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Abstract: Publicly available gene expression datasets were analyzed to develop a chromophobe and
oncocytoma related gene signature (COGS) to distinguish chRCC from RO. The datasets GSE11151,
GSE19982, GSE2109, GSE8271 and GSE11024 were combined into a discovery dataset. The tran-
scriptomic differences were identified with unsupervised learning in the discovery dataset (97.8%
accuracy) with density based UMAP (DBU). The top 30 genes were identified by univariate gene
expression analysis and ROC analysis, to create a gene signature called COGS. COGS, combined
with DBU, was able to differentiate chRCC from RO in the discovery dataset with an accuracy of
97.8%. The classification accuracy of COGS was validated in an independent meta-dataset consisting
of TCGA-KICH and GSE12090, where COGS could differentiate chRCC from RO with 100% accuracy.
The differentially expressed genes were involved in carbohydrate metabolism, transcriptomic regula-
tion by TP53, beta-catenin-dependent Wnt signaling, and cytokine (IL-4 and IL-13) signaling highly
active in cancer cells. Using multiple datasets and machine learning, we constructed and validated
COGS as a tool that can differentiate chRCC from RO and complement histology in routine clinical
practice to distinguish these two tumors.

Keywords: chromophobe; oncocytoma; classification; machine learning; transcriptomic; gene signature

1. Introduction

Chromophobe renal cell carcinoma (chRCC) and oncocytoma (RO) are renal tumor
types originating from alpha intercalated cells of the collecting ducts of the kidney [1,2]
comprising 8–12% of all renal neoplasms [3–6]. Histologically, chRCC is composed of sheets
of cells with well-defined cell borders that have darker cytoplasm than conventional clear
cell carcinoma and peri-nuclear halos [6]. ChRCC, a malignant tumor, requires surgical
intervention [3,5]. Histologically, RO has variable architecture and frequently consists
of nests of tumor cells comprised of large, round, eosinophilic cells in loose connective
tissue [6]. RO is a benign neoplasm and requires only periodic monitoring [6]. Gross

Cells 2022, 11, 287. https://doi.org/10.3390/cells11020287 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11020287
https://doi.org/10.3390/cells11020287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-2197-4376
https://orcid.org/0000-0002-0966-6381
https://orcid.org/0000-0003-0385-3829
https://doi.org/10.3390/cells11020287
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11020287?type=check_update&version=1


Cells 2022, 11, 287 2 of 13

morphology and histological similarities between the two tumors often pose difficulties
in the classification of needle biopsy samples, which are the primary method of diagnosis
of renal cancer [7]. Furthermore, medical imaging, such as CT-Scan or MRI, also fails to
differentiate these tumors due to their similarity in appearance [8].

Immunohistochemical (IHC) markers for chRCC, such as cytokeratin 7, epithelial-
mesenchymal antigen, and parvalbumin (PVALB) are commonly used in clinics by pathol-
ogists [9,10]. RO diagnosis is assisted by an IHC stain of cytokeratin 7, S100A1 [11], and
kidney-specific cadherins [12]; however, the overlap between these markers in chRCC and
RO makes it an ineffective method to distinguish these tumors [9–11]. Electron microscopy
is the gold standard to differentiate the tumors, though the method is not feasible for rou-
tine clinical practice. Therefore, there is a need to identify additional markers to distinguish
chRCC from RO.

Molecular diagnostic methods have been used to identify the specific genetic changes
associated with disease and can be helpful for diagnostic and prognostic purposes [13].
Previous molecular studies on chRCC and RO proposed molecular markers such as parafi-
bromin, aquaporin 6, and synaptogyrin 3 [14]. Additional molecular markers, such as
AP1M2, MAL2, PROM2, PRSS8, FLJ20171 [15] and EGLN2 [16], are reported to be useful
for distinguishing chRCC and RO in conjunction with the currently available IHC markers.
The major drawbacks to these molecular diagnostic studies are the smaller sample sizes
and the overlapping expression of genetic markers in chRCC and RO [14,15].

Here, we identified transcriptomic differences distinguishing chRCC from RO in a
meta-dataset combined from multiple studies from the Gene Expression Omnibus (GEO)
and ArrayExpress. We developed a 30-gene chromophobe and oncocytoma related gene
signature (COGS), and elucidated pathway differences between chRCC and RO. We then
implemented unsupervised machine learning (ML) algorithms and validated ML models
to distinguish chRCC from RO.

2. Materials and Methods
2.1. Dataset Search and Selection

ChRCC and RO transcriptomic studies were identified in the Gene Expression Om-
nibus (GEO) and ArrayExpress (Table S1). Treatment-naïve samples and HG-U133plus
2 arrays were selected to create the discovery dataset. Based on the selection criteria, 6 stud-
ies (GSE11024, GSE11151, GSE12090, GSE2109, GSE8271, GSE19982) were chosen and their
expression and phenotype data were downloaded with GEOquery [17]. The phenotype
data were prepared from the downloaded files, and only chRCC, RO and normal renal
tissue (N) arrays were selected in the data preparation steps. The data were preprocessed
with probe selection, log transformation, and batch effect correction.

2.2. Data Preprocessing and Probe-to-Gene Conversion

The best representative probe for each gene was identified in each study/array by
implementing a probe selection algorithm [18] that scores individual probes based on the
product of specificity, coverage, and robustness, and selects the highest scoring probe per
gene. Finally, all the common probes across studies were subset into a data frame for
further analysis (n = 15,875 probes).

The preprocessing steps included log transformation for GSE2109 and GSE11151 upon
evaluation of the summary statistics. All the datasets were merged to create a data frame
containing gene expression and phenotype information. Batch effects between the datasets
were tested using principal component analysis (PCA) and were corrected using ComBat
from “SVA” [19]. After batch correction, the data were re-evaluated for batch effects with
PCA. This batch corrected dataset was used for all the subsequent analyses to generate
COGS, differential expression, and validation, as described below.
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2.3. Statistical Analysis

All statistical analyses in this study were performed using R language and environ-
ment for statistical computing [20], version 4.10. All p-values were two-sided and a p < 0.05
was considered significant.

2.3.1. Unsupervised Learning Pipeline

We implemented an unsupervised machine learning algorithm with UMAP (Uni-
form Manifold Approximation and Projection) and Density-based UMAP to differentiate
the tumors [21,22]. UMAP projects the high dimensional transcriptomic data into two-
dimensional embedding while preserving local and global connectivity for each sample,
resulting in similar sample groups together; the distance is inversely proportional to the
similarity between the samples. Density-based UMAP (DBU) is the integration of UMAP,
and density-based spatial cluster with the application of noise (DBSCAN) and is designed
to run in iterations. The DBU took a random sample of genes, applied dimension reduc-
tion to project two-dimensional embedding, which was fed into DBACAN to identify the
groups. The optimum parameters for UMAP are identified by running combinations of
the hyperparameters (min_dist, n_neighbor, gene_count, metric). We ran a grid search for
gene_count (25, 250, 1000, 5000, 10000), n_neighbor (5, 10, 20, 50), min_dist (0.01, 0.1, 0.2,
0.5, 0.99), and metric (Cosine, Manhattan, Euclidean) in all combinations to identify the best
classification, by comparing inter- and intra-cluster distance in UMAP projection [23,24].
The chosen parameters are n_neighbors = 20, min_dist = 0.01, gene_count = 1000, and
metric = “Manhattan”. DBU was iterated 1000 times with the selected parameters and the
resulting two-dimensional UMAP coordinates were fed into a DBSCAN to identify the
groups. The optimum parameter for DBSCAN was chosen using an elbow plot (eps = 2,
Minimum points 5) from the “fpc” package [25]. Each iteration classified the sample set
into groups, and these groups were compared across the iterations to develop the final
classification. The final classification was computed with plurality voting, where a sample
requires consensus from at least 70% of the iterations to be classified into that final group.
If a sample fails to reach this threshold, it is considered “ambiguous”. The results of all the
iterations were visualized as a consensus heatmap, generated using the package gplots [26].
An alluvial plot was generated with the ggalluvial package [27].

2.3.2. Differential Expression and Network Analysis and Immune Cell Infiltration

Differential gene expression between chRCC, RO and normal kidney tissue was tested
using LIMMA [28]. The output was fed into gene set enrichment analysis (GSEA) with
fgsea [29], clusterprofiler [30] and ReactomePA [31] to identify networks and pathways in-
volved in chRCC and RO [32]. Differential expression results were presented as a heatmap,
generated using the package ComplexHeatmap [33].

2.3.3. Chromophobe-Oncocytoma Gene Signature (COGS)

Thirty genes were selected to create a signature named the Chromophobe-Oncocytoma
gene signature (COGS). The classification efficiency of COGS was evaluated using unsuper-
vised learning (UMAP and DBU) and visualized as a heatmap. The sensitivity, specificity,
accuracy, and AUC were calculated for each sample percentile. The genes with the highest
sensitivity and specificity were initially selected [34]. This group was further categorized
based on the expression levels at the various percentiles. Based on the literature reviewed,
the genes found with higher fold change and relevance to chRCC or RO were given priority
in the signature.

2.3.4. Validation Set Development and Signature Validation

The validation process for COGS consisted of creating a dataset by combining GSE12090
and TCGA-KICH (which was downloaded from the UCSC Xena browser and contains
65 chRCC samples). Next, batch effects were identified with PCA. Correction for batch
related differences were conducted using the SVA package, and the removal of such
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effects was confirmed with PCA. UMAP and hierarchical clustering were implemented
to evaluate COGS’s performance in differentiating chRCC and RO. The total TCGA renal
cohort was also downloaded from UCSC Xena browser, to evaluate the signature’s ability
to differentiate chRCC from other renal cancer types.

3. Results
3.1. Acquisition and Preprocessing of Datasets

GEO and ArrayExpress were queried using the keywords “chromophobe and onco-
cytoma” on 6th June 2021; the query identified twenty-four records (Figure 1, Table 1).
After removing duplicate entries, seventeen unique records were identified (Figure 1). We
selected six studies based on following eligibility criteria: (1) patients were not treated
at the time of sample collection, (2) gene expression data were available and (3) all gene
expression studies were performed using Affymetrix HG-U133 plus2 array. Five studies
(GSE11024, GSE2109, GSE19982, GSE8271, GSE11151) were combined to create a discovery
dataset. The gene expression data for GSE12090 was retained for the validation study.
Phenotype information was compiled from the downloaded datasets and all chRCC, RO
and normal kidney tissue for further analysis. The final dataset consisted of 106 arrays,
belonging to chRCC (n = 53), RO (n = 36) and normal kidney tissue (n = 17). The validation
dataset GSE12090 contained chRCC (n = 9) and RO (n = 9) arrays, whereas TCGA-KICH
solely contained chRCC (n = 65). The number of probes in each dataset differed among
these arrays (Table 1).
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Table 1. GEO datasets selected for chromophobe renal cell carcinoma (chRCC) and renal oncocytoma
(RO) classification as discovery and validation datasets. Table contains details on number of probes,
total number of arrays in the study and number of arrays selected under chRCC, RO and normal
kidney tissue.

GEO
Accession ID

Number of
Probes

Total Number of
Arrays/Study

Number of Arrays Selected

RO ChRCC Normal
Kidney

GSE11024 17,700 79 7 6 12
GSE11151 54,676 67 4 4 5
GSE19982 54,676 30 15 15 0
GSE8271 54,676 34 10 10 0
GSE2109 17,232 2158 0 18 0

TCGA-KICH 60,483 89 0 65 24
GSE12090 54,676 18 9 9 0

Since multiple probes on an array can represent a single gene, the best representa-
tive probe was identified for each gene from the HG-U133plus 2 array [18], identifying
15,875 probes in common for all datasets, with each probe representing a unique gene.

The discovery dataset was created by merging GSE11024, GSE11151, GSE9982, GSE2109
and GSE8271 (Table 1), in order to develop our unsupervised method and gene signature.
After merging, the discovery dataset was evaluated for batch effects with PCA. We identi-
fied that batch-related differences were higher than histological differences (Figure 2A,B)
between the studies. These batch-related effects were removed using ComBat from “SVA”
and revisualized with PCA (Figure 2C,D).

Cells 2022, 11, x FOR PEER REVIEW 5 of 13 
 

 

GEO Accession 

ID 

Number of 

Probes 

Total Number 

of 

Arrays/Study 

RO ChRCC 
Normal 

Kidney 

GSE11024 17,700 79 7 6 12 

GSE11151 54,676 67 4 4 5 

GSE19982 54,676 30 15 15 0 

GSE8271 54,676 34 10 10 0 

GSE2109 17,232 2158 0 18 0 

TCGA-KICH 60,483 89 0 65 24 

GSE12090 54,676 18 9 9 0 

Since multiple probes on an array can represent a single gene, the best representative 

probe was identified for each gene from the HG-U133plus 2 array [18], identifying 15,875 

probes in common for all datasets, with each probe representing a unique gene.  

The discovery dataset was created by merging GSE11024, GSE11151, GSE9982, 

GSE2109 and GSE8271 (Table 1), in order to develop our unsupervised method and gene 

signature. After merging, the discovery dataset was evaluated for batch effects with PCA. 

We identified that batch-related differences were higher than histological differences (Fig-

ure 2A,B) between the studies. These batch-related effects were removed using ComBat 

from “SVA” and revisualized with PCA (Figure 2C,D). 

Figure 2. Quality control of the discovery dataset showing batch effects before and after correction. 

Principal component analysis showing differences in batch (A) is higher than difference in histology 

(B) for chromophobe (chRCC) and renal oncocytoma (RO) and normal kidney tissue arrays (N) be-

fore batch effect correction. After batch correction by empirical bayes (ComBat), histological differ-

ences (D) are higher than batch differences (C). 

3.2. Unsupervised Learning with UMAP and Density Based UMAP Largely Correlates with 

Histological Subtype 

We applied an unsupervised machine learning classification algorithm (UMLA) to 

evaluate its ability to differentiate chRCC and RO using the transcriptomics data. UMAP 

analysis using all genes (n = 15,875) projected two distinct clusters (Figure 3A). One cluster 

contains only chRCC samples (n = 51) and the 2nd cluster contains all RO (n = 36) and 2 

chRCC samples, suggesting that these tumors are distinctive at transcriptomic level. To 

further evaluate the consistency and reproducibility of unsupervised learning, DBU was 

implemented for 1000 iterations. Optimum parameters for good vs. poor fit for a UMAP 

Figure 2. Quality control of the discovery dataset showing batch effects before and after correction.
Principal component analysis showing differences in batch (A) is higher than difference in histology
(B) for chromophobe (chRCC) and renal oncocytoma (RO) and normal kidney tissue arrays (N) before
batch effect correction. After batch correction by empirical bayes (ComBat), histological differences
(D) are higher than batch differences (C).

3.2. Unsupervised Learning with UMAP and Density Based UMAP Largely Correlates with
Histological Subtype

We applied an unsupervised machine learning classification algorithm (UMLA) to
evaluate its ability to differentiate chRCC and RO using the transcriptomics data. UMAP
analysis using all genes (n = 15,875) projected two distinct clusters (Figure 3A). One cluster
contains only chRCC samples (n = 51) and the 2nd cluster contains all RO (n = 36) and
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2 chRCC samples, suggesting that these tumors are distinctive at transcriptomic level. To
further evaluate the consistency and reproducibility of unsupervised learning, DBU was
implemented for 1000 iterations. Optimum parameters for good vs. poor fit for a UMAP
projections were n_neighbor = 20, gene_count = 1000, min_dist = 0.01, metric = “Manhattan”
(Figure 3B,C). Each DBU iteration classified the samples into Groups (representative sample
iterations, Figure 3D), and they are compared across the iterations for consistency. The final
classification was computed with plurality voting which identified two groups (DBU1 and
DBU2) (Figure 3E). The heatmap represent all the iterations (rows) and groups identified in
each iteration (columns, color represents the group, Figure 3E). The DBU analysis was in
97.75% concordance with the histological classification (Figure 3F). Further analysis shows
that DBU1 consisted only of chRCC samples (n = 51), whereas all RO and 2 chRCC were
grouped in DBU2. These results show that unsupervised learning using UMAP and DBU
is stable and can identify the differences between chRCC and RO in transcriptomic assays.
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Figure 3. Implementation of unsupervised machine learning algorithm (UMLA) for differentiat-
ing chRCC and RO: (A) two dimension embedding for the whole genome (n = 15,875 genes) with
UMAP, showing two clusters with high concordance with their histological classification; (B) rep-
resentative map showing optimized final parameter for UMAP, best performing for maximum
inter-cluster and minimum intra-cluster distance, red = chRCC, blue = RO; (C) representative map
showing poorly fit parameters for UMAP analysis, red = “chRCC, blue = RO; (D) representative
iterations for DBU (Iteration no 70, & 136). All 1000 iterations were tracked to determine final groups
where support from > 70% iterations were needed, red triangles = cluster 1 in machine learning
model, green triangles = cluster 2 in machine learning model (E) group consensus heatmap. Samples
are presented in columns and iterations are in rows. Two colors (dark and light blue) represent
two DBU groups based on the 1000 iterations of DBU with 1000 random genes in each iteration;
(F) Sankey’s diagram tracking all samples from the study to DBU classification, color represents
histology type (ChRCC = green, RO = pink). A total of 87/89 samples follow their histological
classification with DBU.
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3.3. Development of COGS through Differential Expression, ROC, and Univariate Analysis

Our unsupervised machine learning was able to show distinct profiles for chRCC and
RO by using 1000 randomly selected genes. To reduce the number of genes in the signature,
we performed differential gene-expression analysis and receiver-operating characteristics
analysis to identify candidate genes for differentiating between these two tumors, which
can be used for development of chRCC and RO related gene signature (COGS).

Differential expression analysis identified 8411 out of 15,875 genes as differentially
expressed between chRCC and RO (Figure S1). Out of the 8411 genes, 299 genes have at
least two-fold differences between the two tumor types. AUC analysis of these 299 genes
identified 194 genes with an AUC of 0.9 or higher between the tumors. Hierarchical
clustering with these top 194 genes showed a clear distinction between chRCC and RO,
similar to unsupervised learning, and these candidate genes proceeded to the next phase
for signature development (Table S2).

Genes with maximum diagnostic utility were identified based on sensitivity, specificity,
AUROC, and accuracy at all percentiles for the candidate genes. We identified that 84 of the
194 genes have a sensitivity > 0.91, specificity > 0.91, AUROC > 0.92, and accuracy > 0.92.
In prioritizing the genes with expression overlap between the tumors, a greater fold change,
significance at more inter-percentile fold change, and relevance to cancers, thirty genes
were finally selected as a gene signature, called “COGS”. (Figures 4A,B and S2, Table 2).
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transformed expression values for (y-axis) for two representative genes (HOOK2 and PNPT1) from
COGS in chRCC (green) and RO (magenta), outliers are represented with points (black); (C) group
consensus heatmap by DBU with 20 random genes from GS30, showing a consistent classification
with unsupervised models; (D) heatmap of COGS in meta-analysis showing expression differences
between the subtypes.
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Table 2. List of thirty genes combined to create COGS signature for distinguishing chRCC from
RO. Data presented is for discovery dataset to show sensitivity-specificity, accuracy, area under the
receiver operator curve (AUROC) and log fold change (FC) for discovery meta-dataset.

Gene Optimum Cutpoint Accuracy Sensitivity Specificity AUROC FC * Adj p-Val

AP1M2 8.87 0.98 0.96 1.00 1.00 4.48 4.63 × 10−26

AQP6 8.29 0.98 0.94 1.00 1.00 36.98 2.61 × 10−32

ATP2C1 8.02 0.94 0.91 0.97 0.99 2.76 1.07 × 10−21

BSPRY 7.82 1.00 1.00 1.00 1.00 3.52 1.73 × 10−26

CLDN8 10.50 0.93 0.91 0.94 0.97 42.73 1.12 × 10−19

DNAI3 5.23 0.94 0.94 0.94 0.98 3.32 9.59 × 10−20

ELMO3 7.86 1.00 1.00 1.00 1.00 3.07 1.85 × 10−28

ESRP1 7.99 0.99 0.98 1.00 1.00 10.32 5.01 × 1031

HOOK2 9.42 1.00 1.00 1.00 1.00 3.84 5.12 × 10−36

ITGB3 6.79 0.99 1.00 0.98 1.00 3.68 3.84 × 10−23

KCNG3 5.49 1.00 1.00 1.00 1.00 2.80 9.52 × 10−24

KIDINS220 9.19 1.00 1.00 1.00 1.00 2.93 3.08 × 10−28

KRT7 7.72 0.96 0.94 1.00 0.98 55.34 4.83 × 10−27

LAMA1 5.87 0.94 0.96 0.92 0.97 6.88 1.60 × 10−21

LIMS1 10.35 0.94 0.94 0.94 0.97 3.33 3.70 × 10−16

LRFN5 6.31 0.96 0.94 1.00 0.99 8.02 3.03 × 10−23

LSR 8.72 1.00 1.00 1.00 1.00 3.46 1.51 × 10−34

MANEA 5.70 0.99 1.00 0.98 1.00 3.04 1.26 × 10−28

MAP4K3 8.91 1.00 1.00 1.00 1.00 5.22 2.91 × 10−31

MSH2 6.54 0.99 1.00 0.98 1.00 3.63 2.68 × 10−29

NDUFS1 9.18 0.99 0.97 1.00 0.99 3.16 2.79 × 10−27

PLCL1 8.52 0.96 0.94 0.98 0.95 6.05 6.35 × 10−19

PLCL2 7.79 0.98 0.96 1.00 1.00 5.78 2.48 × 10−27

PNPT1 8.38 1.00 1.00 1.00 1.00 2.80 5.05 × 10−34

PRDX3 11.59 0.98 0.97 0.98 1.00 4.02 4.40 × 10−26

RSPO3 6.89 0.98 0.96 1.00 0.99 6.29 4.17 × 10−23

S100A1 8.43 0.95 1.00 0.91 0.98 3.70 3.90 × 10−19

SOCS1 7.32 0.92 0.91 0.92 0.97 3.59 1.05 × 10−18

SPINT2 10.59 1.00 1.00 1.00 1.00 3.53 4.32 × 10−30

SUCLA2 9.71 0.99 1.00 0.98 1.00 3.68 1.09 × 10−26

* FC: fold change, AUC: area under the curve.

COGS was assessed for accuracy, stability and robustness using 1000 iterations of the
DBU models on the discovery dataset (accuracy 97.8%) (Figure 4C). Models with fewer than
30 genes had decreased accuracy; hence COGS consists of 30 genes (Figure S3). DBU with
COGS has an accuracy of 97.8% in plurality voting for 1000 iterations; this is comparable
to the 1000 gene model and confirms its ability to recapitulate the difference between the
tumors to a similar degree to random 1000-gene models (Figure 3C) and whole-genome
models (Figure 3B). In total, 51/53 of the chRCC and 36/36 of the RO samples are correctly
classified with these models. Two chRCC samples are classified as RO, similar to the
1000-gene models.

3.4. Pathway Analysis Identified Enriched Carbohydrate Metabolism in chRCC and Deviation of
Warburg Effect in Both Tumors

Functional differences between chRCC and RO were analyzed using differentially
expressed genes in gene set enrichment analysis. We identified 67 pathways between the
tumors (adjusted p value < 0.05, Benjamini-Hochberg correction) out of 218 pathways
(Table S3). Notably, enriched pathways were carbohydrate metabolism, transcriptomic
regulation by TP53, beta-catenin independent WNT signaling, diseases of signal transduc-
tion by growth factor receptors and second messengers, interleukin 4 and 13 signaling,
glycosaminoglycan metabolism, and extracellular matrix organization (Figure S4).
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KEGG pathway analysis identified 19 pathways enriched in chRCC from the normal
kidney cortex. Upregulated pathways include oxidative phosphorylation (NES 1.92, ad-
justed p-value 1.82 × 10−4) and phosphatidylinositol signaling (NES 1.59, BH adjusted p
value 3.38 × 10−3) (Figure 5B and Table S4). KEGG pathway analysis on RO, as compared
to normal the kidney cortex, identified 41 pathways significantly enriched (BH adjusted,
p-value < 0.05), with upregulation of the oxidative phosphorylation and calcium signaling
pathways (NES 2.8 and 1.6, p-value 3.74 × 10−17). Downregulated pathways in RO include
mineral absorption (NES = −2.2), cell adhesion molecules (NES = −1.8), glycolysis and
gluconeogenesis (NES = −1.71), and TNF signaling pathway (NES = −1.79) (Figure 5B and
Table S5).
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Figure 5. Molecular and pathway analysis: (A) top 194 Differentially expressed genes (candidate
genes) between chRCC and RO. Genes are presented in rows and arrays are in columns; (B) bubble
plot showing top upregulated pathways in chRCC and RO (x-axes) when compared to normal
kidney tissue from gene set enrichment analysis for canonical pathways for differentially expressed
genes. Y-axes represent different canonical pathways and size of the bubble represents normalized
enrichment score.

3.5. Validation of COGS in a Microarray and RNA-Seq Combined Meta-Dataset

We validated the performance of COGS to distinguish chRCC from RO using a valida-
tion dataset consisting of a microarray (GSE12090, 9 chRCC and 9 RO) and RNA-Seq data
(TGCA-KICH, 65 chRCC). Batch differences were visualized using PCA (Figure S5A,B) and
were corrected by ComBat from the SVA package (Figure S5C,D). UMAP and heatmap
analysis of the validation meta-dataset showed two clusters without notable batch effects
(Figure 6A). ChRCC and RO both formed their own clusters with UMAP and hierarchical
cluster analysis (Figure 6B,C). This showed COGS’s ability to accurately differentiate chRCC
and RO from each other and to a comparable degree as 1000-gene models (Figure 3E,F) and
whole genome models (Figure 3A) in the validation dataset. This also demonstrates the
applicability of the gene signature to microarray as well as RNA-Seq.
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Figure 6. COGS validation on RNA-Seq (TCGA-KICH) and micro-array dataset (GSE12090): (A) two-
dimensional embedding plot with UMAP using COGS showing no batch effect between the studies
in the validation dataset; (B) sample plot with histology annotation shows distinct clusters for chRCC
(n = 74) and RO (n = 9) with COGS; (C) unsupervised hierarchical clustering with COGS for validation
dataset (D) UMAP of TCGA renal cohort showing distinct cluster for chRCC samples (lime green)
for COGS.

COGS was able to identify chRCC samples in a TCGA-pan-renal cohort. We imple-
mented UMAP in the pan-renal COGS expression to check COG’s ability to identify chRCC
samples from other renal cancer types. UMAP representation shows a chRCC cluster, and
62/65 chRCC samples are grouped together (Figure 6D). This result shows that COGS can
identify chRCC samples, even amongst other renal cancer types.

4. Discussion

In this study, we developed a machine learning approach to differentiate chRCC from
RO using transcriptomic data. We showed here that the two kidney cancers, chRCC and
RO have a distinct transcriptomic. We built an unsupervised machine learning pipeline
to differentiate the tumors using these. We developed COGS, a gene signature with thirty
genes, with highest diagnostic utility (Figure 3A). Unsupervised classification with COGS
provided consistent classification (accuracy 97.8% in the discovery dataset, and 100% in the
validation dataset) (Figures 4C and 5B). These results show potential for clinical use for
differentiating chRCC from RO, and can be employed with microarray or RNA-Seq-based
assays. In addition, these assays do not require a large amount of tissue, making this a
suitable method for classifying a needle biopsy sample. Current diagnostic approaches
using histology with or without immunohistochemical staining are often insufficient to
confirm diagnosis. We show that COGS can bridge the gap between the two pathologies
through an ML-based approach, and that COGS can complement current clinical workflow
by confirming the diagnosis in histologically uncertain cases.

IHC and special stain markers for distinguishing chRCC and RO—including CK7,
S100A1, CD117 (CKIT), kidney specific cadherins, KAI, cyclin D1, and Hale’s colloidal iron—
are currently used to differentiate the tumors. Current IHC markers lack the sensitivity
and specificity needed to make a confirmed diagnosis. Immune-histochemical analyses of
CK7 and S100A1 have a broad range of sensitivity, and specificity of 80–100% and 70–92%
(for chRCC), and 80–100% and 70–92% (for RO), which could be improved [10,35]. Hale
colloidal iron is also insufficient in biopsy samples because of focal positivity seen in RO [36].
In comparison, our unsupervised ensemble models have a sensitivity and specificity of
97.8% and 94.7% for chRCC. This is markedly better than current IHC markers used for
distinguishing chRCC from RO. Five genes (AP1M2, AQP6, HOOK2, CLDN, ESRP1) that



Cells 2022, 11, 287 11 of 13

were identified in our panel, have previously been reported as candidate markers in the
literature, which is further validation of their importance in these tumors [15,37].

Signal transduction by growth factor receptor, TP53 transcriptional regulation, platelet
activation, signaling, and aggregation are among the top differing functional pathways
between chRCC and RO on Reactome pathway analysis. KEGG pathway analysis on
chRCC identified that calcium signaling, carbon and glycolipid metabolism, PPAR signaling
pathway, and TNF signaling pathways (Figure 4B) vary in expression from normal kidney
tissue. ChRCC and RO both showed upregulated oxidative phosphorylation with decreased
glycolysis and gluconeogenesis suggesting deviation from the Warburg effect, which is
commonly present in renal tumors.

This study has few limitations. First it is based on the gene expression differences
profiled on bulk tumors containing heterogenous cells, viz. tumor, stromal and infiltrated
immune cells. Therefore, additional studies may be required to address spatiotemporal
and functional differences at a cellular level. Another minor limitation of the study lies
in the selection bias inherent to retrospective analyses. Multiple studies were included
in the discovery meta-dataset to reduce the potential selection bias in the construction of
COGS. Retrospective validation was also performed to confirm the efficacy of COGS in the
classification of ChRCC and RO, hence another instance of selection bias may be present in
the validation phase of this study. To address this limitation, wet lab experiments using
clinical specimens will be designed to prospectively validate COGS at our institution.

The strengths of our study are a relatively large gene expression meta-dataset for
chRCC- RO combined with validation of COGS. Another strength of our study is the appli-
cation of the ensemble unsupervised machine learning model, which showed consistent
classification for chRCC and RO. This algorithm out-performed the current IHC-based
methods with 97.8% accuracy in the discovery meta-dataset [10]. Validation with UMAP
and hierarchical clustering on GSE12090-KICH(TCGA) have an accuracy of 100%. Our re-
sults showed that machine learning models in transcriptomics out-perform current methods
and can complement the current diagnostic pipeline in difficult cases.

5. Conclusions

We identified transcriptomic differences distinguishing chRCC from RO in a meta-
dataset combined from multiple studies. From the gene expression differences, we imple-
mented machine learning (ML) algorithms and developed and validated COGS, a 30-gene
transcriptomic signature, and ML models to distinguish chRCC from RO.
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