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Abstract: Prediction of linear B cell epitopes is of interest for the production of antigen-specific an-
tibodies and the design of peptide-based vaccines. Here, we present BCEPS, a web server for pre-
dicting linear B cell epitopes tailored to select epitopes that are immunogenic and capable of in-
ducing cross-reactive antibodies with native antigens. BCEPS implements various machine learn-
ing models trained on a dataset including 555 linearized conformational B cell epitopes that were 
mined from antibody–antigen protein structures. The best performing model, based on a support 
vector machine, reached an accuracy of 75.38% ± 5.02. In an independent dataset consisting of B 
cell epitopes retrieved from the Immune Epitope Database (IEDB), this model achieved an accura-
cy of 67.05%. In BCEPS, predicted epitopes can be ranked according to properties such as flexibil-
ity, accessibility and hydrophilicity, and with regard to immunogenicity, as judged by their pre-
dicted presentation by MHC II molecules. BCEPS also detects if predicted epitopes are located in 
ectodomains of membrane proteins and if they possess N-glycosylation sites hindering antibody 
recognition. Finally, we exemplified the use of BCEPS in the SARS-CoV-2 Spike protein, showing 
that it can identify B cell epitopes targeted by neutralizing antibodies. 
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1. Introduction 
Adaptive immunity in vertebrates is mediated by B and T cells, 

which recognize antigens with exquisite specificity [1–3]. B cells recog-
nize freely accessible antigens via their B cell receptor (BCR) and are re-
sponsible for the humoral immunity. The BCR comprises a membrane-
bound immunoglobulin that it is secreted after B cell activation and dif-
ferentiation as a soluble immunoglobulin or antibody [4,5]. In this con-
text, a B cell epitope is the specific portion of the antigen recognized by a 
BCR or its derived antibody. 

Protein-derived B cell epitopes can be classified in two types: con-
formational or linear. Conformational epitopes, also known as discontin-
uous epitopes, encompass residues that are not sequential in the primary 
structure; thus, their antigenic reactivity depends on the native confor-
mation of the protein [6]. In contrast, linear epitopes, also named as con-
tinuous epitopes, consist of residues that are sequential [2]. However, in a 
linear B cell epitope, not every single residue necessarily contacts the an-
tibody paratope [6]. It is often considered that most B cell epitopes are 
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conformational. However, the majority of B cell epitopes reported and 
deposited in databases are linear and it has been postulated that they like-
ly result from antigens degraded proteolytically by various immune cells 
and subsequently exocytosed [7]. The name of linear B cell epitopes can 
also be misleading, since they are recognized by cognate antibodies in 
particular three-dimensional conformations [8] that can nonetheless be 
reproduced by a synthetic peptide without the remaining protein context. 

B cell epitope identification is of practical interest for producing anti-
bodies with a desired specificity and it is of potential interest for vaccine 
design. There are diverse experimental methods to identify B cell epitopes 
[7,9] but they all demand much time and resources. Therefore, there is a 
need for developing computational methods that can facilitate their iden-
tification. The possibility of predicting linear B cell epitopes is of particu-
lar practical interest since, unlike conformational B cell epitopes, they can 
be recognized by antibodies isolated from the protein context as synthetic 
peptides [2,7,10]. B cell epitopes can be predicted using different available 
methods, including some based on machine learning [2,4,8,9,11–14]. In 
general, however, all the available methods for linear B cell epitope pre-
diction are quite unreliable, with close to random predictions [12]. In ad-
dition, it has been noted that linear B cell epitopes do often fail to gener-
ate cross-reactive antibodies with the native antigens and are poorly im-
munogenic [7]. Thereby, there is a need for more accurate B cell predic-
tion methods and tools, capable of discriminating epitopes candidates 
suitable for practical applications.  

Here, we present BCEPS (B Cell Epitope Prediction Software), a web 
server for the prediction of linear B cell epitopes within protein sequenc-
es. BCEPS relies on machine learning based models trained on linearized 
B cell epitopes extracted from the tertiary structures of antibody–antigen 
complexes. The top-performing model implemented in BCEPS was gen-
erated using Support Vector Machine and reached an accuracy on 10-fold 
cross validation experiments of 75.38% ± 5.02. This model outperformed 
related methods when tested in an independent dataset. BCEPS also facil-
itates the selection of B cell epitopes with crucial structural features (e.g., 
flexibility and accessibility) that make them more suitable to generate an-
tibodies that are likely cross-reactive with the native antigens. Moreover, 
BCEPS can also detect those B cell epitopes that include motifs for presen-
tation by major histocompatibility complex class II (MHC II) molecules 
and can thereby recruit help from CD4 T cells, hence being more immu-
nogenic. BCEPS is available for free public use at 
http://imbio.med.ucm.es/bceps/ (accessed on 29 September 2021). 

2. Materials and Methods 
2.1. Acquisition of B Cell Epitopes 

B cell epitopes were extracted from antigen–antibody tertiary struc-
tures, downloaded from the abYbank/AbDb database [15]. For any given 
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antigen–antibody structure, the B cell epitope sequence consisted of all 
antigen residues within a range of 4 Å radius to any antibody atom in se-
quential order. These linearized discontinuous B cell epitopes were used 
for model building and optimization. For additional validations, we ob-
tained experimentally verified B cell epitopes from the Immune Epitope 
Database (IEDB) [16,17], considering only those with positive assays and 
discarding those that were not associated to an UNIPROT accession 
number. Linear and discontinuous B cell epitopes were retrieved and 
kept separately in distinct datasets. In addition, discontinuous B cell 
epitopes were put into sequential amino acid sequences (linearized). 
Non-B cell epitopes were randomly obtained from the same antigen se-
quences than the corresponding B cell epitopes. 

2.2. Sequence Similarity Reduction and Similarity Analysis 
Sequence redundancy in all datasets was reduced using CD-HIT [18] 

so that amino acid sequence identity was <80%. Sequence similarity in da-
tasets was analyzed after pairwise sequence alignments generated using 
the Needleman–Wunsch global alignment algorithm implemented in the 
Biopython package [19]. To obtain a measure of sequence similarity in a 
dataset, all sequences were aligned pairwise, but with themselves (for a 
dataset with N sequences, there will be N × N-1 alignments). Identities 
were obtained for each alignment and the average identity was comput-
ed. 

2.3. Building and Optimization of B Cell Epitope Prediction Models 
Prediction models were built and evaluated using the Waikato Envi-

ronment for Knowledge Analysis (WEKA) package [20] under classifica-
tion settings. WEKA provides a large collection of machine learning algo-
rithms (MLAs) for data classification. Here, Support Vector Machine 
(SVM)—with both Gaussian radial basis function (RBF) Kernel and poly-
nomial function–, Neural Network (NN), K-Nearest Neighbor (KNN,) 
and Random Forest (RF) were used. Input data for WEKA consisted of 
datasets in ARFF format with epitope sequences translated into amino ac-
id composition, dipeptide composition, and the combination of both, as 
described elsewhere in Ras-Carmona et al.’s study [21]. Briefly, the amino 
acid composition translation produces a vector feature including the pro-
portion of each of the 20 natural amino acids in any sequence. The dipep-
tide composition translation produces a vector including the proportion 
of all possible pairs of amino acids (20 × 20). Combining amino acid and 
dipeptide composition produces a feature vector with the corresponding 
420 values. Diverse models were trained by varying the parameters that 
define the MLAs. We specifically varied the complexity parameter of 
SVMs along with the gamma value of the RBF Kernel and the exponent of 
the Polynomial function. For NN, RF, and KNN we varied the number of 
hidden nodes, decision trees, and neighbors, respectively. All models 
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were evaluated in 10-fold cross-validation classification experiments that 
were repeated 10 times.  

2.4. Measures of Performance 
To obtain the performance of the models, sensitivity (SE), specificity 

(SP), accuracy (ACC), and Matthew’s correlation coefficient (MCC) were 
computed using Equations (1), (2), (3) and (4), respectively. These meas-
urements are expressed in terms of true positive (TP), false negative (FN), 
true negative (TN), and false positive (FP) predictions resulting from clas-
sification experiments. 𝑆𝐸 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (1)

𝑆𝑃 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 (2)

𝐴𝐶𝐶 = (𝑇𝑃 + 𝑇𝑁)(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)  𝑥 100 (3)

𝑀𝐶𝐶 = (𝑇𝑃 𝑥 𝑇𝑁) − (𝐹𝑁 𝑥 𝐹𝑁)ඥ(𝑇𝑁 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑃) (4)

2.5. Prediction of Linear B Cell Epitopes with Freely Available Tools. 
For comparative analyses, linear B cell epitopes were predicted using 

BepiPred [22,23], IBCE-EL [24], and LBtope [25]. BepiPred predictions 
were performed using a standalone version of BepiPred (Bepipred 2.0). 
For any peptide sequence, BepiPred assigns B cell epitope propensities 
per residue and average B cell epitope scores were computed. Peptide se-
quences with B cell epitope scores ≥ 0.5 were considered B cell epitopes. B 
cell epitope predictions with IBCE-EL and LBtope were carried out online 
at the web sites http://www.thegleelab.org/iBCE-EL/ (accessed on 4 May 
2021) and https://webs.iiitd.edu.in/raghava/lbtope/peptide.php (accessed 
on 4 May 2021), respectively. LBtope predictions were obtained under the 
mode for multiple peptide submissions, using the default model labeled 
as “LBtope_Variable (original dataset)”. Peptides with a percent of prob-
ability higher than 0.6 were considered B cell epitopes, as predefined in 
the web. In IBCE-EL, multiple peptide sequences were submitted in 
FASTA format and peptides indicated in the IBCE-EL result page as 
“BCE” were considered B cell epitopes.  

2.6. Prediction of Peptide Immunogenicity and Computation of Population 
Protection Coverage  

B cell epitope immunogenicity is contingent on their capacity to re-
cruit CD4 T helper (Th) cells, which requires binding and presentation by 
major histocompatibility complex class II (MHC II) molecules. In BCEPS, 
we enabled peptide binding predictions using local standalone versions 
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of RANKPEP [26,27] and NetMHCIIpan [28] to 8 mouse MHC II mole-
cules (H-2-IAb, H-2-IAd, H-2-IAk, H-2-IAq, H-2-IAs, H-2-IAu, H-2-IEd, 
and H-2-IEk) and 35 common human MHC II molecules encompassing 
HLA-DRB1 chains. The HLA-DRB1 molecules targeted for binding were 
the following: DRB1*13:01, DRB1:04:01, DRB1*12:01, DRB1*08:01, 
DRB1*04:02, DRB1*11:02, DRB1*01:01, DRB1*12:02, DRB1*16:01, 
DRB1*01:03, DRB1*15:02, DRB1*16:02, DRB1*08:02, DRB1*13:02, 
DRB1*07:01, DRB1*04:04, DRB1*03:01, DRB1*15:03, DRB1*11:03, 
DRB1*09:01, DRB1*03:02, DRB1*11:01, DRB1*13:03, DRB1*11:04, 
DRB1*04:08, DRB1*08:04, DRB1*04:03, DRB1*08:03, DRB1*10:01, 
DRB1*01:02, DRB1*04:07, DRB1*04:05, DRB1*14:01, DRB1*14:02, and 
DRB1*15:01. A peptide is considered to bind to a particular MHC II mole-
cule if it reaches a relative percentile rank above 10% with either of the 
two tools. Peptides binding to MHC II molecules have a variable size (be-
tween 9 and 22 residues), but include a 9-mer residue core which sits on 
the MHC II molecule [29]. HLA II binding predictions were carried out to 
report 15-mer peptides and any predicted B cell epitope encompassing 
the corresponding 9-mer residue was considered to bind to the relevant 
HLA II molecule.  

In humans, the population protection coverage (PPC) of a B cell 
epitope is defined as the proportion of the population in which that 
epitope could be immunogenic—elicit specific antibodies—as judged by 
their ability to recruit help from Th cells. Hence, in BCEPS, the PPC of the 
epitopes is computed after their HLA-DRB1 binding profiles as indicated 
elsewhere in [30,31] for 4 distinct ethnic groups in North America (Cauca-
sian, Afroamerican, Asian, and Native North Americans), reporting an 
average value. Genetic frequencies of HLA-DRB1 alleles required for PPC 
calculations were obtained from http://www.allelefrequencies.net (ac-
cessed on 25 May 2016) and are provided in the Supplementary Materials 
(Table S1).  

2.7. Ectodomain Location and Prediction of Flexibility, Accessibility, 
Hydrophilicity, and Glycosylation Sites 

In BCEPS, input amino acid sequences were subjected to predictions 
to detect peptide leader sequences, transmembrane helical regions, and 
Glycosylphosphatidylinositol (GPI) anchoring regions, using SIGNALP 
[32], TMHMM [33], and big-Pi [34]. After these predictions, BCEPS identi-
fies as ectodomain residues those located in the mature portion of secret-
ed proteins and/or in solvent exposed regions of membrane bound pro-
teins.  

Likewise, relative solvent accessibility (RSA) and normalized B val-
ues—used as a measure of flexibility—per residue were predicted for the 
entire input amino acid sequence using NetSurfP [35] and profBval [36], 
respectively. The Hopp and Woods scale [37] was used to assign hydro-
philicity to amino acid residues. Subsequently, BCPES obtained measures 
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of epitope flexibility, accessibility, and hydrophilicity consisting of aver-
age values computed from the corresponding epitope residue values. N-
glycosylation sites in input amino acid sequences and the corresponding 
epitopes were predicted using NetNGlyc [38]. 

3. Results 
3.1. Strategy to Generate B Cell Epitope Prediction Models 

We approached the task of developing B cell epitope prediction mod-
els as a classification problem for machine learning (ML). Under this ap-
proach, B cell epitope prediction models were generated by training ML 
algorithms (MLAs) to distinguish B cell epitopes from non-B cell 
epitopes. To that end, we constructed a non-redundant dataset including 
the sequences of 555 B cell epitopes and 555 non-B cell epitopes. Hereaf-
ter, we will refer to this dataset as BCETD555. B cell epitope sequences in 
BCETD555 were obtained after the tertiary structure of antigen–antibody 
complexes and consisted of linearized conformational B cell epitopes, as 
they encompass antigen residues in contact with cognate antibodies (≤4.0 
Å) ordered sequentially. All B cell epitope sequences included in the 
training dataset ranged from 11 to 25 residues, with a mean and median 
length of 16.01 ± 3.64 and 16, respectively. Sequence redundancy was 
avoided using CD-HIT [18], removing epitope sequences with more than 
80% identity. The average sequence identity between B cell epitopes in-
cluded in BCETD555 was 15.84 ± 5.18%. Non-B cell epitope sequences in 
BCETD555 were extracted randomly from the same antigens than B cell 
epitopes and they had the same size distribution as B cell epitope se-
quences (min: 11, max: 25, mean: 16.01 ± 3.64 and median: 16). The aver-
age sequence identity between non-B cell epitope sequences was 15.89 ± 
4.74%. Overall, considering both B cell epitopes and non-B cell epitopes, 
the average sequence identity in BCETD555 was 15.63 ± 4.86%. BCETD555 is 
available as supplementary data at the journal website (Supplementary 
File S1). 

3.2. B Cell Epitope Prediction Models 
We built and optimized B cell epitope models by training MLAs on 

the BCETD555 dataset, using features consisting of the amino acid compo-
sition, dipeptide composition, and the combination of both. We per-
formed multiple classification experiments under 10-fold cross-validation 
experiments (repeated 10 times) varying the relevant parameters of the 
selected MLA. We specifically applied Support Vector Machine (SVM) 
with Gaussian radial basis function (RBF) Kernel and Polynomial func-
tion, Neural Networks (NN), Random Forest (RF), and K-Nearest Neigh-
bors (KNN). All these MLAs are frequently applied to biological data 
classification and model building [39]. Judging by the ACC of the classifi-
cations, the best models were obtained by training MLAs on amino acid 
composition and the combination of amino acid composition and dipep-
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tide composition (Figure 1). However, MLAs trained on dipeptide com-
position alone reached much modest values of ACC, highlighting the ma-
jor contribution of the amino acid composition to the performance of the 
models. Therefore, we selected the top performing ML models trained on 
amino acid composition to obtain further measures of performance such 
as SE, SP, and MCC (Table 1).  

 
Figure 1. Accuracy top-performing ML models classifying B cell epitopes. Figure shows the accuracy in percentage (% 
ACC, Y-axis) of the top-performing ML models (X-axis) trained in B cell epitope sequence features consisting of amino 
acid (AA) composition (black bars), dipeptide (DP) composition (dark grey bars), and combination of amino acid and 
dipeptide composition (light grey bars). ML models consisted of Random Forest (RF), Support Vector Machine (SVM), 
K-Nearest Neighbor (KNN), and Neural Network (NN) obtained with the following parameters: RF, 450 single decision 
trees; SVM, RBF Kernel with a complexity parameter of 4.0 and a gamma value of 0.4, KNN, 10 neighbors; NN, Multi-
layer Perceptron with a single hidden layer of 11 nodes and a learning rate of 0.01. Accuracy was computed in 10-cross 
validation experiments repeated 10 times and error bars represent standard deviations. 

Table 1. Performance of selected ML models trained in amino acids composition. 

MLAs SE SP MCC % ACC 
SVM 0.73 ± 0.06 0.78 ± 0.06 0.51 ± 0.10 75.38 ± 5.02 
RF 0.74 ± 0.06 0.75 ± 0.07 0.50 ± 0.11 74.95 ± 5.47 
NN 0.71 ± 0.07 0.71 ± 0.08 0.48 ± 0.10   73.87 ± 5.11 * 

KNN 0.65 ± 0.06 0.79 ± 0.07 0.45 ± 0.10   72.15 ± 4.96 ** 
Table reports the sensitivity (SE), specificity (SP), accuracy (ACC), and Matthew’s correlation coef-
ficient (MMC) of top performing ML models trained and optimized in amino acid composition. 
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Values of performance were obtained with the following parameters: SVM, RBF Kernel with a 
complexity parameter of 4.0 and a gamma value of 0.4; RF, 450 single decision trees; NN, Multi-
layer Perceptron with a single hidden layer of 11 nodes and a learning rate of 0.01; KNN, 10 
neighbors; Performance values were obtained under 10-cross validation experiments repeated 10 
times. ACC values labeled with asterisks are significantly smaller than those achieved by the SVM 
model, as judged by two sample T-tests (* p-value < 0.05, ** p-value < 0.01). 

In general, all the MLAs analyzed had a similar performance, reach-
ing ACC values in cross-validation above 72% (Table 1). The highest ACC 
was reached by an RBF SVM model, which was significantly better than 
that reached by KNN (p-value = 0.0001) and NN (p-value = 0.036), as 
judged by two sample T-tests. The ACC of the SVM model was also better 
than that reached by the top-performing RF model, but without statistical 
significance (p-value: 0.56). The MCC value reached by the SVM model 
was 0.51, which was also higher than that reached by all the other ML 
models. Thereby, we selected the RBF SVM model for further evaluation 
in independent test datasets 

We also evaluated the top-performing SVM model generated here in 
two independent test datasets and compared the predictions with those 
produced by other B cell prediction tools, including BepiPred [22,23], 
IBCE-EL [24], and LBtope [25]. These tools are also aimed to predict linear 
B cell epitopes and are based on RF, SVM, and a combination of SVM and 
KNN, respectively. The two independent datasets were generated after 
experimental B cell epitope sequences retrieved form the IEDB database 
[16,17] (details in Material and Methods). One of the datasets included the 
sequences of 2195 linear B cell epitopes (IEDB Linear Epitope dataset, 
ILED2195) while the other included the sequences corresponding to 1246 
discontinuous B cell epitopes; residues ordered sequentially (IEDB Dis-
continuous Epitope Dataset, IDED1246). Each dataset included an equal 
number of non-B cell epitope sequences that were obtained randomly 
from the same antigens and with the same size than the counterpart B cell 
epitopes. We only considered B cell epitopes with more than 10 residues 
and less than 26, to resemble the size of the epitopes in the BCETD555 da-
taset. The average sequence identity in the ILED2195 and IDED1246 datasets 
was 15.31 ± 5.06% and 15.52 ± 4.78%, respectively. The average sequence 
identity considering just B cell epitopes was 15.31 ± 5.47% and 15.85 ± 
4.99% in the ILED2195 and IDED1246 datasets, respectively. ILED2195 and 
IDED1246 are available as supplementary data at the journal website (Sup-
plementary File S2 and S3, respectively).  

The results of classifying B cell epitopes in the described independent 
datasets using BepiPred, LBtope, and IBCE-EL and our SVM model are 
summarized in Table 2. Our SVM model performed better in the IDED1246 

dataset than in ILED2195, reaching ACC values of 67.05% and 60.38%, re-
spectively, and MCC values of 0.34 and 0.21, respectively. This result is 
expected, since the IDED1246 dataset consists of sequential (linearized) con-
formational epitopes as it does the BCETD555 training dataset. The per-
formance of the SVM model in both independent datasets was worse than 
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under cross-validation, but yet much better than that of BepiPred, 
LBtope, and IBCE-EL, which were clearly unable to distinguish B cell 
epitopes from non-B cell epitopes in any of the two test datasets.  

Table 2. Comparitive performance of B cell epitope prediction methods. 

Independent test Dataset Model/Tool SE SP % ACC MCC 

ILED2195 

SVM model 0.50 0.71 60.38 0.21 
BepiPred 0.24 0.43 33.14 −0.34 
LBtope 0.36 0.58 47.08 −0.06 

IBCE-EL 0.64 0.33 48.15 −0.04 

IDED1246 
SVM model 0.63 0.71 67.05 0.34 

BepiPred 0.42 0.52 48.11 −0.04 
LBtope 0.40 0.74 56.80 0.14 

IBCE-EL 0.86 0.20 53.20 0.09 
Table reports the sensitivity (SE), specificity (SP), accuracy (% ACC), and Matthew’s correlation 
coefficient (MMC) reached in the independent ILED2195 and IDED1246 datasets by the our top-
performing SVM model and BepiPred, LBtope, and IBCE-EL. B cell epitope predictions with Bepi-
Pred, LBtope, and IBCE-EL were carried out at the tool web sites (details in Materials and Meth-
ods). 

3.3. BCEPS Web Server 
We have developed a web-based tool named BCEPS for B Cell 

Epitope Prediction Software, which enables the prediction of B cell 
epitopes using the ML models developed here. BCEPS is available for free 
public use at http://imbio.med.ucm.es/bceps/ (accessed on 29 September 
2021). BCEPS interface, shown in Figure 2A, has been designed for an 
easy and intuitive use. The input data for BCEPS is a protein sequence in 
FASTA format and B cell epitopes can be predicted using the top-
performing SVM, RF, and NN models described in Table 1. BCEPS pre-
dictions are carried out on all the different peptides, with a size selected 
by the user, included in the input sequence. By default, BCEPS returns all 
peptides indicating whether they are predicted to be B cell epitopes (B cell 
epitope score ≥ threshold). However, BCEPS can only show predicted B 
cell epitopes if that option is selected. Moreover, since various consecu-
tives peptides can be B cell epitopes, BCEPS has two options to simplify 
the output: “Extended B cell epitopes” and “Collapsed B cell Epitopes”. If 
the option “Extended B cell epitopes” is checked, consecutive peptides 
that are predicted as B cell epitopes are extended and reported as a single 
epitope. If the option “Collapsed B cell Epitopes” is selected, BCEPS as-
signs a B cell epitope score per residue, which is computed as the mean of 
the B cell epitope scores of all peptides including that residue. Then, se-
quential residues predicted to be B cell epitopes (threshold ≥ 0.5) are 
joined and BCEPS returns those ones with length ≥ than the selected size. 
BCEPS can also report various epitope features/properties selected by the 
user. These features include hydrophilicity, flexibility, accessibility, ecto-
domain location, glycosylation sites, and immunogenicity. Peptide hy-
drophilicity and flexibility are reported as numeric values computed as 
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detailed in Material and Methods. Ectodomain location and glycosylation 
sites are reported as binary tags (Y/N) that serve to assess if a particular 
peptide is located in the solvent accessible region of a membrane-bound 
or secreted protein and/or if it has N-glycosylation sites, respectively (de-
tails in Material and Methods). Peptide immunogenicity is contingent on 
getting help from CD4 T helper (Th) cells for antibody production, which 
requires presentation by major histocompatibility complex class II (MHC 
II) molecules. Thereby, BCEPS can report peptide-MHC II binding pro-
files and for human MHC II molecules their combined phenotypic fre-
quency in the population (details in Material and Methods). This value 
represent the proportion of the population in which the peptide will be 
immunogenic in humans (population protection coverage). In the output 
(Figure 2B), all the selected features are listed per peptide in an interactive 
table, allowing users to sort and/or filter the predicted B cell epitopes.  
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Figure 2. BCEPS web server. (a) BCEPS interface. (b) Representative BCEPS output obtained with default settings and 
the option “Extended B cell epitopes”. BCEPS main result consists of a table displaying the following information (from 
left to right): Peptide starting position; peptide sequence; B cell epitope prediction (1/0); flexibility value; accessibility 
value; hydrophilicity value; ectodomain location (Y/N); presence of N-glycosylation sites (Y/N); user selected MHC II 
molecules predicted to bind the peptide; and population protection coverage (only applies to human MHC II molecules). 

3.4. Case Study: SARS-CoV-2 Surface Spike Glycoprotein 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus 

is the cause of the ongoing COVID-19 pandemic. SARS-CoV-2 infects host 
cells that express the receptor angiotensin-converting enzyme 2 (ACE2), 
which is engaged by SARS-CoV-2 Spike (S) protein [40]. Blocking the in-
teraction between SARS-CoV-2 and ACE2 prevents viral entry [41–43]. 
Hence, current COVID-19 vaccines aim to generate neutralizing antibod-
ies using the S protein [44–46]. Nonetheless, it is also now clear that these 
vaccines induce considerable CD8 T cell responses which also ought to 
contribute to the reported protection against COVID-19 [47–49]. SARS-
CoV-2 S protein is highly glycosylated, which hinders antibody recogni-
tion. Therefore, neutralizing antibodies have been shown to target non-
glycosylated epitopes located mainly in the Receptor Binding Domain 
(RBD) of the S protein [50]. A number of such neutralizing B cell epitopes 
have been deposited and are available at IEDB (34). Here, we examined 
the utility of BCEPS for identifying known neutralizing B cell epitopes in 
the SARS-CoV-2 S protein. 

We entered the entire amino acid sequence of SARS-CoV-2 S protein 
sequence (ACN: YP_009724390.1) into BCEPS and predicted B cell 
epitopes selecting the length of 18 residues and the option to extend B cell 
epitopes. As a result, we obtained a set of 38 predicted B cell epitopes and 
of those, 21 are located in the ectodomain and do not contain any N-
glycosylation site (Table S2). In BCEPS, potential B cell epitopes can be 
ordered by solvent accessibility and flexibility and we selected for further 
investigation 10 of them, exhibiting an accessibility above 0.20 or a flexi-
bility higher than 0.74. Subsequently, we searched the IEDB database 
[16,17] for B cell epitopes from SARS-CoV-2 using the amino acid se-
quence of the 10 selected peptides, finding that 6 of them had coincidenc-
es (≥ 8 identical residues) with B cell epitopes known to be targeted by 
neutralizing antibodies (Table 3).  

Table 3. B cell epitopes predicted by BCEPS matching known neutralizing B cell epitopes. 

Pos Predicted B Cell Epitope Flex Access 
Matching IEDB Epitopes  

Recognized by Neutralizing 
Antibodies 

IEDB ID 

243 
ALHRSYLTPGDSSSGW

TAGAAAYY −0.16 0.25 ALHRSYLTPGDSSSG 1334452 

433 
VIAWNSNNLDSKVGG

NYNYLYRL 0.12 0.21 NNLDSKVGGNYNYLYR 1334470 

456 
FRKSNLKPFERDISTEI

YQA 0.99 0.19 
LFRKSNLKPFERDIS 1334467 

DISTEIYQAGSTPCNGVEGFN 1336532 
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CYFPLQSYGFQPTNGVGYQPY
RVVVL 

462 KPFERDISTEIYQAGSTP 0.91 0.21 TEIYQAGST 1335256 

666 
IGAGICASYQTQTNSPR

RARSVASQSIIAYT 0.06 0.27 QTQTNSPRRARSVAS 1334479 

1069 
PAQEKNFTTAPAICHD

GK 
−0.03 0.21 VTYVPAQEKNFTTAP 1313930 

Table reports the position, sequence, flexibility (Flex), and solvent accessibility (Access) of predict-
ed B cell epitopes from SARS-CoV-2 S protein that coincide with known neutralizing B cell 
epitopes in at least 8 residues. IEDB epitope accession numbers (IEDB ID) of neutralizing B cell 
epitopes are indicated. Regions overlapping between predicted and known neutralizing B cell 
epitopes are in bold. 

We also inspected the location of predicted B cell epitopes matching 
known neutralizing epitopes in the tertiary (3D) structure of SARS-CoV-2 
S protein (Figure 3). As indicated earlier, three of these epitopes 
(NNLDSKVGGNYNYLYR, FRKSNLKPFERDISTEIYQA, and 
TEIYQAGST) map in the RBD region of SARS-CoV-2 S protein, highlight-
ing their neutralizing nature. Peptide ALHRSYLTPGDSSSG maps in a re-
gion proximal to the RBD domain and it is expected that antibodies rec-
ognizing this epitope will prevent binding to ACE2 by steric hindrance 
and hence be neutralizing as well. In contrast, the epitopes 
QTQTNSPRRARSVAS and PAQEKNFTTAP are located far from the RBD 
domain and their neutralizing nature is less evident. However, we can 
speculate that antibodies recognizing these epitopes may interfere with 
conformational changes that are required to expose the RBD domain and 
engage ACE2 during viral entry [51]. It is important to note that the neu-
tralizing B cell epitopes that are predicted by BCEPS are clearly exposed. 
Moreover, all of them, except for PAQEKNFTTAP, which is partially lo-
cated in a beta sheet, lie completely in long flexible loops. Therefore, we 
could expect that synthetic peptides corresponding to these B cell 
epitopes could elicit antibodies that are cross-reactive with the native an-
tigen. 
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Figure 3. Structural mapping of neutralizing B cell epitopes in SARS-CoV-2 S protein predicted with BCEPS. The center 
of the figure depicts the molecular surface of the trimeric S protein in the open state (PDB: 6ACJ) with the RBD domain 
shown in green engaging ACE2 (shown in red ribbons). Predicted B cell epitopes overlapping with known neutralizing 
B cell epitopes are shown in blue. B cell epitopes are zoomed in and shown in ribbon rendering (colored in blue) around 
the central figure. Molecular renderings were generated using the PyMol Molecular Graphics System, Version 1.2r3pre, 
Schrödinger, LLC 2015 (New York, NY, USA). 

4. Discussion 
Producing entire antigens for antibody production is not a trivial 

matter. Thereby, the main practical objective of B cell epitope prediction 
is to identify a portion of the antigen that can substitute it in the produc-
tion of specific antibodies. Conformational or discontinuous B cell 
epitopes are arguably the most relevant for antibody/B cell recognition 
but, unfortunately, isolating conformational B-cell epitopes from their 
protein context is a difficult task that requires suitable scaffolds for 
epitope residue grafting [2]. As a result, prediction of conformational B-
cell epitopes has currently had little practical translation in the antibody-
production industry. In contrast, linear B cell epitopes, can be isolated 
from their protein context and used (e.g., as synthetic peptides) to replace 
the counterpart antigens for antibody production and detection. There-
fore, there is a practical interest in developing methods to predict linear B 
cell epitopes and here, we have introduced a new web-based tool, BCEPS, 
for such a task (available for free public use at 
http://imbio.med.ucm.es/bceps/, accessed on 29 September 2021).  

BCEPS relies in ML-based models that were trained on linearized 
conformational B cell epitopes obtained from available 3D structures of 
antigen–antibody complexes. The top-performing model implemented in 
BCEPS, based on SVM, reached an accuracy under cross-validation of 
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75.38% ± 5.02. In an independent test set, consisting of B cell epitopes ob-
tained from IEDB, the accuracy of this model dropped to 67.05%, but yet, 
clearly outperformed related tools such as BepiPred [22,23], IBCE-EL [24], 
and LBtope [25], which were unable to distinguish B cell epitopes from 
non B cell epitopes. Therefore, the predictive power of BCEPS is notable. 
Moreover, it is unlikely that B cell epitope prediction methods can be 
more accurate since the BCR/antibody repertoire is so diverse that almost 
anything can be recognized; there are no, or few, true non-B cell epitopes. 

In practice, the extreme diversity of the BCR repertoire determines 
that specific antibodies can be produced against any 10–15 residue-long 
peptide [52]. As a result, the selection of B cell epitopes that are cross-
reactive with the native antigen become of paramount relevance. There-
by, we have enhanced BCEPS with features allowing such selection. 
Cross-reactive linear B cell epitopes must be solvent accessible and locat-
ed in flexible regions, and thus BCEPS permits sorting/selecting peptides 
according to these properties. Membrane-bound proteins and secreted 
proteins are often glycosylated, which also hinder cross-reactive recogni-
tion by antibodies elicited by synthetic peptides. Consequently, BCEPS al-
lows discarding peptides with predicted N-glycosylation sites in the ec-
todomain of proteins. By applying these selection criteria, we have shown 
that it is possible to identify known linear B cell epitopes in SARS-CoV-2 
S protein, which are targeted by neutralizing antibodies. As expected, 
these B cell epitopes are located in solvent exposed flexible loops of 
SARS-CoV-2 S protein (Figure 3). It is worth noting that SARS-CoV-2 
Spike protein also exhibits many other neutralizing conformational B cell 
epitopes (about 150 of them with ≥ 10 residues can be identified in the 
IEDB resource) that are out of the reach of BCEPS. Whether these confor-
mational epitopes are of greater functionally/relevance than the linear B 
cell epitopes is an open question that will require experimental scrutiny. 
However, unlike linear B cell epitopes, these conformational B cell 
epitopes in SARS-CoV-2 Spike protein cannot be used to produce anti-
bodies alone, unless they are engineered in adequate scaffolds retaining 
the epitope 3D-structure. Likewise, it also worth remarking that BCEPS, 
or any B cell epitope prediction method, bypass the need for experimental 
verification. Therefore, B cell epitopes predicted by BCEPS within a given 
query antigen will need to be synthesized and antibodies produced 
against them in animal models will need to be tested for their ability to 
recognize the antigen. These B cell epitope may be useful for epitope vac-
cine only if the raised antibodies have some relevant biological activity 
against the corresponding pathogen, e.g., blocking viral entry. Currently, 
there is no commercial vaccine available based on B cell epitope predic-
tions. Moreover, depending on the infection/pathogen, inducing antibod-
ies with the desired specificity can be an important step towards develop-
ing a vaccine, but antibodies alone may not suffice. 



Cells 2021, 10, 2744 15 of 18 
 

 

Although peptides can be antigenic, they exhibit little immunogenici-
ty. They can be recognized by B cells, but such recognition is not enough 
to elicit the production of antibodies. B cells require stimulation from T 
helper (Th) cells to produce antigen-specific antibodies. To that end, B 
cells must present to Th cells peptides derived from BCR-recognized an-
tigens bound to MHC II molecules. Antigen/peptide immunogenicity is 
thus concomitant with antigen-presentation by MHC II molecules. Since 
MHC II molecules can only bind peptides containing specific motifs, the 
chance that these motifs to realize in short peptides is small, which ex-
plains their poor immunogenicity. The immunogenicity of peptides can 
be enhanced by various means, including by fusion with larger proteins. 
However, some peptides can themselves bind to MHC II molecules, 
which will make them inherently more immunogenic. Thereby, in BCEPS, 
we enabled the identification of B cell epitopes that can potentially bind 
and be presented by MHC II molecules, in humans known as Human 
Leukocyte Antigen class II (HLA II) molecules. MHC II molecules en-
compass two chains, alpha and beta, both contributing to delineate the 
peptide binding groove. In humans, HLA II molecules are polygenic, in-
cluding HLA-DP, HLA-DQ, and HLA-DR molecules. Moreover, they are 
highly polymorphic and the polymorphisms determine their peptide 
binding specificity [53]. In BCEPS, we chose to predict peptide binding to 
HLA-DR molecules with the beta chain encoded by HLA-DRB1 gene al-
leles for two reasons: the alpha chain is non polymorphic [53] and HLA-
DRB1 expression in the cell surface of antigen presenting cells is higher 
than that of other HLA II molecules [54]. Another relevant feature of HLA 
II molecules is that distinct allelic variants are expressed in the population 
with uneven and variable frequencies depending on the ethnic group 
[31]. Since HLA II presentation determines the inherent immunogenicity 
of B cell epitopes, BCEPS also reports the percentage of the population in 
which a B cell epitope will alone (e.g., as a synthetic peptide) induce anti-
body production. This value is computed after the genetic frequently of 
the relevant HLA-DRB1 alleles in four distinct ethnic groups in the USA 
(Caucasian, Afro-American, Asians, and Native Americans) (details in 
Material and Methods).  

To make the most of BCEPS predictions, the output is interactive and 
users can filter and sort B cell epitopes according to the various features 
described above. Altogether, BCEPS ought to become a reference tool for 
B cell epitope prediction and selection. 

Supplementary Materials: The following supplementary materials are available online at 
www.mdpi.com/article/10.3390/cells10102744/s1. Supplementary File S1: BCETD555 dataset; Sup-
plementary File S2: ILED2195 dataset; Supplementary File S3: IDED1246 dataset; Table S1: Genetic 
frequency of HLA-DRB1 alleles in 4 distinct ethnic groups in USA (Caucasians, Afro-Americans, 
Asians and Native North Americans); Table S2: B cell epitopes predicted in SARS-CoV-2 S glyco-
protein. 
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