely overcome by avoiding dichotomization and keeping the whole infor-
mation of a continuous variable [24]. Moreover, few attempts have been made to combine
peripheral and tumoral immune-features in a unique classifier [25].

Within a homogeneous cohort of surgically treated OSCCs, we combined peripheral
and tissue immune features with demographic, clinical and pathological characteristics to
generate meta-variables (MVs). The MV describing the nodal involvement was confirmed
to be detrimental for any survival end-points, whereas the peripheral blood myeloid-
related MV and the CD8+ T-cells infiltration MV were significant predictors of locoregional
or distant failure, respectively.

2. Materials and Methods
2.1. Clinical Cohort

A retrospective observational study was carried out, enrolling one hundred eighty-
two histologically confirmed cases of oral cavity squamous cell carcinoma (OSCC) who
underwent radical surgical resection and neck dissection between 2000 and 2014 (Otorhi-
nolaryngology Department, ASST Spedali Civili di Brescia, Brescia, Italy). This study was
approved by the local IRB to WV (H&N Cancer, NP-2066). Patients with at least 12 months
of follow-up or earlier death or recurrence were included. Salvage surgery, metastatic
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disease, immunological disorders or prior systemic treatment for malignancy represented
the exclusion criteria. Patients were regularly followed up with clinical examinations
and neck MRI or CT every 3–6 months. Preliminary clinical and oncological findings are
reported in our previous works [26,27]. Last follow-up was updated until September 2020.

2.2. Blood Samples

Preoperative blood cell counts were retrieved. The absolute counts of full white blood
cells (WBC), neutrophils, lymphocytes, monocytes and platelets were considered as the
biomarkers of interest. Further derived parameters of clinical interest according to the
recent literature, the neutrophil-to-lymphocyte ratio (NLR) [22,28], i.e., the ratio between
neutrophils and lymphocytes counts and the platelet-to-lymphocyte ratio (PLR) [29], i.e.,
the ratio between platelets and lymphocytes counts were obtained.

2.3. Tissues

Formalin-fixed paraffin embedded (FFPE) tissue blocks of a representative section of
the primary tumor (PT) were retrieved from the tissue bank of the Department of Pathology
(ASST Spedali Civili di Brescia, Brescia, Italy). Four-micron thick FFPE sections were used
for immunohistochemical staining and as a primary antibody, the anti-CD8 (clone C8/144B,
dilution 1:30, Dako) was used. The reaction was revealed by EnVision (Dako) followed by
DAB. Sections were then counterstained with hematoxylin.

2.4. Digital Pathology Analysis

Stained slides were acquired using a ScanScope CS (Leica Microsystems, Wetzlar,
Germany) digital scanner. Images were viewed and organized using ImageScope soft-
ware (version 12.03.5048, Leica biosystems, Wetzlar, Germany). Each scanned image was
manually annotated and the IHC nuclear image analysis algorithm was chosen for the
analysis. Data are expressed as the number of CD8+ cells per mm2. Primary tumor (PT)
was analyzed measuring the immune cell density either in the center of the tumor (CT) and
in the invasive margin (IM) (Figure 1). The invasive margin was defined as the tissue area
of 1 mm wide from the front of invasion of the tumor [30].

2.5. Statistical Analysis

The main goal was to summarize all the available clinical and biomarkers data in a
minimal number of synthetic components, each representing a set of highly correlated
variables, therefore identifying a few homogeneous latent variables. Applying a data
reduction method allows the multivariable survival modelling of cohorts with a limited
sample size and event rates [31].

Firstly, clinical, pathological and biomarkers variables were clustered using hierar-
chical clustering with a bottom-up agglomerative algorithm. This algorithm aimed to
maximize the clusters’ homogeneity, defined as the proximity of each variable in the cluster
to a synthetic centroid, using as proximity metrics either the Pearson correlation coefficient
for quantitative variables or the correlation ratio for qualitative ones [32]. The optimal
number of partitions was determined evaluating clusters’ stability measured by the Rand
index between the observed hierarchy and a random sample of dendrograms generated by
bootstrap (B = 200). Finally, a synthetic variable representing each cluster was computed as
the first principal component derived by a mixed principal component analysis (PCAmix)
performed on the variable within the cluster [32,33].

Quantitative variables were summarized using the mean, standard deviation, median
and range, while qualitative variables were described as counts and proportions. For group
comparisons in qualitative variables, Fisher’s exact test was applied, and for quantitative
ones, the Wilcoxon test or Kruskal-Wallis test was applied. Missing data, representing 2.6%
of the measured data, were imputed with multivariate imputation by chained equations
(MICEs) [34].
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Figure 1. Panel showing whole tumor sections stained for CD8 in two representative cases (A–C and D–F). In (A) and (D), 
the selection of areas of interest is shown: the center of the tumor (CT) and the invasive margin (IM)—whilst the black line 
defines the whole tumoral bed. Representative high magnification immunostained (left) and processed (right) sections 
showing the immune cells recognition and counting algorithm (B,C,E,F). In (B) and (C), the example fields of 1 mm2 of the 
case presented in (A) taken from the CT (554 CD8+ T-cells) or IM (1159 CD8+ T-cells), respectively. In (E) and (F), the 
example fields of 1 mm2 of the case presented in (D) are taken from the CT (26 CD8+ T-cells) or IM (294 CD8+ T-cells), 
respectively. The box plots (G) show a higher density of CD8+ T-cells in the IM compared to the CT (grey lines connecting 
the measures of CD8+ T-cell density in each single patient) and the scatter plot (H) illustrates a significant direct correlation 
of CD8+ T-cells’ density between those regions (H); p values estimated by the Wilcoxon matched-pairs signed rank test 
(G) or Spearman rank correlation test (H). Scale bars: (A,D), 5 mm; (B,C,E,F), 500 µm. 

Figure 1. Panel showing whole tumor sections stained for CD8 in two representative cases (A–C and D–F). In (A) and (D),
the selection of areas of interest is shown: the center of the tumor (CT) and the invasive margin (IM)—whilst the black line
defines the whole tumoral bed. Representative high magnification immunostained (left) and processed (right) sections
showing the immune cells recognition and counting algorithm (B,C,E,F). In (B) and (C), the example fields of 1 mm2 of
the case presented in (A) taken from the CT (554 CD8+ T-cells) or IM (1159 CD8+ T-cells), respectively. In (E) and (F), the
example fields of 1 mm2 of the case presented in (D) are taken from the CT (26 CD8+ T-cells) or IM (294 CD8+ T-cells),
respectively. The box plots (G) show a higher density of CD8+ T-cells in the IM compared to the CT (grey lines connecting
the measures of CD8+ T-cell density in each single patient) and the scatter plot (H) illustrates a significant direct correlation
of CD8+ T-cells’ density between those regions (H); p values estimated by the Wilcoxon matched-pairs signed rank test (G)
or Spearman rank correlation test (H). Scale bars: (A,D), 5 mm; (B,C,E,F), 500 µm.
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The survival endpoints considered are the overall (OS), the disease-specific (DSS),
the locoregional recurrence-free survival (LRFS), and the distant recurrence-free (DRFS)
survival. The OS was defined as the time between the date of surgery and the date of
death for any causes; the DSS as the time between the date of surgery and the date of
cancer-related death; the LRFS as the time between the date of surgery and the date of local
or nodal recurrence; and the DRFS as the time between the date of surgery and the date of
distant recurrence. For each outcome, patients now having the event were censored at the
last follow-up.

Survival analysis was performed fitting multivariable Cox proportional-hazards mod-
els, estimating p values by the Wald statistic. The relationship between continuous predictor
and the outcomes was modelled with restricted cubic splines with 4 knots [35]; not lin-
ear terms were retained in the presented models for variables mostly explaining the X2

statistic [36]. The likelihood ratio test was applied for comparing nested models. Decision
curve analysis (DCA) [37–39] was used to evaluate the net benefit of each proposed model
compared to the one fitted considering the UICC overall pathological stage alone. Survival
estimates were reported as hazard ratios (HR) with 95% confidence interval (95% CI) and es-
timating the 2- and 5-year survival probability with 95% CI for the variables of main clinical
interest. Proportional hazards assumption was tested examining Schoenfeld residuals [40].
Data reduction analysis was performed with the ‘ClustOfVar’ package [32]. Contour plots
were drawn with the ‘visreg’ package [41] and DCA was performed with the ‘dcurves’ one.
In all analyses, two-tail tests with a significance level of 5% were applied; adjusted p values
for multiple tests were corrected with Bonferroni’s method. R version 4.1.0 (R Foundation
for Statistical Computing, Vienna, Austria) was used for statistical analysis.

3. Results
3.1. Clinical Findings of the OSCC Cohort

One hundred and eighty-two patients were enrolled for data analysis; the cohort was
composed of 115 males (63.2%) with a mean ± SD age of 63.6 ± 13.1 years. Among the
clinical, pathological and biomarker variables of interest, missing data accounted for 2.6%
of the dataset, with no variable with “missingness” ≥10% (Supplementary Figure S1 and
Supplementary Table S1). Considering already imputed data (Table 1), the cohort was well
balanced among all pT categories, and metastatic lymph-node involvement was recorded
in 85 cases (46.7%), and in 42 cases (23.1%), evidence of pathologic extranodal extension
was observed. The mean ± SD number of involved positive nodes was 1.54 ± 2.84, ranging
from 0 to 18. Adverse pathological features as perineural invasion (PNI) or lymphovascular
invasion (LVI) were present in 90 (49.5%) and 52 (28.6%) cases, respectively. The rate of
positive margin was 17.6%. The treatments included surgery alone in 78 patients (42.9%),
surgery and adjuvant radiotherapy (RT) in 61 (33.5%), and surgery followed by adjuvant
chemo-radiotherapy (CRT) in 43 (23.6%).

The mean follow-up time was 71.5 months (IQR 24.3–105.8, range 1–214 months).
During the follow-up course, 71 patients (39.0%) experienced at least one recurrence event,
42 (23.1%) experienced locoregional recurrence alone, 14 (7.7%) distant recurrence alone
and 15 (8.2%) both locoregional and distant recurrences. At the last follow-up available,
78 patients (42.9%) were dead and for 53 of these (67.9%), the cause of death was related to
disease progression.
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Table 1. Summary statistics of the cohort.

Variable Overall (N = 182) Variable Overall (N = 182)

Age Margins
Mean (SD) 63.6 (13.1) Positive 32 (17.6%)
Median (Min, Max) 64.0 (26.0, 93.0) Close 54 (29.7%)

Sex Negative 96 (52.7%)
Male 115 (63.2%) Treatment
Female 67 (36.8%) Surgery 78 (42.9%)

pT category (8th Ed.) Surgery+RT 61 (33.5%)
pT1 23 (12.6%) Surgery+CRT 43 (23.6%)
pT2 41 (22.5%) WBC (109/L)
pT3 85 (46.7%) Mean (SD) 7.41 (1.94)
pT4 33 (18.1%) Median (Min, Max) 7.39 (2.77, 13.7)

pN category (8th Ed.) Lymphocytes (109/L)
pN0 96 (52.7%) Mean (SD) 1.82 (0.535)
pN1 24 (13.2%) Median (Min, Max) 1.78 (0.690, 3.69)
pN2a 6 (3.3%) Neutrophils (109/L)
pN2b 16 (8.8%) Mean (SD) 4.79 (1.64)
pN2c 2 (1.1%) Median (Min, Max) 4.76 (1.04, 10.1)
pN3b 38 (20.9%) Monocytes (109/L)

Npos Mean (SD) 0.585 (0.231)
pN0 97 (53.3%) Median (Min, Max) 0.550 (0.160, 1.53)
pN+ 85 (46.7%) PLT (109/L)

ENE Mean (SD) 228 (68.6)
No 140 (76.9%) Median (Min, Max) 220 (51.0, 431)
Yes 42 (23.1%) NLR

Nodal ratio Mean (SD) 2.83 (1.31)
Mean (SD) 0.0326 (0.0558) Median (Min, Max) 2.53 (0.799, 7.55)
Median (Min, Max) 0 (0, 0.320) PLR

Total Number
Positive Nodes Mean (SD) 134 (52.7)

Mean (SD) 1.54 (2.84) Median (Min, Max) 129 (31.1, 315)

Median (Min, Max) 0 (0, 18.0) CD8 density Total
(cells/mm2)

LVI Mean (SD) 418 (403)
No 130 (71.4%) Median (Min, Max) 279 (16, 2180)

Yes 52 (28.6%) CD8 density CT
(cells/mm2)

PNI Mean (SD) 333 (406)
No 92 (50.5%) Median (Min, Max) 170 (5, 2270)

Yes 90 (49.5%) CD8 density IM
(cells/mm2)

Differentiation Mean (SD) 520 (429)
G1 18 (9.9%) Median (Min, Max) 394 (24, 2340)
G2 87 (47.8%)
G3 77 (42.3%)

Bone invasion
No 148 (81.3%)
Cortical 16 (8.8%)
Medullary 18 (9.9%)

3.2. Clinical Relevance of CD8 Immune Contexture and Peripheral Blood Biomarkers in OSCC

By digital image analysis, the CD8+ T-cell infiltration of tumor tissue was evaluated
by measuring a mean ± SD area of 108.7 ± 73 mm2 (range 4.2–319.9 mm2). Analyzing
both the center of the tumor (CT) and the invasive margin (IM), the latter was significantly
enriched (p < 0.0001) of CD8+ T-cells (median 394 cells/mm2, IQR 210–712) compared to
the CT (median 170 cells/mm2, IQR 64–430), as shown in Figure 1G; furthermore, a strong
direct correlation between the density of CD8 T-cells in CT and IM was evident (R = 0.78
(CI95% 0.71–0.83, p < 0.0001, Figure 1H)); representative fields of the analysis are shown in
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Figure 1. Whilst testing for associations and correlations., a lower IMCD8+ T-cells density
was observed in patients with evidence of LVI (p = 0.032); no other meaningful association
with further clinical or pathological features was observed (Supplementary Tables S1–S9).
Finally, no correlation was observed between intratumoral CD8+ T-cells density and any of
the available peripheral blood biomarkers (Supplementary Table S1).

Analyzing the available pre-operative peripheral blood biomarkers, a significant
association was observed, as expected, between the sex and all the absolute biomarkers and
lymphocyte counts (Supplementary Table S2). Furthermore, no relevant associations or
correlations were observed between such measures and the other clinical and pathological
features (Supplementary Tables S1–S9).

3.3. Identification of the Meta-Variables in OSCC

With the aim of summarizing all available clinical and biomarkers variables in a
minimal number of synthetic components, a data reduction algorithm was applied [32,33].
The available 24 variables were resumed into metavariables (MV). The aggregation of
highly correlated variable was obtained by ascending hierarchical clustering, (Figure 2A).
By inspecting the scree plot (Figure 2B), five clusters were identified, from here on referred
to as metavariables (MVs). Specifically, the identified MV are the IT-CD8MV, MYELOIDMV,
LYMPHOIDMV, TUMORALMV and NODALMV, whose composition is highlighted by
dashed rectangles in Figure 2A. The relationship between the MV scores and the variables
is shown in Figure 2C and summarized in Supplementary Figure S2–S6; full details of
the squared loadings (as a measure of the weight of each variable within the MV) are
reported in Supplementary Table S10. MVs did not show significant correlations, except for
a slight direct correlation (R = 0.27, p = 0.002) between the TUMORALMV and NODALMV

(Figure 2D), confirming the appropriate segregation of the associated variables.

3.4. NODALMV Is Highly Related to OS and DSS

The NODALMV, whose lower values (Supplementary Figure S2) are correlated with
a high nodal category, high nodal burden (both lymph node ratio and number of pos-
itive nodes), presence of pathologic risk factors as ENE, PNI, LVI or high grade and
positive margins was highly associated with all survival endpoints. NODALMV and the
LYMPHOIDMV were significantly associated (p < 0.0001 and p = 0.0165, respectively) with
OS (Figure 3A). Specifically, NODALMV showed a linear relationship (Figure 3B), whereas
LYMPHOIDMV displayed a non-linear effect (Figure 3C) with the best outcome at its mid-
values (Supplementary Table S11). The contour plot in Figure 3D represents isoprognostic
areas according to the combined value of NODALMV and LYMPHOID MV. Applying the
likelihood ratio test, we found that the removal of the LYMPHOIDMV from the model
significantly reduced its accuracy (p = 0.028), further supporting the relevance of this
variable in the OS outcome. By decision curve analysis (DCA), the model including MVs
was comparable to the UICC-TNM pathological Stage in terms of 5 years OS prediction
(Figure 3E).
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Figure 3. Chunk test results on the OS multivariable model reporting the proportion of the overall χ2 of the model explained
by each variable, the partial χ2 and P value of the Wald test, testing the association between each variable and the outcome
(A); adjusted marginal effect plot of the NODALMV score for the 5-year OS estimate with the CI95% gray band (B); adjusted
marginal effect plot of the LYMPHOIDMV score for the 5-year OS estimate with CI95% gray band (C); contour plot showing
isoprognostic OS bands according to the combined effect of the NODALMV and LYMPHOIDMV scores for the 5-year
OS estimate, the color scale represents the 5 y OS probability (D); and decision curve analysis (DCA) analysis showing
comparable results of the model including metavariables and to the one fitted with UICC overall stage alone in predicting
the 5-year OS (E).

Analyzing the DSS, the NODALMV and MYELOIDMV were significantly associated
with the outcome (p < 0.0001 and p = 0.0123, respectively; Figure 4A–C, Supplementary
Table S11). Specifically, for MYELOIDMV, higher scores (associated with leukopenia,
neutropenia, monocytopenia and female sex) were associated with a poorer DSS, as shown
in Figure 4C. The combined partial effect of NODALMV and MYELOIDMV on the 5-year
DSS estimate is shown with the contour plot in Figure 4D that illustrates the detrimental
contribution of different MYELOIDMV scores along the different values of NODALMV

scores. By using the likelihood ratio test, the removal of the MYELOIDMV from the model
significantly reduced its accuracy (p = 0.011), further supporting the relevance of such a
variable for the DSS outcome. By DCA, the model including MVs showed a benefit in
terms of the prediction of the 5-year DSS compared to the UICC-TNM pathological stage,
(Figure 4E).
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Figure 4. Chunk test results on the DSS multivariable model reporting the proportion of the overall χ2 of the model
explained by each variable, the partial χ2 and p value of the Wald test, testing the association between each variable and
the outcome (A); adjusted marginal effect plots for the 5-year DSS with CI95% (gray bands) of the NODALMV (B) and
MYELOIDMV (C) scores; contour plot showing isoprognostic DSS bands according to the combined effect of the NODALMV

and MYELOIDMV scores for the 5-year DSS estimate, the color scale represents the 5 y DSS probability (D); and decision
curve analysis (DCA) showing the advantages of the model including MV compared to the one fitted with UICC overall
stage alone in predicting the 5-year DSS (E).

3.5. Immune MV as Predictor of Loco-Regional and Distant Failure

During the follow-up course, 57 patients (31.3%) developed locoregional recurrence
with a 5-year LRFS estimate of 78% (CI95% 72–84%) and 29 distant metastases (15.9%),
with an estimate of DRFS at 5 years of 85% (CI95% 79–90%). Modelling the LRFS outcome,
we could confirm the detrimental prognostic significance of the NODALMV (p < 0.001),
MYLEOIDMV (p = 0.009) and TUMORMV (p = 0.032) (Figure 5A–D, Supplementary Table S11).
The contour plot shown in Figure 5E illustrates the combined effect of NODALMV and
MYELOIDMV scores for the 5-year LRFS prediction with iso-prognostic levels (color gra-
dient) strictly dependent on both variables. By the likelihood ratio test, the removal of
the MYELOIDMV from the model significantly reduced its accuracy (p = 0.004), further
supporting the relevance of this variable for the LRFS outcome. By DCA and compared to
the UICC-TNM pathological stage, the model including MVs showed a benefit in terms of
predicting the 5-year LRFS, specifically in the lowest and highest ranges of the estimated
risks (Figure 5F).
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Figure 5. Chunk test results on the LRFS multivariable model reporting the proportion of the overall χ2 of the model
explained by each variable, the partial χ2 and P value of the Wald test, testing the association between each variable and the
outcome (A); adjusted marginal effect plots for the 5-year LRFS with CI95% (gray bands) of the NODALMV (B); MYELOIDMV

(C), and TUMORMV (D) scores; contour plot showing isoprognostic LRFS bands according to the combined effect of the
NODALMV and MYELOIDMV scores for the 5-year LRFS estimate—the color scale representing the 5 y LRFS probability (E);
and decision curve analysis (DCA) showing a better performance of the model including MVs compared to the one fitted
with the UICC overall stage alone in predicting the 5-year LRFS in the lowest and highest ranges of the estimated risks (F).

Considering the DRFS outcome and its modeling with a multivariable model
(Figure 6A, Supplementary Table S11), NODALMV confirmed its high weight for its associ-
ation with such an outcome (p < 0.001, Figure 6B), furthermore LYMPHOIDMV (p = 0.008,
Figure 6C) and IT-CD8MV (p = 0.022, Figure 6D) were associated with DRFS following
non-linear effects (p = 0.0037, p = 0.0537, respectively). The lowest IT-CD8MV score, corre-
sponding to low CD8 infiltration in all the tested areas of interest, were strictly related to a
poor DRFS, also independently from the NODALMV score, as shown in the contour plot in
Figure 6E. By using the Likelihood ratio test, the removal of IT-CD8MV and LYMPHOIDMV

from the model significantly reduced its accuracy (p = 0.036 and p = 0.013, respectively), fur-
ther supporting the relevance of such variables for the DRFS outcome. By DCA, the model
including MVs showed a benefit in terms of the prediction of the 5-year DSS, compared to
the UICC-TNM pathological stage, shown in (Figure 6F).
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Figure 6. Chunk test results on the DRFS multivariable model reporting the proportion of the overall χ2 of the model
explained by each variable, the partial χ2 and P value of the Wald test, testing the association between each variable
and the outcome (A); adjusted marginal effect plots for the 5-year DRFS with CI95% (gray bands) of the NODALMV (B);
LYMPHOIDMV (C) and IT-CD8MV (D) scores; contour plot showing isoprognostic DRFS bands according to the combined
effect of the NODALMV and IT-CD8MV scores for the 5-year DRFS estimate—the color scale represents the 5 y DRFS
probability (E); and decision curve analysis (DCA) showing the better performance of the model including MVs compared
to the one fitted with the UICC overall stage alone in predicting the 5-year DRFS (F).

4. Discussion

In this study, we tested the clinical significance of peripheral blood and tumor-
associated immune features in patients submitted to surgery-based treatments for OSCC.

Through a data reduction analysis, five metavariables (MV) were defined; the survival
analysis showed their association with different types of oncological outcomes. Specifically,
the NODALMV was independently associated with all oncological outcomes tested, thus
confirming the detrimental prognostic value of nodal involvement in OSCC. Informa-
tion derived from peripheral blood biomarkers, and resumed in the MYELOIDMV and
LYMPHOIDMV, significantly improved the accuracy of the models of DSS/LRFS and of
OS/DRFS, respectively. Thus, these MV represent candidates for the development of
predictors models. Interestingly, the IT-CD8MV was significantly associated with the DRFS,
suggesting that the group of OSCC desert of CD8+ T-cells should be deeply investigated
to identify an innovative therapeutical strategy limiting distant spread. Furthermore, the
proposed models including MVs outperform the UICC TNM stage in predicting most of
the outcome analyzed.
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It is well-known that several clinical variables (e.g., features describing the nodal
involvement such as N category, number of positive nodes, LNR, presence of ENE, or
high-risk features as PNI, LVI or grading and T category and bone involvement) are highly
correlated and it is often difficult to select which variable has to be included in a prognostic
regression model.

Building MV might represent an alternative strategy to keep all the available informa-
tion for the survival modelling analysis. Applying the PCAmix as data reduction method,
the explainability of each MV is well achieved, as each original variable can contribute
just for one of the five identified MV. Finally, the clinical significance of higher and lower
values of each score is easily understandable by inspecting the correlation/associations
plots, as shown in Supplementary Figures S2–S6.

Our results confirm the prognostic relevance of nodal involvement, summarized
in NODALMV, for all the outcomes analyzed. The highest squared loading for the
NODALMV were observed for N category, the nodal ratio and number of positive nodes
(Supplementary Table S10) underlining the relevant weight of these variables for the defi-
nition of the score and, therefore, their prognostic value. Such an observation is in keeping
with the robust literature of recent decades [4,42], including the last update of the TNM
classification system [43]. Features such as the nodal ratio [5] and the total number of posi-
tive nodes [44] are of main interest and were also tested for the proposal of a new staging
systems in the OCSCC setting [45], which are easily available from any pathologic report.

One of the main findings obtained from this analysis suggests that tumor CD8+ T-cells
depletion, derived by measuring CD8+ T-cell density in different tumoral compartments,
and summarized within the IT-CD8MV, is associated with a higher risk of distant failure,
independently from the NODALMV score. Interestingly, the correlation with DRFS appar-
ently displays a threshold effect, with a critical IT-CD8MV score below which the risk of
distant metastasis steadily increases (Figure 6D). Although limited to few studies, an associ-
ation between high tumor CD8+ T-cell density and a better distant metastasis free-survival
was already observed in solid tumors from different primary sites including breast [46],
colon [47] or soft tissues [48]. Among head and neck malignancies, evidence derived
from the analysis of nasopharyngeal carcinoma [49], hypopharyngeal carcinoma [50,51] or
from carcinomas of mixed primary sites [52] further support this finding. For OSCC, the
association of CD8+ T-cell infiltration and distant failure still needs to be better defined [53];
however, indirect but still limited findings [52], support their protective role.

The occurrence of metastatic disease is associated with systemic immune escape [54].
Cancer-cell intrinsic features as well as host response might represent relevant players
in the T-cell exclusion (TCE) mechanism [55–57]. No data are available on the molecular
basis sustaining TCE in OSCC. However, TCE can be bypassed by various immunotherapy
strategies [58–63]. Currently, immune checkpoint inhibitors are investigated in the neoad-
juvant setting in OCSCC, and this could allegedly enhance CD8+ T-cell activity and reverse
tumor host interplay, thus reducing also the risk of tumor escape at distant sites [64–68].

Notably, as recently proposed, photodynamic therapy (PDT) combined with CTLA-
4 blockade can enhance the cytotoxic CD8+ T-cell response to achieve durable tumor
eradication and inducing an immunological memory [69]. This is worthwhile, since
PDT is one of the treatment options for early or recurrent oral cavity squamous cell
carcinoma [70,71] and its possible combination with immune checkpoint blockade drugs
could pave the way for new trials design.

The main limits of our study are the retrospective design and the mono-institutional
setting. Prospective and multi-institutional validation represents mandatory requirements
to confirm our observations.

5. Conclusions

The results obtained from this study using data reduction methods confirm the key role
of nodal involvement and intratumor CD8+ T-cell density on relevant survival endpoints.



Cells 2021, 10, 2203 14 of 17

Further investigations for the identification of TCE mechanisms will help to identify
appropriate treatment strategies for the subgroup of CD8+ T-cell in poor OSCC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10092203/s1, Supplementary Figure S1: Heatmap showing the missing data in the whole
cohort (A); intersection plot of missing data (B). Supplementary Figure S2: Scatter plots showing the
relationship between TI-CD8MV and the variables from which it is defined. P values are estimated by
Spearman correlation test. Supplementary Figure S3: Box plots and scatter plots showing the relation-
ship between the NODALMV and the variables from which it is defined. P values are estimated by
Kruskal–Wallis test, Wilcoxon sign-rank test or Spearman correlation test. Supplementary Figure S4:
Scatter plots and box plots showing the relationship between the MYELOIDMV and the variables from
which it is defined. P values are estimated by the Spearman correlation test or Wilcoxon sign-rank test.
Supplementary Figure S5: Scatter plots showing the relationship between the LYMPHOIDMV and
the variables from which it is defined. P values are estimated by the Spearman correlation test. Sup-
plementary Figure S6: Box plots showing the relationship between the TUMORMV and the variables
from which it is defined. P values are estimated by Kruskal–Wallis test. Supplementary Table S1: R
values of Spearman’s correlation analysis between continuous variables analyzed. Legend: ****, p <
0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05. Supplementary Table S2: Association analysis between
peripheral or intratumoral biomarkers measures and sex. P values estimated by Wilcoxon test. Sup-
plementary Table S3: Association analysis between peripheral or intratumoral biomarkers measures
and pT category. P values estimated by Kruskal–Wallis test. Supplementary Table S4: Association
analysis between peripheral or intratumoral biomarkers measures and pN category. P values esti-
mated by Kruskal–Wallis test. Supplementary Table S5: Association analysis between peripheral or
intratumoral biomarkers measures and extranodal extension (ENE). P values estimated by Wilcoxon
test. Supplementary Table S6: Association analysis between peripheral or intratumoral biomarkers
measures and grading. P values estimated by Kruskal–Wallis test. Supplementary Table S7: Associa-
tion analysis between peripheral or intratumoral biomarkers measures and bone invasion. P values
estimated by Kruskal–Wallis test. Supplementary Table S8: Association analysis between peripheral
or intratumoral biomarkers measures and perineural invasion (PNI). P values estimated by Wilcoxon
test. Supplementary Table S9: Association analysis between peripheral or intratumoral biomarkers
measures and lymphovascular invasion (LVI). P values estimated by Wilcoxon test. Supplementary
Table S10: Details of the loadings for each variable and level composing the 5 metavariables (MV).
Supplementary Table S11: Extensive details of multivariable survival Cox proportional hazards
models. Legend: d.f., degrees of freedom; Coefficient, regression coefficient; S.E., standard error.
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