
����������
�������

Citation: Zhou, M.; Zhu, S.; Mo, X.;

Guo, Q.; Li, Y.; Tian, J.; Liang, C.

Proteomic Analysis Dissects

Molecular Mechanisms Underlying

Plant Responses to Phosphorus

Deficiency. Cells 2022, 11, 651.

https://doi.org/10.3390/

cells11040651

Academic Editor: Alexander

E. Kalyuzhny

Received: 17 December 2021

Accepted: 5 January 2022

Published: 14 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Proteomic Analysis Dissects Molecular Mechanisms
Underlying Plant Responses to Phosphorus Deficiency
Ming Zhou 1,†, Shengnan Zhu 2,†, Xiaohui Mo 1,†, Qi Guo 1, Yaxue Li 1, Jiang Tian 1,* and Cuiyue Liang 1,*

1 Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources,
College of Natural Resources and Environment, South China Agricultural University,
Guangzhou 510642, China; 1476500801@stu.scau.edu.cn (M.Z.); xhmo@scau.edu.cn (X.M.);
guoqi1421@163.com (Q.G.); yaxueli2021@163.com (Y.L.)

2 Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China; shnzhu@163.com
* Correspondence: jtian@scau.edu.cn (J.T.); Liangcy@scau.edu.cn (C.L.); Tel.: +86-2085283380 (J.T.);

+86-2085280156 (C.L.)
† These authors contributed equally to this work.

Abstract: Phosphorus (P) is an essential nutrient for plant growth. In recent decades, the application
of phosphate (Pi) fertilizers has contributed to significant increases in crop yields all over the world.
However, low efficiency of P utilization in crops leads to intensive application of Pi fertilizers, which
consequently stimulates environmental pollution and exhaustion of P mineral resources. Therefore,
in order to strengthen the sustainable development of agriculture, understandings of molecular
mechanisms underlying P efficiency in plants are required to develop cultivars with high P utilization
efficiency. Recently, a plant Pi-signaling network was established through forward and reverse genetic
analysis, with the aid of the application of genomics, transcriptomics, proteomics, metabolomics, and
ionomics. Among these, proteomics provides a powerful tool to investigate mechanisms underlying
plant responses to Pi availability at the protein level. In this review, we summarize the recent progress
of proteomic analysis in the identification of differential proteins that play roles in Pi acquisition,
translocation, assimilation, and reutilization in plants. These findings could provide insights into
molecular mechanisms underlying Pi acquisition and utilization efficiency, and offer new strategies
in genetically engineering cultivars with high P utilization efficiency.

Keywords: phosphorus; proteomics; P use efficiency

1. Introduction

Phosphorus (P) is an essential mineral nutrient for plants, accounting for up to 0.5%
of plant dry weight depending on plant species [1]. It is not only an indispensable struc-
tural constituent of biomolecules, including deoxyribonucleic acid (DNA), proteins, and
phospholipids, but also is a key signal factor that functions in mediating the phosphate
(Pi)-signaling network [2–5]. Plants mainly take up P in the form of Pi, including HPO4

2−

and H2PO4
−, which is about 0.1–10 µM in soils [6]. Meanwhile, multiple factors exist in

soils, limiting Pi availability by directly or indirectly chelating Pi into immobile forms, such
as microbial activities and an abundance of cations (e.g., Al3+, Fe2+, Ca2+). For example, in
acid soils, Pi easily reacts with Al3+ or Fe2+ and becomes sparingly soluble forms (i.e., Al-P
and Fe-P) [6]. Low Pi availability and fluctuation severely limits crop yield by adversely
affecting root growth, photosynthesis, respiration, and energy transduction [7,8]. To meet
the requirement of P in crops, millions of tons of Pi fertilizers are profligately applied to
farms worldwide every year. However, due to low P utilization efficiency in crops, applied
Pi fertilizers are either fixed by soil particles or leached into the biosphere, leading to
environmental pollution and biodiversity loss [4,9,10]. Therefore, a deeper understanding
of the molecular mechanisms regarding plant tolerance to low Pi availability is required to
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develop cultivars with high Pi fertilizer utilization efficiency, thus ameliorating the sole
reliance on excess Pi fertilizer applications to improve crop yield.

In recent decades, adaptive mechanisms underlying plant responses to P deprivation
have been extensively investigated through forward and reverse genetic analysis, with the
aid of the application of proteomics, transcriptomics, metabolomics, and ionomics [11–14].
Among these, proteomic analysis, as a powerful tool, has permitted us to identify numerous
differentially accumulated proteins (DAPs) in response to Pi availability, which sheds light
on molecular responses of plants to Pi starvation at the protein level, especially at protein
modification levels (e.g., phosphorylation, succinylation) [13,15]. For example, a set of
DAPs was identified at different P levels in many plant species, such as in Arabidopsis
(Arabidopsis thaliana) [16,17], maize (Zea mays) [18,19], tomato (Solanum lycopersicum) [20],
rice (Oryza sativa) [21,22], barley (Hordeum vulgare) [23], and soybean (Glycine max) [24,25]
(Table 1). In this review, we mainly summarize recent advances in the identification and
functional characterization of DAPs in response to Pi starvation in plants through pro-
teomic analysis, and highlight the complex regulatory network underlying Pi acquisition,
remobilization, and reutilization at protein levels. Meanwhile, we discuss the advantages
and challenges of proteomic analysis to shed light on molecular mechanisms underlying
plant adaptations to Pi starvation, and thus contribute to developing crop cultivars with
high P efficiency in the future.
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Table 1. A list of proteomic analyses of plant responses to phosphorus deficiency.

Plant Species Organ/Tissues Culture Time before
Treatment (d)

Treatment
Time (d)

Protein Separation Method Total Protein
Number (#)

Number of
DAPs (#)

Protein Number
Identified by MS Analysis References

Up-Regulated Down-Regulated

Arabidopsis thaliana Leaves 10 7 SCX iTRAQ LC-MS/MS 5106 156 106 50 [17]
Zea mays Leaves 4 25 2-DE MALDI TOF MS/TOF 1342 200 nd nd [26]
Zea mays Leaves a 18 25 2-DE MALDI-TOF/MALDI-TOF-TOF MS 680/592 29/71 9/20 55/16 [27]

Glycine max Leaves 5 14 2D-IEF/SDS-PAGE MALDI-TOF MS 55 17 7 10 [28]
Glycine max Leaves 3 14 SDS-PAGE Gel Digestion LC-MS/MS 4219 707 267 440 [29]

Solanum lycopersicum Leaves nd 10 2-DE MALDI-TOF MS/MS/MS 600 46 31 15 [20]

Arabidopsis thaliana Roots 10 3 2-DE MALDI
TOF MS 456 30 nd nd [30]

Arabidopsis thaliana Roots 10 3 2-DE iTARQ
LC-MS 13,298 356 199 157 [16]

Arabidopsis thaliana Roots nd 14 2-DIGE MALDI-TOF/TOF 1420 30 14 16 [13]

Zea mays Roots 24 17 2-DE MALDI
TOF MS 1300 254 76 30 [31]

Zea mays Roots 10 1/3/7/11 2-DE MALDI-TOF-MS 850 91 nd nd [32]

Zea mays Roots a 24 17 2-DE MALDI
TOF MS 2822 73/95 25/24 12/6 [19]

Zea mays Roots a nd 10 2-DE MALDI-TOF nd 83/325 30/246 53/79 [33]
Oryza sativa Roots 3 80 2-DE MALDI TOF MS 669 34 nd nd [21]
Oryza sativa Roots 7 21 2-DE MALDI-TOF MS 140 10 2 8 [34]
Glycine max Roots nd 20 2-DIGE 325 105 61 44 [35]
Glycine max Roots a 3 9 SDS-PAGE TMT 4216 660/133 656/127 4/6 [36]
Glycine max Roots nd 10 iTRAQ LC-MS/MS nd 71 30 41 [25]
Glycine max Roots 5 14 iTRAQ nd 427 213 214 [15]

Triticum aestivum Roots 14 8 iTRAQ 6842 323 nd nd [37]
Hordeum vulgare Roots 10 0.25/2 SDS PAGE LC-MS/MS nd 697 nd nd [38]

Brassica napus Roots a 20 3 2-phase LC/MS-MS 828 31/40 8/28 23/12 [39]
Arabidopsis thaliana Leaves/roots 7 3 2-DIGE MALDI TOF/TOF MS 88 nd nd nd [40]

Hordeum vulgare Leaves/roots 17 21 2-DE MALDI-TOF/TOF-MS nd 31 nd nd [23]
Brassica napus Leaves/roots 20 26 2-DE MALDI TOF MS 1000 32 4/12 13/3 [41]

Pinus massoniana Seedlings 10 58 2-DE MALDI-TOF/TOF MS nd 98 44 54 [42]
Arabidopsis thaliana Suspension cells 7 7 2-DE MALDI TOF MS 110 46 26 6 [43]
Arabidopsis thaliana Suspension cells 9 2 SDS-PAGE LFQ 5013/1881 1169/994 nd nd [44]

Glycine max Nodules 5 25 2-DE MALDI TOF MS nd 44 17 27 [24]
a Two genotypes were used in the studies. nd, not described.
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2. Morphological, Physiological, and Biochemical Responses of Plants to Pi Starvation

Phosphorus deficiency has many deleterious effects on plant growth, as reflected by
a significant decrease in plant biomass and yield [4,45,46]. It is well known that plants
have evolved a set of morphological, physiological, and molecular strategies to adapt to P
deficiency conditions. These adaptive strategies could enhance plant capability to acquire
Pi from soils and restrict Pi consumption in plant organisms or increase plant internal
Pi reutilization [9,47–49]. Among plant morphological responses, modification of root
morphology and architecture is generally considered to play a key role in controlling plant
Pi acquisition efficiency, such as the formation of shallower root architecture and increases
in both lateral root length and root hair density [50,51]. Interestingly, in white lupin and
several species of the Proteaceae family, the formation of cluster roots termed “proteoid
roots” was observed, which could enhance root–soil contact and thus facilitate plants to
acquire more Pi from soils [52–54]. Accompanied by changes in root morphology and
architecture, physiological and biochemical responses in plant roots could strengthen the
capability of roots to mobilize sparingly soluble P in soils, including increased organic
acid synthesis and exudation to mobilize inorganic-P forms (e.g., Al-P, Fe-P, Ca-P), and
enhance root-associated purple acid phosphatase activity to hydrolyze organic-P forms
(e.g., phytate-P, ATP) [9,55,56]. Meanwhile, plants could form beneficial symbiosis with soil
microorganisms, such as arbuscular mycorrhizal (AM), to improve Pi acquisition [57–61].

In addition to changes in root traits, Pi availability also significantly triggers leaf/shoot
morphology remodeling. For example, leaf angles (i.e., erectness, inclination) and tiller
numbers are regulated by P deficiency in rice [62–64]. Moreover, accompanied by changes
in shoot morphology, a group of physiological and biochemical processes in response to
P deficiency was also influenced. For example, leaf color turned from green to purple or
dark-green in most plants under low-P conditions, which was mainly caused by antho-
cyanin accumulations, along with the reduced chlorophyll contents [28,29,65]. Meanwhile,
increased starch content and decreased sucrose content in leaves were widely observed in
most plants [66,67]. Therefore, identification and functional characterization of the DAPs
related to morphological, physiological, and biochemical responses in plants could help us
to further improve Pi fertilizer utilization efficiency in crops [68,69].

3. DAPs Reveal Complex Repones of Plants to P Deficiency
3.1. Identification of DAPs in Plant Leaves/Shoots
3.1.1. Differential Proteins Related to Photosynthesis and Carbon Metabolism

Photosynthesis is a light-harvesting process whose intensity is mainly dependent on
the generation rate of NADPH and ATP, as well as ribulose-1,5-diphosphate (RuBP) car-
boxylation [70–72]. Reduced accumulations of proteins associated with the photosynthesis
process have been observed in plants under P deficiency conditions through differential
proteomic analysis, such as proteins related to light energy absorption, electron transfer,
and transformation to generate ATP and NADPH. For example, the differential accumula-
tions of a series of proteins were identified, including chlorophyll a/b binding protein in
ramie (Boehmeria nivea), ferredoxin (Fdx) in soybean, as well as ferredoxin-nitrite reductase
(FNR) and alpha/beta subunit of the ATP synthetase in maize (Figure 1) [18,26,28,29].
Meanwhile, a set of DAPs exhibiting decreased accumulations were found to be involved
in rubisco carboxylation reaction (RuBisco), the conversion of ATP and NADPH process,
including NADP-malate dehydrogenase (NADP-MDH), pyruvate orthophosphate diki-
nase (PPDK), phosphoenolpyruvate carboxylase (PEPC), transketolase isoform, RuBisco
activase A (RCA), and the large and small subunit of RuBisco [18,26,27,40,41]. Therefore,
decreased accumulations of the proteins strongly suggest that Pi starvation could reduce
photosynthesis in plants.
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Figure 1. A model of integration of different adaptive strategies to P deficiency regulated by DAPs in
shoots or leaves. The DAPs identified by proteomic analysis associated with different metabolic path-
ways. Red color indicates proteins with increased accumulations in plants under low-P conditions;
blue color indicates proteins with decreased accumulations in plants under low-P conditions; brown
color suggests proteins exhibiting either up-regulated or down-regulated accumulations under low-P
conditions; dashed lines indicate multiple steps; AA5GT, anthocyanidin 5-O-glucosyltransferase;
ACC, 1-aminocyclopropane-1-carboxylate; ADP, adenosine diphosphate; ANS, anthocyanidin syn-
thase; APX, ascorbate peroxidase; Arg, arginine; ADC, arginine decarboxylase; ASA, ascorbic
acid; ATP, adenosine triphosphate; 1,3-BPG, 1,3-bisphosphoglycerate; 4-CL1, 4-coumaroyl-CoA
ligase 1; DFR, dihydroflavonol-4-reductase; DHAR, dehydroascorbate reductase; E4P, erythritos-4-
phosphate; F6P, fructose-6-phosphate; FBP aldoase, fructose-1,6-bisphosphate aldolase; FBP, fructose-
1,6-bisphosphate; FNR, ferredoxin-nitrite reductase; Fdx, ferredoxin; G1P, glucose-1-phosphate;
G3P, glyceraldehyde-3-phosphate; G6P, glucose-6-phosphate; 6-PGDG, 6-phosphogluconate de-
hydrogenase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GR, glutathione reductase;
GSH, reduced glutathione; GSSG, oxidized glutathione; GST, glutathione-S-transferase; GSTF12,
glutathione-S-transferase F12; HXK, hexokinase; LDOX, leucoanthocyanidin dioxygenase; MDH,
malate dehydrogenase; MDHA, monodehydroascorbate; MDHAR, monodehydroascorbate reductase;
Met, methionine; NADP-MDH, NADP-malate dehydrogenase; OAA, oxaloacetic acid; PEP, phos-
phoenolpyruvate; PEPC, phosphoenolpyruvate carboxylase; 2-PG, 2-phosphoglycerate; 3-PGA, 3-
phosphoglycerate; 6-PG-δ-lactone, 6-phosphoglucono-δ-lactone; 6PGLS, 6-phosphogluconolactonase;
PGK, phosphoglycerate kinase; Pi, phosphate; PPDK, pyruvate orthophosphate dikinase; RCA, ribu-
lose bisphosphate carboxylase/oxygenase activase; Ru5P, Ribulose-5-phosphate; RuBP, Ribulose-1,5-
diphosphate; SAM, s-adenosyl methionine; SCS, succinyl-CoA synthetase; SDH, succinate dehydroge-
nase; SOD, superoxide dismutase; SPDS, spermidine synthase; SQD1, UDP-sulfoquinovose synthase;
SQD2, sulfoquinovosyl diacylglycerol synthase; SQDG, sulfoquinovosyl diacylglycerol; TCA cycle,
tricarboxylic acid cycle; UDPG, uridine diphosphoglucose; UDP-SQ, UDP-sulfoquinovosyl.

A set of proteins closely related to carbon and energy metabolism were found to be
up- or down-regulated by Pi starvation in plant leaves (Figure 1). For example, some
proteins associated with the glycolysis process were up-regulated, such as hexokinase
(HXK) in ramie leaves, fructose-1,6-bisphosphate aldolase (FBP aldoase), glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and enolase1 in
leaves of both maize and Arabidopsis [18,26,43]. Moreover, the increased accumulations of
proteins involved the tricarboxylic acid cycle (TCA) were also found to be affected by Pi
deprivation in maize leaves, such as succinyl-CoA synthetase (SCS) and succinate dehy-
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drogenase (SDH) [18]. Additionally, the abundance of MDH and isocitrate dehydrogenase
(IDH) was found to be down-regulated in leaves of maize and ramie, respectively [26,27].
Meanwhile, other carbon metabolic processes were also influenced by Pi starvation in
plants, as reflected by the identification of related DAPs (Figure 1). For example, the
6-phosphogluconolactonase (6-PGLS) and 6-phosphogluconate dehydrogenase (6-PGDG),
associated with the pentose phosphate pathway (PPP), were up-regulated under P defi-
ciency conditions in maize and barley [18,23]. In contrast, triose-phosphate isomerase (TPI)
and 6-PGDG were down-regulated in leaves of rape and maize, respectively [18,27,41].
These results indicate that carbon and energy metabolic processes, like glycolysis, TCA
cycle, and gluconeogenesis, are significantly influenced in plants under low-P conditions.

3.1.2. Pi Starvation Responsive Proteins Related to Remodeling Lipid Membranes

One of the vital adaptive strategies to low Pi availability in plants is to improve internal
P utilization efficiency by remodeling lipid membranes [73]. Under low-Pi stress, phospho-
lipids, accounting for 30% of total organophosphate in plants, were replaced by specific
non-phosphorous lipids, such as sulfoquinovosyl diacylglycerol (SQDG) [74]. Consistently,
a set of DAPs was identified to function in remodeling lipid membranes. For example, in
maize and Arabidopsis leaves, increased accumulations of UDP-sulfoquinovose synthase
(SQD1) were observed, which were suggested to function in releasing sulfoquinovose
for SQDG production [18,27,75]. Meanwhile, increased accumulations of SQDG synthase
(SQD2) were also observed under low-P conditions, and SQDs were suggested to ac-
celerate the replacement of phospholipid glycerate (PG) by SQDG in plant cell plasma
membranes [17,75]. Additionally, some proteins, including lipid-transfer protein, lipoxyge-
nase, and 3-phosphoglycerate dehydrogenase, were also observed to be up-regulated in
Arabidopsis leaves [17]. These results support the hypothesis that changes in the phospho-
lipid metabolism could further accelerate the conversion of intracellular organic P forms,
and thus improve P utilization efficiency under low-P conditions.

3.1.3. Proteins Involved Anthocyanin, Polyamine, and Reactive Oxygen Species
(ROS) Metabolisms

It is generally believed that increases in anthocyanin synthesis in shoots or leaves
could protect plants from ROS damage under low-P conditions [76–79]. Anthocyanins
are products generated from the phenylpropanoid and flavonoid metabolic pathways,
regulated by multiple enzymes, such as chalcone synthase (CHS) and dihydroflavonol-
4-reductase (DFR) [80]. DAPs functioning in anthocyanin synthesis have been found
in Arabidopsis leaves through proteomic analysis, including 4-coumarate:CoA ligase
1 (4-CL1), DFR, leucoanthocyanidin dioxygenase (LDOX), anthocyanidin synthase (ANS),
anthocyanidin 5-O-glucosyltransferase (AA5GT), phenylalanine ammonia-lyases (PALs),
and glutathione-S-transferase F12 (GSTF12) [17,75] (Figure 1). The results strongly suggest
that P deficiency could increase accumulations of enzymes functioning in anthocyanin
synthesis, and thus enhance anthocyanin accumulations in leaves.

Polyamines are aliphatic amines and play an important role in plant adaptation
to biotic and abiotic stresses [81]. Interestingly, several DAPs controlling polyamines
biosynthesis were found in maize leaves under P deficiency conditions, such as spermidine
synthase (SPDS) and arginine decarboxylase (ADC) [18]. Although the detailed functions
of polyamines in plant adaptation to Pi starvation remained fragmentary, identification of
DAPs mediating its biosynthesis strongly suggests that polyamines could participate in
plant adaption to P deficiency, which merits further study.

Phosphorus deficiency also leads to the elevation of ROS in plant leaves [82]. Therefore,
increased accumulations of antioxidation-related proteins were generally observed in plant
leaves under P deficiency conditions, including glutathione S-transferase (GST) in maize
and barley [18,23], ascorbate peroxidase (APX) in maize [18], 2-cysteine peroxiredoxin B in
ramie [26], non-specific lipid-transfer protein 1, and extra-large G protein 3 in tomato [20],
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as well as proteins belonging to peroxidase superfamily in Arabidopsis [17]. Increased
accumulations of these proteins may help plants against ROS damage under low-P stress.

3.2. Identification of DAPs in Plant Roots

Recently, DAPs controlling root responses to P deficiency have been identified in
different plants, such as soybean [25], rape [39], and maize [19]. Functions of the DAPs
have been suggested to involve a series of adaptive strategies in plant roots, including
changes in root development, regulating organic acid synthesis and secretion, increasing
activities of root-associated purple acid phosphatases (PAPs). Furthermore, several studies
were conducted to elucidate complex responses of protein modifications to P deficiency in
plant roots, especially for protein phosphorylation and succinylation.

3.2.1. Pi Starvation-Responsive Proteins Participated in Root System Remodeling

It is well known that root architecture remodeling involves changes in hormones, such
as auxin, ethylene, cytokinin (CK), or jasmonic acid (JA), which react differently but coordi-
nately regulate root growth [83–86]. Thus, a set of DAPs was found to involve hormone
synthesis, transport, and distribution in root response to P deficiency [19,31–35] (Figure 2).
For example, in several plant species, such as rice and masson pine (Pinus massoniana),
comparative proteomic studies were conducted to find that abundance of several ethylene-
precursor synthetases, including 1-aminocyclopropane-1-carboxylate oxidase (ACCO) and
SAMS, was up-regulated by P deficiency, even though ACCO and SAMS were down-
regulated in maize and Arabidopsis, respectively [30,33,34,42]. The results strongly suggest
that ethylene participated in regulating root growth under P-deprivation conditions, which
was probably attributed to changes in its biosynthesis [87,88]. Consistently, in Arabidopsis,
the number of lateral roots was significantly higher in aco1-1 mutant compared to that in
wild-type, strongly suggesting that ethylene could regulate lateral root development [89].
In addition to ethylene, auxin is considered to play a key role in mediating the development
of lateral root and root hair under Pi-starvation conditions [85,90]. Consistently, a set of
DAPs for the auxin signaling pathway was observed to be up-regulated in Arabidopsis
and maize, including auxin-response proteins (ARFs), phosphatase 2A (PP2A), and nonspe-
cific phospholipase C4 (NPC4) [16,19,32,41]. Furthermore, overexpression of ZmPP2AA1,
encoding a subunit of phosphatase 2A, significantly increased the lateral root density
and promoted root growth under P-deficiency conditions in maize, strongly suggesting
that auxin could regulate lateral root development [91,92]. Additionally, root growth in
response to P deficiency was also found to be mediated by the JA pathway, supported
by the evidence that allene oxide synthase (AOS), allene oxide cyclase 1 (AOC1), and
jacalin-related lections (e.g., JAL5/23/31) for controlling JA metabolism were up-regulated
in Arabidopsis under low-P conditions [17,75]. Interestingly, knockout of atwrky6-1, a
mediator in the Pi-signaling network, led to decreases in lateral root formation, but in-
creased accumulations of AOS, strongly suggesting the JA metabolism might participate in
regulating Arabidopsis root growth [17,93]. Meanwhile, decreased accumulations of tRNA
isopentenyl transferase (tRNA IPT) and beta-glucosidease (BGL) involved CK synthesis
were observed in long-term P-deficient maize roots, suggesting that CK could regulate
plant root growth [31,32]. Moreover, several studies reported that the application of CK
could disturb the expression of PIN genes and prevent the formation of the auxin gradient,
which is required for lateral root primordia development. In contrast, the biosynthesis of
CK was rapidly suppressed by auxin via the isopenteneyadenosine-50-monophosphate in-
dependent pathway [94–96]. Several studies also reported that ethylene could regulate root
growth via stimulating auxin biosynthesis and transport in root apex, but DAPs involved
in both auxin- and ethylene-signaling pathways were scarcely identified [96–98]. These
results suggest that P deficiency-induced changes in root morphology and architecture may
be modulated through sophisticated interactions among different phytohormones.

In addition to the identification of phytohormone-related DAPs, a set of DAPs in-
volved in cell cycle, division, and expansion processes was also suggested to regulate
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root architecture plasticity in response to low-P stress [99,100] (Figure 2). For example,
translationally controlled tumor protein (TCTP), functioning in fundamental biological
processes (e.g., mitotic, cell proliferation, cytoprotective, and anti-apoptotic), was observed
to be up-regulated by Pi starvation in Arabidopsis [40,101,102]. Further genetic analysis
showed that reduced AtTCTP1 expression could result in significant inhibition of lateral
root formation [103]. Additionally, accumulations of cell proliferation-related proteins,
including GTP-binding nuclear protein RAN-B1 (Ran GTPase), cell division cycle protein
48 (CDC48), and mini-chromosome maintenance protein 6 (MCM6), were increased by Pi
starvation in maize [19,31]. Contrastingly, an increased abundance of actin and tubulin
was observed in plants in response to low-P stress in plants, including soybean, maize,
rice, and barley, while decreased abundance was observed in Arabidopsis [19,23,31,35,36].
Interestingly, a loss of rmd mutant, encoding a rice actin-binding protein, exhibited steeper
growth angles for crown roots in rice, strongly suggesting that cell proliferation-related
proteins could play a role in root growth [104].
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Figure 2. A model of integration of adaptive strategies of plant roots to Pi starvation regulated by
DAPs. Up or down arrows indicate DAPs exhibiting increased or decreased accumulations; AM,
arbuscular mycorrhiza; ACCO, 1-aminocyclopropane-1-carboxylate oxidase; AOC1, allene oxide
cyclase 1; AOS, the allene oxide synthase; BGL, beta-glucosidase; CDC48, cell division cycle protein 48;
CS, citrate synthase; JALs, jacalin-related lections; MCM6, mini-chromosome maintenance protein 6;
MDH, malate dehydrogenase; PAPs, purple acid phosphatases; PP2A, phosphatase 2A; NPC4, non-
phospholipase C4; Ran GTPase, GTP-binding nuclear protein RAN-B1; SAMS, S-adenosyl methionine
synthase; TCTP, translationally controlled tumor protein; tRNA IPT, tRNA isopentenyl transferase.

3.2.2. Pi Starvation-Responsive Proteins Related to Root Exudates

Plant root exudates mainly include a class of metabolites and proteins with low-
or high-molecular weight, such as organic acids (OAs), sugars, flavonoids, and phos-
phatases [100,105]. It is well known that root exudates play crucial roles in increasing Pi
uptake by desorbing immobile P in soils [100,106]. Consistently, differential proteomic
analysis led to identifying a set of DAPs controlling root exudates, which contributes to
deepening understandings of the molecular mechanisms underlying rhizosphere P mo-
bilization [100,105] (Figure 2). For example, increased OA exudation was found to be
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associated with activities of several differential proteins related to OA synthesis, including
citrate synthase (CS) in Arabidopsis, maize and soybean, IDH in maize, MDH in rape,
soybean, and maize, as well as decreased abundance of aconitase in rice [21,30,32,35,41].
Consistently, overexpression of CS from Daucus carota (DcCS) improved Arabidopsis growth
under P deficiency conditions due to enhanced citrate synthesis and exudation from the
roots [107]. These results strongly indicate that increased OA synthesis and exudation play
an important role for plants when scavenging Pi in soils.

In addition to OA synthesis and exudation, some secreted proteins, such as purple
acid phosphatases (PAPs) and ribonucleases, are critical for plants to utilize organic-P pools
in soils. Among PAPs, root-associated PAPs were widely found to be involved in the acti-
vation and utilization of extracellular organic-P sources, such as ATP, deoxy-ribonucleotide
triphosphate (dNTPs), and phytate-P [56,108]. For example, several PAPs were purified
and functionally characterized to mediate organic-P utilization, such as SgPAP23 in stylo
(stylosanthes guianensis), GmPAP7a/b in soybean, OsPAP10a in rice, and LeSAP1/2 in
tomato [25,47,109–111]. Meanwhile, a variety of low P-induced PAPs was identified in
plants through proteomic analysis, such as AtPAP12/26 in Arabidopsis, GmPAP1-like,
and GmPAP22-like proteins in soybean [25,44]. In Arabidopsis, atpap12/atpap26 mutant
exhibited impaired growth coupling the decreases in root secretory APase activity and total
Pi concentration in rosettes [112,113]. Overexpressing GmPAP1-like enhanced Arabidopsis
growth and P content when dNTP was supplied as the sole external P source [25]. In
addition, some DAPs functions in cell wall carbohydrate metabolism were also identified
to be up-regulated in Arabidopsis suspension cells or root cell walls under P-deficient
conditions, such as polygalacturonase (PG) and xyloglucan endotransglycosylase (XET),
which was suggested to release cell wall-bound Pi under low-P conditions [25,112,114].
Additionally, since changes in polysaccharides in cell wall metabolism could influence the
rhizosphere size, which was suggested to be positively correlated with P accumulation
in plants, DAPs related to cell wall metabolism might affect plant P efficiency partially
through changing rhizosphere size [115].

3.2.3. Response of Symbiotic Association to Pi Starvation in Plants

Although it is well known that the formation of a symbiotic association between plants
and arbuscular mycorrhiza (AM) is a typical plant strategy in response to P deficiency, no
proteomic analysis was conducted to identify DAPs in the symbiotic association at different
P levels. However, several studies have highlighted that Pi acquisition efficiency in legume
crops could be improved through formation of the symbiotic association between roots and
rhizobia, which can directly fix atmosphere N2 in nodules and supply nitrogen for plant
growth. For example, rhizobium inoculation led to enhancing the capability of soybean
in utilization of sparingly soluble P forms (e.g., Ca-P, Al-P, Fe-P), as reflected by higher P
content and plant biomass [116]. Furthermore, overexpression of two nodule preferring
Pi transporters, GmPT7 and GmPT5 promoted soybean nodulation, P content, as well as
fresh weight [117,118]. To date, only one study has elucidated differential protein profiles
in soybean nodules at two P levels through two-dimensional electrophoresis combined
with matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF)/TOF mass
spectrometry (MS) analysis. A total of 44 DAPs were identified in soybean nodules,
which were mainly involved in stress response and carbon and amino acid metabolism,
strongly indicating that a complex but precise module exists in soybean nodules to sustain
mutualistic symbiosis to maximize Pi uptake [24]. Among them, GmMDH12 was found
to be up-regulated in soybean nodules by Pi starvation, which was consistent with the
increased malate concentration in nodules at low-P levels. Furthermore, overexpression
of GmMDH12 significantly increased malate concentrations and inhibited nodule size
in soybean, strongly suggesting that Pi-starvation increased malate, which might have
multiple functions except for the enhancement of malate exudation and the activation of
sparingly soluble P in soils [119].
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4. Identification of DAPs Exhibiting Post-Transcriptional Modifications

Post-transcriptional modifications (PTMs) play crucial roles in regulating protein ac-
tivity, longevity, and localization, including phosphorylation, ubiquitination, succinylation,
glycosylation, and SUMOylation modification [15,38,120]. Recently, several studies were
conducted to investigate changes in protein profiles with PTMs in plant roots at different
P levels, such as phosphoproteome in soybean, maize, and rice [15,22,38]. In soybean
roots, a total of 427 phosphoproteins were found to be regulated by Pi starvation, including
213 up-regulated and 214 down-regulated [15]. For example, auxin efflux transporter
GmPIN2 and ethylene-insensitive protein GmEIN2 were identified to be up-regulated by P
deprivation, strongly suggesting participation of auxin and ethylene in modulating root
architecture in response to P deficiency [15]. Meanwhile, in rice roots, a total of 554 phos-
phoproteins were found to exhibit differential accumulations, with 546 down-regulated and
8 up-regulated proteins. Several proteins, including four mitogen-activated protein kinases
(MAPKs), five calcium-dependent protein kinases (CDPKs), and OsCK2β3, were observed
to be decreased in response to Pi starvation, especially for OsCK2, which was suggested
to regulate phosphorylation of OsPT2 and OsPT8 and thus influence their subcellular
localization [22,121]. Meanwhile, in maize roots, about 51 phosphoprotein spots were
observed to exhibit differential accumulations by low-P treatment; these were involved
in a group of cellular and metabolic pathways, such as signal transduction and carbon
metabolism [32]. Among them, one auxin receptor, ABP1, was found to be up-regulated
in maize roots under low-P conditions [32]. Recently, overexpression of AtABP1 has been
found to influence primary root growth, root bending, and lateral root development [122].

In addition to phosphorylation analysis, succinylated-proteomic analysis was also
conducted to identify differential proteins with succinylation in barley roots under P-
deficiency conditions [38]. A total of 120 succinylation sites were identified across 83 pro-
teins, including 79 increased and 4 decreased succinylated proteins at 48 h of Pi-starvation
treatment, respectively [38]. Moreover, these differentially succinylated proteins were
enriched in ribosome pathways, glycolysis, and RNA degradation pathways. For example,
60S/50/40S/30 ribosomal protein was suggested to involve ribosome pathways, while
TPI, GAPDH, and FBP aldolase were predicted to participate in glycolysis pathways [38].
However, functions for most of the identified proteins with succinylation remain unknown,
which merits further study.

5. Perspectives

In recent decades, with the aid of proteomic analysis, identification and functional
characterization of DAPs have opened the way to elucidate molecular mechanisms under-
lying plant adaptation to Pi starvation. For example, the increased abundances of SPX1,
PHT1;4, and PHF1 proteins were observed in Arabidopsis roots, and other proteins, such as
TaPHT1;9-4B, TaPHT1;3-5B, and TaPHT1;6-5B, were also observed in wheat roots, acting as
the main proteins mediating Pi homeostasis [16,37]. However, the functions of most of the
DAPs remain largely unknown and require furthered investigation via reverse and forward
genetic analysis. For example, a histone chaperone (nap1;2) was found to be up-regulated
under Pi starvation via proteomic analysis in Arabidopsis, and its functions in maintaining
Pi homeostasis were clarified via analysis of triple nap1;1 nap1;2 nap1;3 mutant lines [13].
Meanwhile, although the method of differential proteomics based on mass spectrometry
was established and successfully used, there is still a lack of a more effective method for
protein separation and identification in order to qualitatively analyze plant proteins. In
order to solve these problems, multiple technologies should be combined to develop a
more effective method for protein extraction and separation. Meanwhile, in addition to
commonly used quantitative techniques, such as label-free quantitation [123], isobaric
tags for relative and absolute quantitation (iTRAQ) [124], tandem mass tags (TMT) [125],
and stable isotope labeling by amino acids in cell culture (SILAC) [126], application of a
relatively new technique, termed sequential window acquisition of all theoretical mass
spectra (SWATH) [127], together with data-independent acquisition (DIA) [128], might be
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very helpful to identify more DAPs. Furthermore, the vigorous development and wide
application of new technologies (e.g., microfluidic chip, reverse micelles, magnetic nanopar-
ticles) will break the bottleneck of protein separation, enrichment, and detection in single
cells and different organelles [129].

Although many questions remain to be solved, we believe that the application of
proteomics integrating multiple omics, as well as genetic analysis, will help us to elucidate
molecular mechanisms underlying plant adaptation to P deficiency and develop cultivars
with high P efficiency in the future.
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