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Abstract: The oral cavity is the gateway for microorganisms into your body where they disseminate
not only to the directly connected respiratory and digestive tracts but also to the many remote organs.
Oral microbiota, travelling to the end of the intestine and circulating in our bodies through blood
vessels, not only affect a gut microbiome profile but also lead to many systemic diseases. By gathering
information accumulated from the era of focal infection theory to the age of revolution in microbiome
research, we propose a pivotal role of “leaky gum”, as an analogy of “leaky gut”, to underscore the
importance of the oral cavity in systemic health. The oral cavity has unique structures, the gingival
sulcus (GS) and the junctional epithelium (JE) below the GS, which are rarely found anywhere else in
our body. The JE is attached to the tooth enamel and cementum by hemidesmosome (HD), which
is structurally weaker than desmosome and is, thus, vulnerable to microbial infiltration. In the GS,
microbial biofilms can build up for life, unlike the biofilms on the skin and intestinal mucosa that fall
off by the natural process. Thus, we emphasize that the GS and the JE are the weakest leaky point
for microbes to invade the human body, making the leaky gum just as important as, or even more
important than, the leaky gut.

Keywords: biofilm; gingival sulcus; junctional epithelium; leaky gum; leaky gut; mucosal barrier;
oral microbiome; systemic disease

1. Introduction

Humans internalize the microbiota of this planet through the oral cavity, either tem-
porarily or permanently. The oral cavity harbours the second most abundant microorgan-
isms after the gastrointestinal (GI) tract in a variety of distinct habitats, such as teeth, tongue,
gingival sulcus (GS), palate, saliva, buccal mucosa, and throat. The expanded Human
Oral Microbiome Database (eHOMD v3, http://homd.org, accessed on 16 February 2022)
established during the Human Microbiome Project enlists at least 774 microbial species
to date.

As the old dogma that the lungs and placenta are sterile becomes obsolete [1–5],
the oral microbiota has proven to be the primary source of the bacterial microbiota in
human organs [6]. For one, microaspiration during respiratory activity, such as oral
breathing, affects the lung microbiota [7]. In addition, dietary patterns dynamically affect
the microbiome profile of the GI tract either by microbial contamination or by supplying
specific nutrients for microbial commensals, even manipulating the pathophysiology of
cancerous diseases [8,9] as well as regulating immune responses across the gut–brain
axis [10,11]. As such, along with the revolution of human microbiome research, much effort
has been dedicated to figuring out the relationship between the oral and gut microbiota,
which has been dubbed the “oral–gut–brain axis” [12–17].
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The microbiota in the gut seek opportunities to breach the dysfunctional gut mucosal
barrier to reach the underlying immune system, resulting in “leaky gut” syndrome. This
type of leak occurs through the cellular junctions between the intestinal epithelia. In
the oral cavity, the microbes can easily colonize on the surface of the hard tissue of the
tooth enamel to form biofilm and remain sclerotized until proper interventions come
in. The growing body of the biofilm not only acts as a wedge disjoining the tooth and
the gingiva, enlarging the GS depth but also deploy an ample number of microbes near
the sulcus epithelium, enhancing the opportunity for microbial infiltration into the oral
mucosa [18]. Thus, microbial infection in the oral cavity is accelerated by both physical and
biological processes.

In this review, we gather current knowledge of disease-related oral pathogens and
contrast the anatomical structures of oral versus gut mucosal layers in the context of
microbial leak into a human body, embossing the role of oral pathogens in the development
of systemic diseases.

2. Hyperpermeable Intestine—Leaky Gut

The largest portion of research funds has been digested by gut bacteria because the
majority of human microbiota resides in the colon [19]. The findings of their roles in human
immune systems have been extensively illuminating. The human intestine is the widest
and longest space in contact with microorganisms compared to the oral cavity or the skin.
It boasts almost 10 metres of length and 400 m2 of luminal surface area. In addition, it
allows the passage of about 60 tons of food during a lifetime while processing digestion
and absorption, making the role of gut bacteria even more important [20]. Especially, gut
bacteria, numbering almost equivalent to the human cells [19], metabolize dietary fibers
to yield short-chain fatty acids, an essential task of which humans are not capable. They
not only provide intestinal cells with immune substances and vitamins but also keep the
intestinal homeostasis. The homeostasis of the intestinal microbiome itself and between
the intestinal microbiome and the host has been conceptualized as a “symbiosis” of the
intestinal ecosystem [21].

Perturbation factors, such as stress, smoking, alcohol consumption, eating processed
foods, and overuse of antibiotics, have a certain effect on the ecosystem of the intesti-
nal microbiome. The disturbance is usually absorbed by the resilience of the intestinal
ecosystem, but repeated exposures to such risk factors would lead to “dysbiosis”, a con-
tinuous status of imbalance between gut microbiota and their host [22]. For example,
when antibiotics deplete intestinal bacteria who are responsible for converting primary
bile acids into secondary bile acids, such as deoxycholate, lithocholate, ursodeoxycholate,
hyodeoxycholate, andω-muricholate, the resistance to Clostridium difficile decreases [23],
resulting in pseudomembranous colitis and persistent diarrhoea that claim lives of tens of
thousands of people in the US [24,25]. Likewise, it is now well-accepted that a dysbiosis
of gut microbiome can affect not only inflammatory bowel disease (IBD), constipation,
indigestion, and obesity but also the occurrence and prognosis of hypertension, diabetes,
cancer, and cardiovascular diseases (CVD) [26–33].

During the golden era of gut microbiome research, the term “leaky gut”, previously
proposed and used in the field of alternative medicine and dietetics, was revisited as a
compatible explanation of “increased intestinal permeability” (Figure 1a,b) [34–37]. The
rationale behind the term lies in the concurrent pathogenesis of intestinal and systemic
diseases caused by the infiltration of enteric bacteria and virulence factors into the intesti-
nal mucosal membrane when the epithelial barrier function is disrupted [36,38,39]. The
intestinal hyperpermeability has often been accompanied by the changes of tight junction
proteins in the epithelium or the increased bacterial endotoxin in the bloodstream, endotox-
emia [36]. For instance, patients with IBD, irritable bowel syndrome (IBS), liver diseases,
pancreatitis, diabetes, chronic heart failure, depression, and other chronic diseases often
exhibit increased permeability and epithelial barrier dysfunction [40–42]. As evidence
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builds up and interests from diverse research fields expand further, the methodologies for
the measurement of intestinal barrier function have been extensively developed [42].
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arrows) whereby the MALT implements immune responses, resulting in a leaky gut syndrome. (c) 
Keratinized and non-keratinized oral mucosa. (d) Unlike the intestinal leakage through the cell-to-
cell junctions, the leakage in the oral mucosa occurs through the hemidesmosome (HD) between the 
basal layer of the junctional epithelium (JE) and the hard surface layer of a tooth, which is inevitably 
and more frequently exposed to the physical and biological challenges. The internal basal lamina 
(IBL), an HD interface, is inhabited with collagens and binding proteins, such as laminin-332 and 
integrin. The periodontal pocket (PP), a pathologically deepened gingival sulcus (GS), occurs with 
the detachment of the connective tissues of the gingiva from the tooth surface. The JE below the GS 
is ~0.15 mm wide and 1–2 mm high, remains non-keratinized and undifferentiated, and has the 
highest turnover rate (4–6 days) of all oral epithelia. The polymorphonuclear leukocytes (PMNs) are 
also secreted with gingival crevicular fluid (GCF) from the basal layer to keep a lookout for any 
hostile intruders. ZO-1: zonula occludens-1, JAM: junctional adhesion molecule. 

Figure 1. Schematics of differences in the cellular junctions between the intestinal and oral epithelia.
(a) The intestinal epithelia are interconnected and communicate with each other through junctions,
such as tight junction (TJ), adherence junction (AJ), desmosome (DM), and gap junction (GJ, not
shown). (b) When these barriers are disrupted because of epithelial damages, pathogens, and
chemicals in the luminal side can leak through the damaged cellular gaps into the lamina propria
(blue arrows) whereby the MALT implements immune responses, resulting in a leaky gut syndrome.
(c) Keratinized and non-keratinized oral mucosa. (d) Unlike the intestinal leakage through the cell-to-
cell junctions, the leakage in the oral mucosa occurs through the hemidesmosome (HD) between the
basal layer of the junctional epithelium (JE) and the hard surface layer of a tooth, which is inevitably
and more frequently exposed to the physical and biological challenges. The internal basal lamina
(IBL), an HD interface, is inhabited with collagens and binding proteins, such as laminin-332 and
integrin. The periodontal pocket (PP), a pathologically deepened gingival sulcus (GS), occurs with
the detachment of the connective tissues of the gingiva from the tooth surface. The JE below the GS is
~0.15 mm wide and 1–2 mm high, remains non-keratinized and undifferentiated, and has the highest
turnover rate (4–6 days) of all oral epithelia. The polymorphonuclear leukocytes (PMNs) are also
secreted with gingival crevicular fluid (GCF) from the basal layer to keep a lookout for any hostile
intruders. ZO-1: zonula occludens-1, JAM: junctional adhesion molecule.
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The association between intestinal and systemic diseases can be found in extra-
intestinal manifestations (EIMs) of intestinal diseases. For example, the EIMs of IBD
affect joints, eyes, liver, lung, and pancreas [43]. About 15% of people with ulcerative colitis
(UC) [44] and up to 40% of patients with Crohn’s disease [45–48], both are types of IBD,
have skin issues. In some EIMs cases, such as peripheral arthritis, oral aphthous ulcers,
episcleritis, and erythema nodosum, symptoms can improve on standard treatment of the
intestinal inflammation [43]. In addition, IBD and periodontitis have been reported to
affect each other, and several nutritional deficiencies and systemic diseases are known to
be manifested in the oral cavity [49,50], which is supporting bidirectional influence in the
context of an oral–gut axis. In the same vein, bacteria can travel via the bloodstream to
reach and colonize in the tumour microenvironment (TME) of melanoma, lung, ovarian,
glioblastoma, pancreatic, bone, and breast cancer where ~106 intratumoural bacteria per
palpable 1-cm3 tumour can be found [32,51].

3. Gum and Gut Mucosal Barriers

The lumen of the digestive tract, a twisted hollow tube from the oral cavity to the anus,
is continuously overloaded with the external environment [52]. Thus, just as the human
skin protects our body, the oral and intestinal mucosa, which cover the inner surface of our
body, should exert barrier function physically and physiologically [38,39]. Yet unlike the
skin whose major function is building a physical barrier, the major function of the mucosal
membrane comprises several physiological barriers. For example, saliva and mucus on
the epithelium contain antibacterial substances, such as lactoferrin, lysozyme, commensal
flora, and antibacterial peptides, which inhibit pathogen colonization [53,54].

The surface layers of the skin (epidermis), the oral cavity, and the gastrointestinal
tract share both similar and dissimilar structures and functions. The epidermis comprises
several cellular layers strongly bound with intercellular junctions of which the surface
is covered by the stratum corneum [55]. The intestinal epithelial layer is also filled with
cells interconnected with strong intercellular junctions (Table 1). The luminal side of the
intestinal epithelial layer, however, is made up of a thinner monolayer, is supported by the
connective tissue underneath only, and has no stratum corneum covering the layer. Thus,
from an anatomical point of view, the intestinal mucosa is less tolerable to an environmental
shift such as dysbiosis of a microbial community, which leads to bacteremia or endotoxemia
through the increased intestinal permeability [56]. To compensate for the weakness of the
epithelial layer, the intestinal mucosa always covers the epithelium with mucus that not
only acts as a lubricant between the mucosa and the luminal passengers but also contains
a lot of antibacterial substances, indicating that the gut mucosa has both chemical and
biological barrier functions [57]. Pathogenic intruders who survive in the mucosal layer and
leak through the epithelial barriers face mucosal-associated lymphoid tissue (MALT) that
takes up ~70% of the entire immune system of a human body (Figure 1b). In addition, ~80%
of plasma cells residing in gut-associated lymphoid tissue (GALT), a major part of MALT,
wage a deliberate war against antigens originating from ~4 × 1013 commensal microbes
and more than 30 kg of food proteins yearly [19,52,58]. Consequently, the gastrointestinal
system plays a pivotal role in immune surveillance.
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Table 1. Comparison of skin, oral mucosa, and intestinal mucosa.

Epithelium Skin Oral Intestinal
KERATINIZED TISSUE Exist Partially exist Not exist

EPITHELIAL LAYER Multiple layers Multiple layers Single layer

INTERCELLULAR
JUNCTIONS

Tight junction Exist Exist Exist
Adherence

junction Exist Exist Exist

Desmosome Exist Exist Exist
Gap junction Exist Exist Exist

Hemidesomosome Not exist Exist Not exist

Mucosal immunity in the oral cavity is also gaining traction with the advance of
microbiome research [59,60]. The oral mucosa, like the skin, is composed of both keratinized
and non-keratinized tissues (Figure 1c). The thickness of the keratinized layers of the oral
mucosa, however, is thinner than that of the skin. Thus, the oral mucosa, similar to the
intestinal mucosa, supplements chemical and biological defence functions using saliva. The
oral mucosa also consists of 3–5 cellular layers that are thicker than the intestinal mucosa
monolayer. Anatomically and histologically, the oral mucosa appears as a transitional layer
between the intestinal mucosa and the skin [61].

4. Gingival Sulcus and Junctional Epithelium

For humans, the primary teeth erupt through the mucous membrane from the inner
alveolar bone at about six months of age, forming unique structures originating from
the interface between the exposed teeth and the surrounding tissues. Those interface
structures, the GS and the JE below the GS, are essential for the survival of animals that
need mastication of ingested food (Figure 1d). For adults with permanent teeth, the healthy
GS depth can reach 3 mm. Thus, below the GS there should be a sealing layer that binds
the soft tissue, especially the JE, with the surface layer of the hard tissue (enamel and
cementum), protecting the tissues from external challenges. The JE has the highest turnover
rate (4–6 days) of all oral epithelia and remains undifferentiated and non-keratinized [62]. In
the JE, the binding proteins are generated by the basal layer of soft tissues only to form HD
with the hard tissues of a tooth (Figure 1d, magnified box). The internal basal lamina (IBL),
the intercellular space in the HD, are relatively wide, allowing water-soluble substances to
pass through them with ease. These structural limitations of the HD between the JE and the
tooth can provide pathogens with a good opportunity to invade the human body [63–65].
To compensate for this inherent structural weakness, immune cells such as polymorphic
nuclear leukocytes (PMNs) transude into the GS together with gingival crevicular fluid
(GCF), taking constant vigilance even without any signs of inflammation [66,67]. Ironically,
to allow immune cells to pass through a JE layer, the JE cells have fewer desmosomes that
bind the cells vertically than the other oral epithelia, adding another structural instability
to JE [68].

The GS provides the perfect space for biofilm accumulation. Biofilms on the skin, oral
mucosa, and gut mucosa are washed out along with hygiene activities, digestive processes,
exfoliation, and defecation. The surface layer of the tooth enamel, however, does not fall
off because it lacks cell division and maintains its structure unless external physical and
biological intervention is applied. Thus, if the GS is not properly managed, biofilms will
inevitably accumulate during lifetime [69] even to the level of thickness enough to ward off
antibiotics [70] (Figure 2a,b). The biofilm accumulation induces inflammatory responses
that erode alveolar bone and increases the GS depth, resulting in the formation of the
periodontal pocket (PP). The deepened PP in turn makes it difficult to remove the biofilm
in the PP. This vicious cycle results in increased inflammatory reactions, i.e., periodontal
diseases [18,71].
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The important roles of the GS and the JE were embossed in a seminal study conducted
on 417 patients at 11 nursing homes in Japan [72]. In this study, older patients who received
oral care exhibited lower cases of pneumonia, febrile days, and death from pneumonia,
while showing improved metrics of activities of daily living (ADL) and cognitive functions
evaluated with Mini-Mental State Examination (MMSE). By contrast, the total mortality
rate was greater in the dentate group (13.5%, 28/208) than in the edentate group (10%,
16/158). The mortality rate of dentate and edentate groups with oral care was similar (6%
and 7%, respectively), but without oral care, the mortality rate of the dentate group (20%)
was higher than that of the edentate group (13%) even if ADL and MMSE scores were
slightly worse in the edentate group at the time of final evaluation. The reduced mortality
rate in the edentate group without oral care, although not fully discussed in this study, may
indicate that the edentate state is somehow advantageous for longevity if proper oral care
cannot be administered. Indeed, the spot where the tooth is removed becomes covered with
mucosal membrane and transforms like the mucosa of the skin and the intestine (Figure 2c).
In other words, the absence of teeth may render more effective protection from bacterial
infections by removing the vulnerable structures originating from the GS and the JE [73].
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Figure 2. Biofilms built on (a) a tooth’s surface and (b) extracted implants. The hard surface of a
tooth root, an implant, and a crown prosthesis abutting an implant shaft provide a solid ground on
which biofilms can accumulate for a lifetime if not well cared for. (c) The edentate oral cavity. The
toothless oral mucosa is free of the GS and the JE, making it less vulnerable to infection.

5. Focal Infection Theory and Leaky Gum

Concerns have already existed since the end of the 19th century that the oral cavity
could be a source of human pathogenic microbes. In the 1890s, Willoughby D. Miller, who
studied at the Koch Institute, warned of the dangers of oral microbes [74,75]. Miller, riding
on the bandwagon of the “germ theory” of disease established at the end of the 19th century,
suggested that the oral cavity, a breeding ground for many pathogens, could be an origin
of many diseases of unknown aetiology, such as CVDs, pneumonia, angina pectoris, and
foot gangrene [76]. Miller’s study has established a modern daily routine for oral care,
such as brushing teeth three times a day and flossing. His argument was later accepted
as “oral sepsis” by British surgeon William Hunter in the early 1900s [77] and expanded
as “focal infection theory” by American physician Frank Billings in the 1910s [78]. It was
further amplified by Henry Cotton who claimed that mental illness could be improved by
tooth extraction or tonsillectomy [79]. Even accepted by the physicians at Johns Hopkins
University and Mayo Clinic, the theory was implemented into routine clinical practice. The
theory was so widely expanded that Russell Cecil, an eminent author of Cecil Essentials of
Medicine, also joined the club. In the 1940s, however, Hobart A. Reinmann and W. Paul
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Havens pointed out, in their critical appraisal of focal infection in relation to systemic
disease, that the theory lacks clinical evidence and the causative relationship of infections
of teeth and tonsils to systemic disease is unproven [80]. Consequently, in the late 1950s,
the theory gradually vanished and was regarded as fringe medicine.

In the 21st century, the focal infection theory began to be revisited from a different
perspective [81]. For example, bacteremia, a temporary infiltration of bacteria into blood
vessels, has been regarded as an illness resolved by immune responses within an hour [65].
Recent culture-independent microbial research techniques, however, have shown that
bacteria or bacterial DNA are always present in the blood vessels of healthy people [82–84].
These findings suggest that bacteremia may not be a temporary nor a localized problem.
Furthermore, it has been revealed that microbes can be found in the lungs of healthy
people [5,85,86] and cancer patients [87], the placenta of healthy pregnant women, albeit
controversial [1–4], and the brains in Alzheimer’s disease (AD) [88–92], which had long
been considered sterile.

6. Oral Pathogens and Systemic Diseases

The origin of bacteria found in remote organs converges to the oral cavity [93–96]
(Figure 3). For example, the placental microbiome profiles were most comparable to those
of the oral microbiome [1]. The overlap of the unique members of oral microbes with
other remote organs is consistent with previous clinical studies in which Fusobacterium
nucleatum, a Gram-negative oral anaerobe, were clinically suspected to be a major risk
factor in colorectal cancer [97–99], oral squamous cell carcinoma (OSCC) [100], and in
preterm and term stillbirth [101,102]. Likewise, an infamous oral pathogenic bacterium,
Porphyromonas gingivalis, is related to pancreatic cancer [103], colorectal cancer [104–106],
liver health [107], rheumatoid arthritis [108,109], diabetes [110–112], OSCC [113,114], and
neurodegenerative diseases [88–92,115–118]. In the case of atherosclerotic CVD, when
the vascular tissues of the coronary and femoral arteries of the patients with CVD were
examined, P. gingivalis was found in 42 out of 42 patients [119]. Thus, previously ex-
plained by the passive accumulation of fat, the aetiology of CVD is now leaning toward
inflammatory responses of the vascular endothelium [120,121]. Notably, live P. gingivalis is
known to traffic into endoplasmic reticulum-rich autophagosomes [122] and target host
ectonucleotidase-CD73 [123] for its chronic survival, replication, and persistence in the
dysbiotic human gingival epithelia [124].

Recently, Kitamoto et al. demonstrated the mechanistic underpinnings by which
periodontal inflammation due to oral infection contributes to the pathogenesis of extra-
oral diseases [12]. In this elaborated study using mice, they showed that periodontitis
aggravates gut inflammation by translocating oral Klebsiella/Enterobacter species to the lower
digestive tract where it colonizes ectopically to elicit colitis through IL-1β. In parallel, oral
Th17 cells induced by oral pathobiont expansion migrate to the gut and promote colitis,
constituting both microbial and immunological pathways that link oral and gut health.
Furthermore, Dong et al. showed that the alterations of the oral microbiota, especially
F. nucleatum colonization in CRC locus, can change the gut bacterial composition within
tumours and influence the therapeutic efficacy and prognosis of radiotherapy for primary
rectal cancer and CRC liver metastases in mouse models [125]. Kartal et al. applied shotgun
metagenomic and 16S rRNA sequencing to faecal and saliva samples from pancreatic ductal
adenocarcinoma (PDAC) to identify diagnostic classifiers [96]. While proving that the faecal
metagenomic classifiers outperformed the saliva-based classifiers, they also confirmed that
the strains of faecal PDAC-associated microbes originate from the oral cavity. Thus, the
growing body of examples that show the close relationship of oral pathogens with a
variety of systemic diseases enabled the introduction of the term “periodontal medicine”, to
describe how periodontal infection and inflammation affect extraoral illness [126,127]. As
such, the oral cavity needs to be re-evaluated as a more pivotal organ with the revolution
of microbiology in the 21st century [71].
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There are many disease model systems proving that the oral bacteria induce systemic
diseases, such as CVD, type II diabetes mellitus (T2DM), OSCC, and AD (Table 2). For one,
the infection of aortic lesions with P. gingivalis activates adhesion molecules such as inter-
cellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1),
leading to chronic inflammation via migration of more immune cells to the lesion sites [128].
The microarray analysis demonstrated that P. gingivalis-treated human aortic endothelial
cells (HAECs) upregulated expression levels of ICAM-1, VCAM-1, and interleukin-6 (IL-6).
As well as ICAM-1 and VCAM-1 upregulation, pathological enlargement of atherosclerotic
lesion area were well demonstrated in hyperlipidemic (Apoe−/−) mice orally challenged
with P. gingivalis [128,129]. As an effective molecule, lipopolysaccharide from P. gingivalis
(PgLPS) was established to promote inflammatory response as increasing mononuclear cell
adhesion to human umbilical vein endothelial cells (HUVECs) via ICAM-1 and Toll-like
receptor 2 (TLR-2)-dependent mechanism [130]. Subcutaneous infection of obese pigs with
P. gingivalis also showed enhanced aortic and coronary arterial atherosclerosis [63]. In
addition to P. gingivalis, intravenous infection of hyperlipidemic mice with Aggregatibacter
actinomycetemcomitans can promote and accelerate atherosclerotic plaques [131] and time-
dependently elevate matrix metalloproteinase-9 (MMP-9) expression [132]. The MMP-9,
derived from macrophage, has been highlighted as a risk factor of acute atherosclerosis due
to its proteolytic activity of advanced atherosclerotic plaque rupture [133].
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Figure 3. The oral cavity as the origin of the internal microbiome in humans. The microbiome in
the oral cavity can disseminate to the remote sites of the body, such as the brain, stomach, intestines,
and heart, via hematogenous and enteric pathways. The PP, a pathologically deepened GS due to
microbial infection and colonization, gradually allows detachment of the connective tissues of the
JE from the tooth surface. The epithelial layer of the apical JE is thin enough for bacterial virulence
factors as well as pathogenic bacteria, such as P. gingivalis, to infiltrate into the bloodstream, resulting
in a leaky gum syndrome. The microbiome of the oral cavity also affects gut microbiome profiles by
moving through the gastrointestinal tract, causing a variety of gut-related diseases, such as IBD, IBS,
and colon cancer.
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Table 2. The systemic disease models induced by oral pathogens.

Oral Pathogens Models Infection Methods Experimental Results Year Ref.

A
th

er
os

cl
er

ot
ic

C
V

D

In
vi

tr
o

P. gingivalis 381 HAECs 6 h infection
Increased ICAM-1,
VCAM-1, and
IL-6 expression

2005 [128]

P. gingivalis
ATCC33277-driven
PgLPS

HUVECs 24 h infection

Increased adhesion of
mononuclear cells to
HUVECs via ICAM-1 and
TLR-2 dependent
mechanism.

2008 [130]

In
vi

vo

P. gingivalis 381
Apoe−/− mice

• Infected (n = 25)
• Non-infected (n = 25)

Oral infection 5 times
per week over 3 weeks

Increased aortic
atherosclerosis. 2003 [129]

P. gingivalis 381
Apoe−/− mice

• Infected (n = 6)
• Non-infected (n = 6)

Oral infection 5 times
per week over 3 weeks

Increased aortic ICAM-1,
VCAM-1 immunostaining. 2005 [128]

P. gingivalis 381 or
A7436

Pigs

• Infected (n = 23)
• Non-infected (n = 13)

Subcutaneously
infection 3 times per
week for 5 months

Increased aortic and
coronary arterial
atherosclerosis.

2005 [63]

A. actinomycetemcomi-
tans
AT445b

Apoe−/− mice

• Infected (n = 9)
• Non-infected (n = 9)

Intravenous infection
once a week for 4, 6, or
8 weeks

Increased aortic
MMP-9 expression and
serum CRP.

2008 [132]

A. actinomycetemcomi-
tans
HK1651

Apoeshl mice

• Infected (n = 6)
• Non-infected (n = 6)

Intravenous infection
3 times per week over
3 weeks

Increased atherosclerotic
plaque, serum C-reactive
protein (CRP), IL-6, and
aortic ICAM-1.

2014 [134]

T
2D

M

In
vi

vo

P. gingivalis W83 Mice Oral infection twice
per week for 5 weeks

Increased gut dysbiosis,
gut barrier invasion,
serum endotoxin, insulin
resistance.

2014 [134]

P. gingivalis
ATCC33277,
F. nucleatum,
P. intermedia

Mice

• Infected (n = 16)
• Non-infected (n = 13)

Oral infection 4 times
a week for 4 weeks,
thereafter normal diet
or HFD-fed for
additional 3 months

Increased periodontal
dysbiosis, insulin
resistance in HFD-fed
mice.

2017 [135]

P. gingivalis
ATCC33277 (WT) or
∆bcat

Mice

• WT infected (n = 6)
• ∆bcat infected (n = 6)
• Non-infected (n = 6)

Oral infection twice
per week for 4 weeks
concomitantly
HFD-fed

P. gingivalis (∆bcat) cannot
induce insulin resistance
in HFD-fed mice.

2020 [136]

O
SC

C

In
vi

vo

P. gingivalis 381

Mice

• Infected (n = 15)
• 4NQO-treated

(n = 20)
• 4NQO-treated +

infected (n = 20)
• Control (n = 10)

4NQO treatment for 8
weeks, thereafter oral
infection with P.
gingivalis for 8 weeks

Enhanced OSCC
induction and
dysregulated lipid
metabolism in
4NQO-treated mice.

2018 [113]

P. gingivalis
ATCC33277

Mice

• 4NQO-treated +
infected (n = 12)

• Non-infected (n = 6)

4NQO treatment for
16 weeks, thereafter
oral infection with P.
gingivalis for 10 weeks

Enhanced OSCC
induction and increased
infiltration of CD11b+

MDSCs in 4NQO-treated
mice.

2020 [114]
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Table 2. Cont.

Oral Pathogens Models Infection Methods Experimental Results Year Ref.

A
D

In
vi

tr
o

P. gingivalis
ATCC33277

Immortalized mouse
microglial cell line MG6

3, 6, or 12 h infection
of P. gingivalis in the
presence and absence
of KYT1 (Rgp
inhibitor) and
KYT36 (Kgp inhibitor)

Increased expression
levels of IL-6 and TNF-α,
which was inhibited by
KYT1 and
KYT36 treatment.

2017 [137]

PgLPS Rat brain neonatal
microglia 18 h infection

Activated microglial
release of cytokine TNF-α,
IL-6, and MMP-9.

2020 [138]

In
vi

vo

P. gingivalis 381,
Treponema denticola
ATCC 35404,
Tannerella forsythia
ATCC 43037, and F.
nucleatum ATCC
49256

Apoe−/− mice

• Mono-infected
(n = 12)

• Multi-infected
(n = 12)

• Non-infected (n = 12)

Oral infection for
24 weeks

P. gingivalis genomic DNA
was detected in mice brain
(9 out of 12 at 24 weeks).

2015 [139]

P. gingivalis
ATCC33277

APP transgenic mice

• Infected (n = 14)
• Non-infected (n = 12)

Gingival infection

Exacerbated Aβ plaques
and inflammatory
cytokines in the brain of
AD mouse model.

2017 [140]

PgLPS

Mice

• Young WT mice (2
months, n = 6)

• Middle-aged WT
mice (12 months,
n = 6)

• Young Catb−/− mice
(n = 6)

• Middle-aged Catb−/−

mice (n = 6)

Intraperitoneal
infection daily for
5 weeks

PgLPS induced learning
and memory deficit in
middle-aged WT mice, but
not in young WT, young
Catb−/−, and middle-aged
Catb−/− mice.

2017 [141]

P. gingivalis
ATCC33277,
Kgp-deficient P.
gingivalis KDP129

Cx3cr1+/GFP mice

Injection of P. gingivalis
into the
somatosensory cortex
of mice

GFP+ microglia
accumulated around the
injection site of P.
gingivalis, but not of
KDP129.

2017 [137]

PgLPS Rats (n = 6)
Palatal gingival
infection 3 times for
2 weeks

Induced alveolar bone loss
and increased serum Aβ
levels.

2019 [137,
142]

P. gingivalis
ATCC33277

Rats

• Infected for 4 weeks
(n = 10)

• Non-infected for
4 weeks (n = 10)

• Infected for 12 weeks
(n = 10)

• Non-infected for 12
weeks (n = 10)

Intravenous infection
3 times a week for 4 or
12 weeks

Induced tau
hyperphosphorylation
(pTau181 and pTau231) in
the rat hippocampus.

2021 [143]

T2DM is a highly prevalent metabolic disease characterized by prolonged high glucose
levels in the blood. Insulin resistance on peripheral tissues has been focused on as the major
causing factor of T2DM [144]. Recently, many microbiologists designated gut dysbiosis as
a critical factor of insulin resistance development in T2DM accompanied by gut barrier
dysfunction [145]. Interestingly, oral infection of mice with P. gingivalis can also induce
gut dysbiosis, leading to insulin resistance via a pathway through endotoxin entrance
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and chronic inflammation [134]. Mice pre-treated with P. gingivalis, F. nucleatum, and
Prevotella intermedia showed accelerated insulin resistance after three months of high-fat
diet (HFD) feeding [135]. The branched-chain amino acid (BCAA) biosynthesis activity
of P. gingivalis is a suggested mechanism of insulin resistance development, as evident
that BCAA aminotransferase-deficient (∆bcat) P. gingivalis strain can neither induce insulin
resistance nor upregulate serum BCAA in HFD mice model [136].

OSCC is the most malignant cancer of the oral cavity with an increasing rate of
incidence, and the risk factors for OSCC include alcohol consumption, smoke, and human
papillomavirus [146]. Interestingly, two independent groups suggested that P. gingivalis
administration can significantly increase the number and diameter of the lesions in tongue
tissues of mice pre-treated with carcinogen 4-nitroquinoline-1 oxide (4NQO). They provided
two pathways, dysregulated lipid metabolism and CD11b+ myeloid-derived suppressor
cells (MDSCs) infiltration, involved with OSCC deterioration by the pathogen [113,114].
Indeed, abnormal lipid regulation by increased expressions of fatty acid-binding protein
4 (FABP4) and FABP5 has been reported to have a crucial role in OSCC development via
activation of mitogen-activated protein kinase (MAPK) pathway and MMP-9 [147,148]. By
contrast, CD11b+ is responsible for MDSCs migration to tumour microenvironment where
the cells have an immunosuppressive role that favours tumour progression [149].

AD is one of the representative neurodegenerative diseases diagnosed with senile
plaques and abundant neurofibrillary tangles, which can be deteriorated by oral pathogenic
infection. Gingival-infected P. gingivalis was reported to exacerbate the accumulation of Aβ
plaques and inflammatory cytokines in brain specimens of amyloid precursor protein (APP)
transgenic mice [140]. Interestingly, the anatomic analysis demonstrated that P. gingivalis ge-
nomic DNA was detected in brain specimens of 9 out of 12 Apoe−/− mice orally challenged
with P. gingivalis for 24 weeks [139], implicating that P. gingivalis can penetrate the gum
and enter the blood-brain barrier (BBB). The result that intravenous injection of P. gingivalis
into rats enhanced tau hyperphosphorylation in the hippocampus can reinforce the theory
of BBB penetration of P. gingivalis [143]. As similar atherosclerotic CVD, PgLPS has also
been designated as P. gingivalis-driven virulence factor affecting AD. It was reported that
PgLPS treatment to rat brain neonatal microglial cells promoted the release of inflammatory
mediators such as TNF-α and IL-6 [138], and palatal gingival infection of PgLPS into rats
induced alveolar bone loss and increased serum Aβ levels [142]. Middle-aged wild-type
(WT) mice intraperitoneally challenged with PgLPS for 5 weeks represented learning and
memory deficit and microglia-mediated neuroinflammation, although age-matched mice
deficient for cathepsin B (Catb−/−) were insensitive to PgLPS [141]. In addition to PgLPS,
gingipain is an AD virulence factor, a unique class of cysteine proteinase that comprises
Lys-gingipain (Kgp) and Arg-gingipain (Rgp). The modulatory role of the gingipain on
neuroinflammation was well-established using Kgp and Rgp inhibitors (KYT1 and KYT36,
respectively) or P. gingivalis KDP129, a gingipain-deficient mutant strain [137]. In this study,
KYT1 and KYT36 treatment effectively inhibited P. gingivalis-driven increased expression of
IL-6 and TNF-α in immortalized mouse microglial cell line MG6. Injection of P. gingivalis,
but not KDP129 strain, into the somatosensory cortex of mice can recruit microglia to the
injection site, revealing that gingipain is the effective factor for microglial migration and
accumulation around P. gingivalis in the brain [137].

7. Conclusions and Perspectives

Thanks to rapid advances in gene sequencing technology combined with nanotech-
nology and information technology, the human microbiome proves to be present even in
bodily sites previously known to be sterile. Intriguingly, the microbiome inside the human
body mostly originates from the oral cavity, reminiscing the focal infection theory backed
by more recent scientific proofs. Indeed, the oral cavity has unique mucosal structures such
as the PP and the JE with innate vulnerability where oral pathogens can colonize for life
and leak into blood vessels to circulate throughout the body, resulting in many systemic
diseases in remote sites. As of now, although just a few molecules (PgLPS or gingipain)
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have been unravelled as oral pathogen-induced toxic molecules, we need to figure out
many other causative candidates derived from oral pathogens to reinforce the attribution of
leaky gum to various types of systemic diseases. Filled with anticipation for more causative
evidence from well-designed empirical studies, we also need to focus on how to provide a
leaky gum with a protective shield made of biological, not physicochemical, knowledge. By
doing so, we can look forward to the realization of more prominent personalized medicine
for systemic health by striking a balance between oral microbiota and its host.
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