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Abstract: Inflammation plays a decisive role in inducing tumorigenesis, promoting tumor develop-
ment, tumor invasion and migration. The interaction of cancer cells with their surrounding stromal
cells and inflammatory cells further forms an inflammatory tumor microenvironment (TME). The
large number of cells present within the TME, such as mesenchymal stem cells (MSCs), macrophages,
neutrophils, etc., play different roles in the changing TME. Exosomes, extracellular vesicles released
by various types of cells, participate in a variety of inflammatory diseases and tumor-related inflam-
mation. As an important communication medium between cells, exosomes continuously regulate the
inflammatory microenvironment. In this review, we focused on the role of exosomes in inflammatory
diseases and tumor-related inflammation. In addition, we also summarized the functions of exosomes
released by various cells in inflammatory diseases and in the TME during the transformation of
inflammatory diseases to tumors. We discussed in depth the potential of exosomes as targets and
tools to treat inflammatory diseases and tumor-related inflammation.
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1. Introduction

Years ago, cancer was thought to be a cell-autonomous process. However, an increas-
ing number of studies on tumor microenvironment (TME) have provided a new explanation
for the occurrence and development of tumors; that is, tumor development depends on the
complex interaction between tumor cells, cells in the surrounding environment and the
vasculature [1,2]. Inflammation is a defense-dominated local tissue response to stimulation
by pathogens, damaged cells, or irritants, usually manifested by redness, swelling, heat,
pain and dysfunction [3,4]. A striking feature of inflammation is that it has core cells
and molecules required for tumorigenesis [5]. In preclinical animal models, inhibition of
inflammation also suppressed tumor growth and progression in certain seemingly “non-
inflammatory” cancers [6]. Although the mechanism by which inflammatory cells lead to
tumorigenesis is still unclear, recent studies on tumorigenesis have shown that inflamma-
tion is likely to induce early tumorigenesis [7,8]. Inflammation-promoting carcinogenesis
may be the result of a changing environment interacting with a variety of cells, such as
increased genomic instability, abnormal cell proliferation, changes in the stromal envi-
ronment and transitions between epithelial and mesenchymal states [9,10]. Inflammatory
factors can activate inflammation-related transcription factors, leading to the activation of
pro-tumor signaling pathways, so inflammation may induce tumorigenesis [11–13]. With
the accumulation of inflammation, it may further promote tumor development. In the
later stages of tumor development, the inflammatory environment easily leads tumor cells
to undergo an epithelial-mesenchymal transition (EMT) process, and on the other hand,
with the help of tumor-associated macrophages (TAMs), enter blood vessels and lymphatic
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vessels, thereby achieving a transfer process [14,15]. Inflammation usually resolves in the
short term, but chronic or persistent inflammation may lead to malignant disease [16,17].
Epidemiological data have demonstrated a relationship between chronic inflammation
and the development of several cancers, including liver cancer, lung cancer and colorectal
cancer [18].

Exosomes, small extracellular vesicles with an average size of ~100 nm, are released
by various types of cells [19]. In recent years, several research groups have reported the
potential biological functions of exosomes secreted by different types of cells, which play
an important role in maintaining physiological homeostasis. During tumor development,
the composition of exosomes undergoes various changes, which play a role in promoting
the progression of various tumors [2,20,21]. The specific mechanisms include promoting
cell proliferation, promoting angiogenesis, promoting cancer cell metastasis and invasion,
reprogramming metabolic processes, and modulating the TME to cause immune evasion,
etc. [1,22]. A large number of studies about exosomes in various inflammatory diseases
have been reported, and exosomes have also become potential therapeutic targets for
various chronic inflammatory diseases and even tumors [23,24]. In this review, we system-
atically summarized the roles of exosomes in various inflammatory diseases and during the
transformation of inflammatory diseases to tumors. In addition, we also summarized the
functions of exosomes released by various cells in inflammatory diseases. The potential of
exosomes as a target for the treatment of inflammatory diseases and inflammation-related
tumors is discussed in depth.

2. Exosomes Composition and Function

Exosomes were originally thought to be small vesicles containing 5′ nucleotidase activ-
ity released from tumor cell lines [25]. A few years later, Johnstone’s group reported mature
mammalian reticulocyte-derived vesicles (30–120 nm in diameter) that reside in large mul-
ticellular vesicles containing transferrin receptors and several other membrane-associated
vesicles [26]. Using electron microscopy, it was observed that fusion of multivesicular
endosomes with the plasma membrane could release inner vesicles into the extracellu-
lar environment [27]. A large number of subsequent studies have found that exosomes
could be released by various types of cells including mesenchymal stem cells (MSCs),
macrophages, neutrophils, dendritic cells (DC) and lymphocytes, also be found in most
body fluids including blood, urine, and saliva [19]. With the deepening of research on
exosomes, more and more evidence showed that exosomes played an important role in the
material exchange process between cells, and most of the physiological and pathological
processes of the body [28,29]. In addition, studies have found that the molecular compo-
nents within exosomes were significantly correlated with certain diseases, suggesting that
they could also serve as a diagnostic tool [30,31].

Exosomes have unique and complex compositions. Exosomes mainly include a variety
of proteins, lipids, mRNAs and miRNAs [19]. The most common proteins found in exo-
somes are membrane transport and fusion-related proteins (such as GTPase, annexin), heat
shock proteins (such as HSC70), tetraspanin superprotein family (such as CD63 and CD81),
multivesicular body (MVB) synthesis proteins (such as TSG101), cholesterol, phospholipids
and other lipids [32,33]. CD63 and CD81 are the most commonly used surface marker
molecules for the detection of exosomes [34]. In addition, exosomes are also found to
contain a large amount of mRNA and miRNA, which have different effects on recipient
cells [35,36].

Exosomes can fuse with recipient cells and release their contents, transferring compo-
nents from secretory cells to target cells, so exosomes play an important role in cell-to-cell
communication. Certain immune cell-derived exosomes, such as exosomes released by
DC cells and B cells, could mediate the body’s adaptive immune response to pathogens
and tumors [37]. Tumor cell-derived exosomes could promote tumor development and
metastasis [38]. Exosomes shed from blood cells and vascular endothelium can be involved
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in neurological diseases such as multiple sclerosis, transient ischemia, and antiphospholipid
syndrome [39].

3. The Role of Exosomes in Inflammatory Diseases
3.1. Exosomes in Sepsis Associated Inflammation

Sepsis is a life-threatening systemic inflammatory disease caused by bacterial and
other pathogenic microorganisms invading the body [40]. Sepsis occurs when the body
is simultaneously unbalanced with excessive inflammation and immunosuppression [41].
Numerous literature reports on the clinical importance of exosomes as biomarkers and
mediators in sepsis. Exosomes can induce inflammation by releasing their contents, thereby
activating receptor cells, and experimental clinical data showed that the release of exo-
somes were significantly increased when sepsis occurred [42]. The exosomes detected in
the early stage of septic mice contain a large number of pro-inflammatory factors, such
as TNF-α, IL-6, etc., while the anti-inflammatory factor IL-10 can be detected in the late
stage [43]. One study found that exosomes carrying a large number of damage-associated
molecular patterns (DAMPs) were released by secretory cells during sepsis, including high
mobility group box 1 (HMGB1) [44,45], heat shock protein, adenosine triphosphate (ATP)
and extracellular RNA, etc. [46]. These DAMP molecules can bind to pattern recognition re-
ceptors (PRRs), especially Toll-like receptors (TLRs), to initiate inflammatory signaling [47].
The most well-known mechanism of sepsis is that lipopolysaccharide (LPS) activates the
TLR4-MyD88 pathway to activate the downstream NF-κB signaling pathway, resulting in
the production of a large number of inflammatory molecules [47]. In septic mice, exosomes
were found to activate downstream signaling through TLRs, promoting the production
of cytokines and chemokines [48,49]. NLRP3 inflammasome, a typical Nod-like receptor,
is also an important PRR in sepsis, and it has been reported that exosomes released from
LPS-treated macrophages could induce NLRP3 inflammasome and caspase-1 activates
and induces the release of the proinflammatory factor IL-1β [50,51]. Therefore, exosomal
inflammasomes may be involved in aggravating inflammation in sepsis.

3.2. Exosomes in Lung Inflammatory Disorders

At present, the morbidity and mortality of inflammatory lung disease are still high,
and the hallmark of many respiratory diseases is the production of inflammation [52].
The lungs have abundant blood vessels, and the exosomes released from lung endothelial
cells contain a large number of membranous mucins, which help the innate defense of the
airway [53]. At the same time, exosomes have attracted attention in various inflammatory
lung diseases, such as chronic obstructive pulmonary disease (COPD), acute lung injury
(ALI), asthma, and COVID-19. COPD is a lung disease caused by endothelial cell damage,
epithelial cell damage, and epithelial-mesenchymal transition in the lung parenchyma [54].
It has been reported that exosomes released by lung endothelial cells are significantly
increased after infection and smoke exposure [55]. These exosomes were found to induce
increased IL-8 secretion, causing lung tissue damage and persistent inflammation in COPD
lungs [56]. In addition, lung endothelial cells release a large number of exosomes into
bronchoalveolar lavage fluid (BALF) after injury, which affects the function of recipient cells.
Therefore, exosomes in BALF can also be used to predict the extent of COPD damage [57].
The study by Lee et al. (2018) showed that the sources of exosomes in ALI and BALF of
acute respiratory distress syndrome (ARDS) were mainly alveolar type I epithelial cells and
alveolar macrophages [58]. Exosomes from BALF of mice with LPS-induced ALI contain a
large amount of cytokines and Caspase-1, which induce apoptosis of lung endothelial cells
and damage the alveolar-capillary barrier [59]. It was also observed in asthma model mice
that lung epithelial cells secreted more exosomes, became the main source of lung exosomes,
and induced the proliferation and chemotaxis of monocytes, while inhibiting the secretion
of exosomes could relieve asthma symptoms [60]. Asthma is also often accompanied
by increased eosinophils in the airways and production of more exosomes that promote
the inflammatory behavior of eosinophils associated with asthma pathogenesis [61,62].



Cells 2022, 11, 1005 4 of 17

In addition, exosomes secreted by mast cells of asthmatic mice carry molecules such as
MHC class II and ICAM-1, which can induce the activation and recruitment of splenic B
cells and T cells, leading to lung inflammation [63]. COVID-19, which is now spreading
globally, has caused severe inflammation in the lungs [64]. Proteomics analysis of exosomes
derived from COVID-19 patients revealed that some molecules involved in inflammatory
responses, such as complement C1r and C1s subcomponents, can be used as potential
biomarkers [65]. Because of their unique lipid bilayer-enclosed structure and function
of intercellular communication, exosomes may be used in the development of antiviral
drugs and vaccines. In addition, in lung cancer, exosomes can still be observed to promote
tumor development. Abundant research shows that tumor-derived exosomes can regulate
local immune responses, epithelial-mesenchymal transition (EMT), angiogenesis and other
pathways, thereby promoting lung cancer cell proliferation, migration and invasion [66,67].

3.3. Exosomes in Liver Inflammation

Additionally, of high concern is liver injury. In most liver diseases, liver injury triggers
the death of liver cells, which in turn leads to liver failure, liver fibrosis, and hepatocellular
carcinoma [68]. In this process, there is always a long, hyperactive inflammatory response.
Inflammation in the initial stage of liver injury plays a role in tissue repair, but excessive
inflammation over time lead to liver cell damage and death [69]. Researches have shown
that after hepatocyte injury, DAMP molecules were packaged into exosomes, causing non-
parenchymal cells to synthesize and release pro-inflammatory cytokines, such as IL-1β
and TNF-α, leading to local inflammation [70]. The exosomes released from hepatocytes
further promote the entry of immune cells, such as macrophages, into the liver, thereby
maintaining and amplifying inflammation [71]. However, some studies have also shown
that acetaminophen (APAP)-induced acute liver injury reached the most serious injury
at 24 h, then gradually repaired, and basically returned to normal at 72 h. During this
period, resident and infiltrating macrophages in the liver play a key role in the process
of tissue injury repair [72]. Exosomes also transmit signals to endothelial cells, leading to
inflammation of blood vessels. In the study of viral hepatitis, exosomes can regulate the host
immune response and mediate hepatitis virus replication. Exosomes released by hepatitis
virus-infected hepatocytes help hepatitis virus to participate in immune escape [73]. Of
course, they can also activate the body’s immune response to infection with hepatitis
virus, help eliminate the virus and activate the antiviral immune response [74]. Not
only that, more and more studies have shown that exosomes also played an important
role in promoting liver fibrosis. Liver fibrosis is a dynamic process in which excessive
inflammation directly or indirectly drives the activation of hepatic stellate cells (HSCs) [75].
Previous studies have shown that lipid-induced hepatocyte-derived exosomes regulate
HSCs activation by delivering miR-128-3p and inhibit PPAR-γ expression, resulting in
a significant increase in profibrotic gene expression [76]. It has also been demonstrated
that exosomes produced by damaged epithelial cells promoted increased production of α-
smooth muscle actin and type I collagen in HSCs [77]. Furthermore, platelet-derived growth
factor (PDGF)-activated hematopoietic stem cells release PDGFRa-enriched exosomes that
induce HSC migration and liver fibrosis [78]. These findings suggest that exosomes may be
key regulators of liver fibrosis.

Under conditions of liver injury, the inflammatory environment leads to hepatocyte
necrosis and chromosomal instability. Reactive oxygen species and inflammatory factors
may trigger the occurrence of hepatocellular carcinoma (HCC) [75]. During the progression
of HCC, exosomes that play a role in promoting tumor development gradually increased.
These exosomes promote angiogenesis, EMT, matrix remodeling and immune regulation,
thereby promoting tumor progression and metastasis [79]. It has been reported that exo-
somes were involved in the development of chronic hepatitis B (CHB) and chronic hepatitis
C (CHC) into HCC [80]. The exosomes released by the transferred HCC cells in turn
carried a large amount of tumorigenic RNAs and proteins, enhanced the phosphoryla-
tion of PI3K/AKT and MAPK pathways and the production of matrix metalloproteinase
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(MMP)-2 and MMP-9, which promoted the migration and invasion capacity of MIHA
cells [81]. In addition, HCC cell-derived exosomes evade immune surveillance by inducing
tumor-infiltrating NK cell dysfunction by activating the TGF-β/Smad pathway [82].

3.4. Exosomes in Inflammatory Bowel Diseases

Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease
caused by long-term inflammation coupled with immune dysregulation leading to damage
to the gastrointestinal tract, including ulcerative colitis (UC) and Crohn’s disease (CD) [83].
In the IBD microenvironment, exosomes play a role in regulating immune cells and gut
microbiota. It has been reported that compared with exosomes from healthy subjects, exo-
somes isolated from the colonic lumen of IBD patients contained more inflammatory factors
such as IL-6 and TNF-α, and the expression levels of these pro-inflammatory molecules
increased with the severity of CD [84]. In addition, it was found that exosomes from IBD
patients were able to induce the activation of colonic epithelial cells in vitro to produce
IL-8 [84]. Intestinal epithelial cells treated with exosomes from IBD patients were able to
induce higher numbers of macrophage recruitment than untreated intestinal epithelial
cells [85]. Studies have shown that compared with control mice, mice with colitis induced
by dextran sodium sulfate (DSS) contained 56 differential proteins in serum exosomes, a
large number of which could induce macrophages to release more TNF-α [86]. In addi-
tion, it has also been reported that the 1963 proteins in milk-derived exosomes, including
Flotillin-1, Annexin A5, were involved in the regulation of the gut microbiome in the
murine IBD mucosal microenvironment [87]. Other studies have reported that exosomes
from different types of milk could enhance intestinal epithelial cell (IEC) activity, prolif-
erative capacity and intestinal development [88]. In addition, exosomes released by IECs
present exogenous peptides to T cells after activating DCs, which further activates the
inflammatory response [89]. Another study found that after infection with adherent inva-
sive Escherichia coli (AIEC), intestinal epithelial cells and macrophages secreted increased
exosomes and led to an enhanced pro-inflammatory response [90]. These all indicate that
the increased release of exosomes caused by inflammation may further promote the infil-
tration of inflammation in the intestine to varying degrees. IBD has long been associated
with an increasing risk of colorectal cancer. In the process of colitis-associated colorectal
cancer (CRC), the activation of STAT3 by IL-6 is the key to early tumorigenesis. STAT3
promotes tumor cells by up-regulating the expression of cell cycle regulators cyclin D1,
cyclin D2 and the proto-oncogene MYC [91]. In addition, miR-1246 in colon cancer cell-
derived exosomes is a key mediator in promoting the transformation of macrophages into
a tumor-promoting phenotype [92]. Additionally, CRC-derived exosomes up-regulated
the expression levels of VEGF, Wnt5A, and IL-1β, leading to TAMs differentiation [93]. In
addition to this, exosomes also contribute to colon cancer metastasis. The Wnt1 protein
in exosomes was shown to promote the proliferation and migration of CRC cells [94]. It
was also found that miR-424-5p in exosomes of CRC cells promoted the proliferation and
metastasis of colorectal cancer by directly inhibiting the tumor suppressor gene SCN4B [95].
Furthermore, exosomes from CRC cells induced a malignant phenotype when injected into
normal colon cells in vitro [96]. All of the above prove that exosomes play an important
role in the development of inflammatory bowel disease and related tumors.

4. Role of Exosomes Released by Microenvironmental Cells in Inflammatory Diseases
and Tumor-Related Inflammation
4.1. Mesenchymal Stem Cells-Derived Exosomes

Several studies have shown that mesenchymal stem cell (MSCs)-derived exosomes,
especially the miRNAs in them, played a key role in animal models of sepsis. For example,
miRNA-141 in MSC-derived exosomes can alleviate myocardial injury in septic mice after
activation of β-catenin through PTEN [97]. Another report found that miRNA-21 was
massively upregulated in exosomes released by IL-1β-stimulated MSCs, which induced
macrophage polarization to M2 type and thus ameliorated sepsis [98]. The up-regulation
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of miR-223 in exosomes leads to the downregulation of Sema3A and STAT3, indicating that
miR-223 in exosomes plays an important role in cardioprotection of sepsis [99].

In addition, some preclinical studies have also demonstrated that the main effects of
MSC-derived exosomes on ALI/ARDS were to reduce lung inflammation, promote alveolar
epithelial regeneration, restore alveolar fluid clearance and enhance pulmonary endothelial
repair [100]. In addition, MSC-derived exosomes can modulate the immune response
in ALI/ARDS [101]. MSC-derived exosomes induce M1-type macrophage polarization
to M2-type by transferring miRNA-27a-3p to alveolar macrophages [102]. MSC-derived
exosomes can repair the intestinal barrier in various ways. For example, miRNA-181a
in MSC-derived exosomes can improve the state of experimental colitis by promoting
intestinal barrier and anti-inflammatory effects [103]. Human umbilical cord MSC-derived
exosomes repair intestinal barrier through tumor necrosis factor-α-stimulated gene 6 (TSG-
6) for the treatment of inflammatory bowel disease [104]. In addition, miRNA-34/c-5p
and miRNA-29-3p in MSC-derived exosomes can improve the intestinal epithelial barrier
through Snail/Claudins signaling pathway [105].

In mouse model experiments, it was observed that exosomes derived from human bone
marrow mesenchymal stem cells (hBMSCs) could promote angiogenesis by upregulating
the expression of VEGF and promote tumor cell proliferation by activating ERK1/2 and
p38 MAPK pathways, leading to the development of SGC-7901 gastric tumor cells [106].
Another study suggested that miR-221 in BMSC-derived exosomes, as a tumor-promoting
molecule, promoted the proliferation and progression of gastric tumors by activating the
Hedgehog signaling pathway [107]. MSCs can also promote immune evasion of tumor
cells in the TME, and it was found that human umbilical cord mesenchymal stem cells
(hUCMSC)-derived exosomes containing miR-3940-5p were able to downregulate EMT,
metastasis and invasion of DLD-1 colorectal tumor cell line through decreasing the integrin
α6 (ITGA6) expression and inhibiting the activity of TGF-β1 signaling pathway [108]. In
addition, it was reported that miR-122-modified adipose MSC (AMSC)-derived exosomes
could enhance the chemosensitivity of HCC cells [109]. In addition, Ma et al. showed that
MSC-derived exosomes were electroporated with miR-132 mimics, and after co-culture with
human umbilical vein endothelial cells (HUVECs), miR-132 was up-regulated in HUVECs
and bound to the target gene RASA1, thereby promoting angiogenesis in myocardial
infarction [110]. In another study, exosomes were isolated from adipose tissue-derived
mesenchymal stem cells (AD-MSC-Exo), and then transfected into exosomes with miR-10a,
and added to naive T cells. The secretion levels of IL-17 and TGF-β were increased, while
the secretion level of IFN-γ was decreased, thus providing a new strategy for anti-tumor
immunotherapy [111]. Therefore, researchers have investigated how to use exosomes as
biological delivery vehicles for miRNA transfer. Therefore, MSC-derived exosomes can
also be used as novel nanocarriers for miRNAs and drugs.

4.2. Macrophages-Derived Exosomes

Macrophages exhibit different phenotypes and functions under the stimulation of
different factors in the surrounding environment [112]. IL-4-induced macrophages are
selectively activated (M2) macrophages, and M2 macrophages are characterized by reduced
secretion of proinflammatory cytokines and mannose receptors compared with IFN-γ-
induced M1 macrophages [113]. It has been reported that the upregulation of miRNA-
24-3p in M2 macrophage-derived exosomes reduced the expression of tumor necrosis
factor superfamily member 10 (TNFSF10), thereby exerting a cardioprotective effect on
myocardial injury after sepsis [114]. In addition, a large number of proteins in exosomes
derived from LPS-treated macrophages are involved in the NOD-like receptor signaling
pathway, and the NLRP3 inflammasome is also activated after hepatocytes ingested LPS-
treated macrophage-derived exosomes, suggesting the importance of macrophage-derived
exosomes in sepsis-induced liver injury [50]. The study by Jiang et al. (2019) found that
miR-155 in serum exosomes of ALI mice increased the number of M1-type macrophages
in the lung by targeting SHIP1 and SOCS1, and then causes lung inflammation [115]. A
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lot of evidence showes that macrophage-derived exosomes are the main source of early
proinflammatory cytokines in severe ALI and may activate neutrophils to produce more
proinflammatory cytokines and IL-10. IL-10 polarizes macrophages to M2 type, which in
turn leads to subsequent fibrosis [116]. In addition, it was also reported that miR-590-3p in
M2 macrophage-derived exosomes targeted LATS1 to activate YAP/β-catenin to attenuate
inflammation and promote epithelial regeneration of damage mucosa from colitis mice
induced by DSS [117].

We usually refer to macrophages in the tumor microenvironment (TME) as tumor-
associated macrophages (TAMs). TAMs are also highly plastic and heterogeneous, account-
ing for 30–40% of immune cells in the TME [118]. Additionally, they are extravasated by
circulating monocytes from nearby blood vessels and into tumor tissue, where they polarize
into distinct phenotypes in the TME [119]. Most TAMs lack the ability to phagocytose
tumor cells, and at the same time promote tumor cell immune evasion, allowing them
to metastasize to distant tissues [120]. Exosomes secreted by TAMs also play a key role
in regulating tumor progression. It regulates tumor progression by upregulating cancer
proliferation, migration, invasion, promoting angiogenesis, generating drug resistance,
promoting tumor immune escape and reprogramming tumor metabolic processes. For
example, it was found that CD11b/CD18, an integrin derived from M2-type macrophage
exosomes, promoted the metastasis of HCC cells by activating MMP-9 [121]. Another
study found that exosomes derived from TAMs released large amounts of transcription
factors GATA3, which played a key role in the interaction between TAMs and high-grade
serious ovarian cancer (HGSOC), promoting the occurrence of EMT and angiogenesis [122].
TAMs-derived exosomes can also affect the immune response of different T cell subtypes in
the TME, thereby promoting tumor cells to evade immune recognition [123].

4.3. Neutrophils-Derived Exosomes

Neutrophils are also the first line of defense in the innate immune response. Neu-
trophils can secrete exosomes that affect macrophages, endothelial cells, vascular and
bronchial smooth muscle cells, etc. [124]. Extensive study has investigated the role of
neutrophil-derived exosomes in regulating the local and systemic inflammatory environ-
ment. Neutrophils can also release exosomes and release IL-8 to play an anti-inflammatory
role when they are not activated [125]. The exosomes released by stimulated neutrophils
exhibited different properties. For example, exosomes released from neutrophils stimulated
by TNF-α enhance the production of pro-inflammatory cytokines, leading to genomic
instability, inflammation and impaired wound healing in intestinal epithelial cells [126].
Conversely, there are also reports of the anti-inflammatory effects of TNF-α-stimulated
neutrophil-derived exosomes on a macrophage-fibroblast-like synovial cell co-culture
system. It was reported that exosomes released from neutrophils induced by N-formyl-Met-
Leu-Phe (fMLP) exhibited a pro-inflammatory phenotype when co-cultured with HUVEC
and leading to the release of IL-8 and IL-6 [127]. On the other hand, it was found that exo-
somes released by fMLP-stimulated neutrophils interfered with NF-κB signaling in human
monocyte-derived macrophages and not only promoted TGF-β1 release but also inhibited
IFN-γ and TNF-α production, and thus neutrophil-derived exosomes showed significant
anti-inflammatory effects [128]. MiRNA-30d-5p in neutrophil-derived exosomes induced
M1-type macrophage polarization and triggered macrophage pyroptosis by activating
NF-κB signaling, leading to sepsis-related ALI [129]. In contrast, during mechanically
induced lung inflammation in mice, neutrophil-derived exosomes transferred miRNA-223
into alveolar epithelial cells and suppressed PARP-1 expression, thereby suppressing the
deleterious inflammatory cascade during ALI [130]. This inconsistency may be due to
differences in the stimuli that stimulate neutrophils to produce exosomes and the living
environment of the studied target cells.
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5. Concluding and Future Perspectives

The ability of inflammation to induce cancer has been well established over the past
decade, but the mechanisms by which many inflammatory processes lead to tumor devel-
opment have not been fully elucidated. Inflammation appears to drive all steps required for
tumorigenesis, including angiogenesis, cell proliferation, migration and invasion and drug
resistance [119,131]. Long-term chronic inflammation cause cancer to act like a “wound
that will not heal” and produce an immunosuppressive TME. Inflammation is traditionally
believed to be achieved by the interaction of various types of cells, directly or indirectly
through the regulation of cytokines and other soluble factors [9]. More and more studies
have demonstrated that exosomes released by various types of cells were also involved.
Their effects can vary according to their source and the microenvironment in which the
acting on target cells live in.

This article reviews the significance of exosomes in inflammatory diseases (Figure 1).
In sepsis, exosomes carry a large number of pro-inflammatory molecules, activate in-
flammatory molecule-related signaling pathways and induce multiple organ dysfunction.
Therefore, targeting excessively released exosomes is likely to be an effective treatment
for sepsis. For example, increased activity of reduced coenzyme II (NADPH) in platelet-
derived exosomes from patients with sepsis induces oxidative stress and triggers apoptosis
in vascular epithelial cells [132]. When the early pathway for the production and release of
exosomes was blocked, mice with sepsis had significantly improved survival and greatly
attenuated myocardial damage [133]. This suggested that exosomes could be a novel target
for sepsis therapy. In addition, blood culture is one of the most commonly used detection
methods for the diagnosis of sepsis in clinical practice, but it is limited due to its low
positive rate of culture and the long time required [134]. Therefore, researchers began
to explore the use of exosomes in the body fluids of sepsis patients as an early detection
indicator [135]. Exosomes are also ideal drug delivery vehicles in sepsis. Some scholars
isolated dendritic cell-derived exosomes and filled them with exogenous milk fat globule
epidermal growth factor VIII (MFGE8), a secreted protein necessary for the regulation and
removal of apoptotic cells. The level of MFGE8 was significantly downregulated during
the onset of toxicosis [136]. This suggested that exosomes had the ability to carry highly
hydrophobic proteins such as MFGE8, enhancing their anti-inflammatory effects in sepsis.
Exosomes also play a key role in various inflammatory diseases of the lungs, especially
in lung cancer, where exosomes are involved in tumor metastasis, angiogenesis, immune
escape and even drug resistance. Since tumor exosomes containing molecules of exosome-
derived cells can be detected in the circulation, exosomes have been used as biomarkers to
aid in the screening and early diagnosis of lung cancer, giving patients a better prognosis.
For example, the clinical liquid biopsy kit developed by Exosome Diagnostics for analyzing
exosomal RNA from blood samples was approved by the US FDA for clinical use in early
2016. It can accurately and real-time detect EML4-ALK mutations in non-small cell lung
cancer (NSCLC) patients, and the detection can reach 88% diagnostic sensitivity and 100%
diagnostic specificity. The study by Huang et al. (2013) found that 80% of NSCLC patients
had positive EGFR immunostaining on the surface of exosomes in lung tissue, while only
2% of exosomes in chronic pneumonia were positive for EGFR. Therefore, it is considered
that the exosomal EGFR protein could be used as a biomarker for the differential diagnosis
of NSCLC and chronic pneumonia [137]. In a phase II clinical trial, Besse et al. (2016) found
that dendritic cell-derived exosomes loaded with IFN-γ, MHC I and MHC II could enhance
the anti-tumor immune function of NK cells in patients with advanced NSCLC [138]. The
study by Wang et al. (2017) found that the use of exosomes to deliver paclitaxel (PTX)
could significantly improve the absorption of PTX by lung cancer cells and significantly
increase the cytotoxicity of the drug. Therefore, the encapsulation of PTX in exosomes
could significantly inhibit the development of lung cancer [139]. In liver disease, stressed
or damaged hepatocytes release large amounts of exosomes to promote inflammation
and fibrogenesis. Additionally, due to the characteristics of exosomes, there are many
opportunities for intervention in the formation of HCC, and it is very promising to find
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HCC-specific biomarkers. Lou et al. (2015) found that intraperitoneal injection of exosomes
containing miR-122 secreted by adipose-derived mesenchymal stem cells (AMSCs) and
sorafenib into mice could significantly improve the efficacy of sorafenib [109]. This reflects
the important role of exosomes as drug delivery vehicles. Chronic intestinal inflammation
leads to immune dysregulation and persistent destruction of IECs, and exosomes effectively
modulate the barrier function of immune system cells, gut microbiota and IECs, show great
potential as a new therapeutic modality. Additionally, exosomes have been reported as
nanocarriers or CRC therapy targets with high specificity. Liu et al. (2019) packaged miR-
128-3p into exosomes secreted by normal intestinal cells, and exosomes could effectively
deliver miR-128-3p to oxaliplatin-resistant CRC cells, thereby improving the resistance
response of CRC cells to oxaliplatin in vitro and in vivo [140].
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Figure 1. The role of exosomes in inflammatory diseases and tumor-related inflammation. (a) During
sepsis, exosomes released by donor cells contain large amounts of inflammatory factors (TNF-α, IL-6,
IL-10) and DAMP molecules, which lead to the activation of downstream inflammatory signaling
pathways. (b) Exosomes lead to COPD, ALI/ARDS, ASTHMA and other pulmonary inflammatory
diseases by encapsulating different molecules, such as IL-8, caspase-1, MHCII, ICAM-1, and may
further promote cell proliferation, EMT and angiogenesis to promote the development of lung cancer.
(c) DAMP molecules encapsulated by exosomes cause severe inflammatory responses in the liver.
Exosomes derived from different donor cells also promote or inhibit the occurrence of viral hepatitis
through different mechanisms. In addition, exosome-encapsulated miRNA-128-3p promote liver
fibrosis by inhibiting PPAR-γ. Of course, exosomes also play an important role in the occurrence
and development of liver cancer. (d) In intestinal inflammation, exosomes not only contain many
inflammatory factors, but also induce the polarization of macrophages to TAM, both of which further
lead to the occurrence and development of CRC. DAMP, damage-associated molecular pattern;
COPD, chronic obstructive pulmonary disease; ALI/ARDS, acute lung injury/acute respiratory
distress syndrome; EMT, epithelial-mesenchymal transition; TAM, tumor-associated macrophage;
CRC, colitis-associated colorectal cancer.
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Of course, there are still a large number of cells in the inflammatory environment that
continuously release exosomes, which play a role in inflammatory diseases and even tumors
caused by inflammation. Among them, MSCs-derived exosomes have shown outstanding
application prospects in the treatment of sepsis, respiratory infections and intestinal infec-
tions. MSCs-derived exosomes can function through mRNA, miRNAs and proteins. In
addition, there are a large number of patients with pneumonia who urgently need to treat
COVID-19 infection, and exosomes from either MSCs or COVID-19-specific T cells may
be one of the best treatments. Therefore, it may be more meaningful to develop exosomes
as new vaccine and drug delivery systems. The surrounding inflammatory environment
modulates the phenotype of macrophages, and thus the function of macrophage-derived
exosomes is affected by the phenotype of macrophages. In the TME, the phenotype of
TAMs is in dynamic changes, so the role of TAMs-derived exosomes is constantly changing.
Since they can be easily modified by engineering, macrophage-derived exosomes can also
be used as drug carriers with sufficient safety.

In addition, exosomes in the TME are constantly regulating tumor development.
Tumor-derived exosomes contain components that promote or inhibit the further de-
velopment of tumors. Existing studies have shown that most tumor-derived exosomes
are involved in tumor cell proliferation, regulation of immune responses, regulation of
epithelial-mesenchymal transition (EMT), tumor cells metastasis and plays a key role in
angiogenesis (Figure 2).
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Figure 2. Tumor-derived exosomes promote tumor development. Tumor-derived exosomes con-
tribute to the development of tumors via promoting tumor cell proliferation (a), regulating immune
responses (b), enhancing epithelial-mesenchymal transition (EMT) (c) and angiogenesis (d), and
strengthening tumor metastasis (e).

Overall, as the understanding of cancer-related inflammation continues to increase,
this knowledge is gradually being translated into new directions for tumor immunotherapy.
In this process, increasing evidence supports the importance of exosomes in regulating
inflammation and cancer-related inflammation. Understanding the TME at different stages
of cancer progression can also provide a deeper understanding of the role of exosomes in
the occurrence and development of tumors. At present, there is still a lack of in-depth and
systematic research on the mechanism of exosomes in tumorigenesis and development in
the inflammatory environment. For example, how tumor-derived exosomes and tumor cells
or host cells recognize each other, how exosome content regulates tumor progression, and
where inflammatory factors play a role need to be further studied. Further exploration is
needed to expand the existing limited relationship between exosomes and inflammation or



Cells 2022, 11, 1005 11 of 17

tumors. The basic and clinical translational research on exosomes and chronic inflammation-
induced tumors should continue to be strengthened. Over the past few decades, research on
exosomes has shown their great potential to improve the diagnosis and treatment of human
diseases and exosomes are highly valuable targets in biomarker discovery, targeted drug
delivery and vaccine development. However, it is still a challenge to find better methods
to isolate and purify exosomes and to develop highly sensitive single tumor exosome
detection tools. Therefore, the study of exosomes will provide more powerful guidance for
the diagnosis and treatment of inflammatory diseases and tumors in the future.
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