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Abstract: Fourier ptychographic microscopy (FPM) has risen as a promising computational imaging
technique that breaks the trade-off between high resolution and large field of view (FOV). Its recon-
struction is normally formulated as a blind phase retrieval problem, where both the object and probe
have to be recovered from phaseless measured data. However, the stability and reconstruction quality
may dramatically deteriorate in the presence of noise interference. Herein, we utilized the concept of
alternating direction method of multipliers (ADMM) to solve this problem (termed ADMM-FPM)
by breaking it into multiple subproblems, each of which may be easier to deal with. We compared
its performance against existing algorithms in both simulated and practical FPM platform. It is
found that ADMM-FPM method belongs to a global optimization algorithm with a high degree
of parallelism and thus results in a more stable and robust phase recovery under noisy conditions.
We anticipate that ADMM will rekindle interest in FPM as more modifications and innovations are
implemented in the future.

Keywords: Fourier ptychographic microscopy; alternating-direction method of multipliers; phase
retrieval; computational imaging; digital pathology; whole slide imaging

1. Introduction

Pathology is a bridge between basic research and clinical applications. Traditional
pathology relies on observation through a microscope eyepiece with the naked eye. It is
necessary to switch back and forth between an objective lens with different magnification
and shift field of view (FOV) to detect pathological features. For a piece of tissue with a
thickness of 1 mm~1 cm, 100~1000 sections may be cut by a slicer. Too many slices are
required to be observed. Undoubtedly, there exist multiple problems during this process
such as easy omission, misjudgment, subjectivity, and low efficiency [1].

Thanks to the development of digital imaging devices, modern digital pathology
adopts digital imaging and mechanical scanning to obtain a high resolution (HR) first
and then a large FOV so as to achieve full FOV imaging of a single slice, termed whole
slide imaging [1]. This kind of instrument is called digital pathology scanner, and it still
has four defects to be overcome. First, the imaging quality is not high enough: due to
the drift of electronic devices, the stitching boundary is prone to artifacts. For sparse
samples, due to a large amount of blank area and lack of adjacent features, they cannot be
spliced, and feature-matching errors tend to cause double image. Second, the application
scenarios are limited: due to the narrow depth of field (DOF) of a high numerical aperture
(NA) objective, it is limited to histopathology or hematology and cannot be applied in
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cytopathology for a certain thickness. Third, the efficiency is relatively low: among the
four-step workflow of translation, autofocusing, imaging, and stitching, the imaging time
accounts for a small proportion and the detector is idling for most of the time. Fourth, the
instrument is expensive: its operation is largely dependent on the high-precision electric
translation platform and high NA objectives.

Fourier ptychographic microscopy (FPM) [2–5] was invented in 2013 by Zheng and
Yang et al. by introducing the concept of ptychography [6,7] into the reciprocal (Fourier)
space, which breaks the trade-off between large FOV and HR with a combination of
synthetic aperture radar (SAR) [8,9] and optical phase retrieval [10,11]. The objective
can only collect light ranging from a certain angle, characterized by the NA. However,
parts of the scattering light with a high-angle illumination can also be collected because
of light-matter interaction. The sample’s high-frequency information can be modulated
into the passband of the objective lens. Instead of conventionally stitching small HR
image tiles into a large FOV, FPM uses a low NA objective innately with a large FOV to
stitch together low-resolution (LR) images in Fourier space and finally obtain HR images.
Compared with conventional digital pathology, no mechanical scanning is required, and
the low NA objective has an innate long DOF and working distance, which ideally solves
the above-mentioned problems. Currently, FPM has been written into the Introduction to
Fourier Optics (4th edition) by Goodman [12]. Given its flexible setup without mechanical
scanning and interferometric measurement, FPM has improved rapidly, and it not only
acts as a tool to obtain both HR and a large FOV but is also regarded as a paradigm to
solve a series of trade-off problems, including whole slide imaging [13–18], circulating
tumor cell (CTC) analysis [19], high-throughput drug screening [20,21], label-free (single
shot) high-throughput imaging in situ [22–24], retina imaging [25], 3D imaging [26–28],
wafer detection [29], HR optical field imaging [30], optical cryptosystem [31] and remote
sensing [9,32].

Reconstruction algorithms play an essential role in FPM and have progressed rapidly
with the help of ever-improving computing power. The original scheme is termed as
Gerchberg–Saxton (GS) [6,10], which is proposed in the framework of alternating projection
(AP) and similar with the ptychographic iterative engine (PIE) [7] in ptychography. In
brief, the estimated solution is alternatively projected to two constraint sets: modulus
constraint (captured images) in the spatial domain and support constraint (finite pupil size)
in the Fourier domain. The algorithm finally recovers the object’s phase distribution after
repeating the above procedures several times. Although reconstruction algorithms based
on AP have proved to be effective for phase retrieval, they are not robust enough to produce
high-quality reconstruction results under the condition of non-negligible noise. This can
reasonably be attributed to the non-convex nature of phase retrieval problems. Therefore,
no global convergence guarantees can be achieved [11,33]. More advanced optimization
strategies for FPM phase retrieval have afterwards been discussed and implemented in-
volving the difference map [34], Wirtinger flow [35], Gauss–Newton method [36], adaptive
step size [37] and convex relaxation [38].

The solutions mentioned above can generally be classified into two categories: global
gradient algorithms and sequential gradient algorithms. The former uses the entire collec-
tion of diffraction patterns to update the object function at each iteration, while the latter
attempts to update the object function using diffraction patterns one by one. Comparatively
speaking, the global gradient algorithms are revealed to be superior in algorithmic robust-
ness and the sequential gradient algorithms are more favored and widely used for their
fast convergence and high computational efficiency. The FPM phase retrieval problem can
be described as an optimization problem of cost function. Accordingly, algorithms can be
further classified as first-order or second-order methods. First-order methods only use the
first-order derivative of the cost function to update the object function, and second-order
methods realize the update based on both the first- and second-order derivative of the cost
function. Table 1 gives an intuitive review of the classification of typical algorithms for
FPM. While computing the second-order derivative increases the algorithmic complexity,
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second-order methods show faster convergence rate and better algorithmic robustness.
Wirtinger flow is a typical first-order phase retrieval method and can be approximated to a
second-order method when the step size and initial guess are elaborately chosen. Given the
above, the second-order sequential Gauss–Newton method shows better performance than
other algorithms for its relatively high-quality image reconstruction and low time cost and
is therefore widely used. Recently, in 2017, Maiden et al. reported a momentum-accelerated
PIE (mPIE) algorithm [39] by introducing the idea of momentum in machine learning
community into the original PIE algorithm. This intriguing demonstration proved that
mPIE is indispensable when the data is extremely difficult to invert and outperforms other
PIE algorithms [7,40] in terms of convergence rate and algorithmic robustness.

Table 1. Classification of typical reconstruction algorithms for FPM (Adapted from Ref. [36]).

First-Order Second-Order

Sequential
G-S algorithm

O(i,l+1) = O(i,l)− 1
|P|2max

∇O fA,l+1

(
O(i.l)

)
Sequential Gauss–Newton O(i,l+1)

¯
O

(i,l+1)

 =

 O(i,l)

¯
O

(i,l)

−
 Q∗l diag

(
P

|P|max

)
Ql 0

0 QT
l diag

(
P

|P|max

)¯
Ql

(HA
cc,l

)−1

 ∇O fA,l+1

(
O(i,l)

)
∇¯

O
fA,l+1

(
O(i,l)

) 

Global
Wirtinger flow

O(i+1) = O(i) − α(i)∇O fA,l

(
O(i)

) Global Gauss–Newton O(i+1)

¯
O

(i+1)

 =

 O(i)

¯
O

(i)

− α(i)
(

HA
cc,l

)−1
 ∇O fA,l+1

(
O(i)

)
∇¯

O
fA,l+1

(
O(i)

) 

In this paper, we explored the possibility of utilizing the concept of alternating di-
rection method of multipliers (ADMM) [41–43] in FPM, termed ADMM-FPM algorithm.
ADMM is a simple but powerful algorithm widely used in applied statistics and machine
learning. As a matter of fact, the use of the ADMM method for solving phase retrieval
problems is not novel. Some effort has been made to apply ADMM in ptychography and
it turns out that ADMM usually outperforms traditional projection algorithms [44]. Such
ideas are recently extended to address blind ptychography phase retrieval problems with
the unknown probe simultaneously recovered [45]. The problem is formulated as a unique
optimization model based on Poisson noise estimation and then solved by a generalized
ADMM method which is guaranteed to converge under mild conditions.

ADMM-FPM is actually proposed based on the research above with the purpose of
further solving blind phase retrieval problems in FPM. We reported an optimization model
that employed the variant form of ADMM, a typical extension of standard ADMM. Because
the FPM problem is a non-convex feasibility problem, there is no theoretical guarantee that
ADMM-FPM will converge to the correct solution. However, numerous simulations and
experiments were conducted to prove the convergence of the proposed algorithm with a
suitable step size. By analysis, it is known that ADMM-FPM approach belongs to a global
algorithm with a high degree of parallelism and hence combines the advantages of both
sides (global and sequential). Compared with current algorithms, our method presents
significantly better reconstruction performance in the presence of intense noise.

The reminder of the paper is organized as follows: Section 2 formulates the FPM
model as a nonlinear minimization problem, followed by the derivation of the proposed
ADMM-FPM algorithm. The results of simulations and experiments conducted to verify
the proposed algorithm are presented in Sections 3 and 4, respectively. Section 5 ends the
paper with conclusions and a discussion.
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2. Principles
2.1. Problem Formulation

The demonstration of FPM procedures can be referred to [2–5] and will not be detailed
here. In this paper, we denote the LR intensity image captured at each illumination angle as:

Ij =
∣∣∣FH

{
diag(p)QjFu

}∣∣∣2 ∈ Rm
+, j = 1, 2, . . . k (1)

where F is the 2D Fourier transform and the superscript H denotes a Hermitian conju-
gate. The object to be constructed is denoted as u∈Cn. The operation diag(x)y represents
the element-by-element multiplication between two vectors, x and y. Matrix Qj∈Rm×n

denotes the downsampling of the object in the Fourier domain corresponding to the j-th
illumination angle. The pupil function p∈Cm can be considered as a circular aperture
that imposes constraint because of its finite size. To recover the HR object function from
a stack of LR intensity images, we describe the reconstruction process as the following
optimization problem:

min
s ∑N

j=1 f j(s) := ∑N
j=1

∥∥∥∣∣∣FH
{

diag(p)Qjs
}∣∣∣−√Ij

∥∥∥2

2
(2)

Here, s = u∈Cn denotes the object in the Fourier domain. Under regular circum-
stances, as the lens aberration is almost not completely known, the problem can be further
transformed to:

min
p,s ∑N

j=1 f j(p, s) := ∑N
j=1

∥∥∥∣∣∣FH
{

diag(p)Qjs
}∣∣∣−√Ij

∥∥∥2

2
(3)

The corresponding diagram to describe this mathematical and physical process is
shown in Figure 1. As the sample sections we observe under microscope are exceedingly
thin and can always be approximated to weak-phase objects, it may be tough to effectively
separate the pupil function from the object while solving the optimization problem above.
In order to suppress the crosstalk between the two, a Tikhonov regularization is considered
to be set:

g(s) = γ
∥∥∥s− δ

∥∥∥2

2
(4)

where γ > 0 and δ represents the Fourier transform of a flat light field without any phase
information. The supplement of a regularization term with priori information helps to
stabilize optimization during subsequent operations [46]. The final description of the
regularized optimization problem is given as:

min
p,s ∑N

j=1 f j(p, s) +
1
2

g(s) := ∑N
j=1

∥∥∥∣∣∣FH
{

diag(p)Qjs
}∣∣∣−√Ij

∥∥∥2

2
+

γ

2

∥∥∥s− δ
∥∥∥2

2
(5)

Cells 2022, 11, x FOR PEER REVIEW 4 of 21 
 

 

2. Principles 
2.1. Problem Formulation 

The demonstration of FPM procedures can be referred to [2–5] and will not be de-
tailed here. In this paper, we denote the LR intensity image captured at each illumination 
angle as: 

( ){ } 2
R , 1,2,...+= ∈ =QH m

j jI diag p u j k   (1)

where  is the 2D Fourier transform and the superscript H denotes a Hermitian conjugate. 
The object to be constructed is denoted as u∈Cn. The operation diag(x)y represents the 
element-by-element multiplication between two vectors, x and y. Matrix Qj∈Rm×n denotes 
the downsampling of the object in the Fourier domain corresponding to the j-th illumina-
tion angle. The pupil function p∈Cm can be considered as a circular aperture that imposes 
constraint because of its finite size. To recover the HR object function from a stack of LR 
intensity images, we describe the reconstruction process as the following optimization 
problem: 

( ) ( ){ } 2

1 1 2
min :N N H

j j jj js
f s diag p s I

= =
= −  Q  (2)

Here, s = u∈Cn denotes the object in the Fourier domain. Under regular circumstances, 
as the lens aberration is almost not completely known, the problem can be further trans-
formed to: 

( ) ( ){ } 2

1 1, 2
min , :N N H

j j jj jp s
f p s diag p s I

= =
= −  Q  (3) 

The corresponding diagram to describe this mathematical and physical process is 
shown in Figure 1. As the sample sections we observe under microscope are exceedingly 
thin and can always be approximated to weak-phase objects, it may be tough to effectively 
separate the pupil function from the object while solving the optimization problem above. 
In order to suppress the crosstalk between the two, a Tikhonov regularization is consid-
ered to be set: 

( ) 2

2γ δ= −g s s  (4) 

where γ > 0 and δ represents the Fourier transform of a flat light field without any phase 
information. The supplement of a regularization term with priori information helps to 
stabilize optimization during subsequent operations [46]. The final description of the reg-
ularized optimization problem is given as: 

( ) ( ) ( ){ } 2 2

21 1, 2

1min , :
2 2

N N H
j j jj jp s

f p s g s diag p s I sγ δ
= =

+ = − + −  Q  (5)

 
Figure 1. Diagram of FPM reconstruction process. The Fourier transform of the object is firstly 
downsampled by the illumination matrix, then confined by the pupil function and finally inverse 
Fourier transformed back to form LR intensity images in the spatial domain. The object is to be 
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Figure 1. Diagram of FPM reconstruction process. The Fourier transform of the object is firstly
downsampled by the illumination matrix, then confined by the pupil function and finally inverse
Fourier transformed back to form LR intensity images in the spatial domain. The object is to be
reconstructed by solving a blind phase retrieval problem.
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2.2. ADMM Solution

The ADMM method is rooted in the 1950s and was originally proposed in the mid-
1970s [47,48]. The performance of the ADMM method and its variants [49–54] has been
studied intensively since its demonstration. It was found that ADMM is well suited to
distributed convex optimization problems. Since many important-to-solve problems in
statistics and machine learning can be posed in the framework of convex optimization,
such as the collection and storage of large-scale modern datasets, the ADMM method
gains widespread popularity in the two fields. It is noteworthy that the method takes
the form of a ‘decomposition-coordination’ procedure [41]. By introducing new variables,
the original optimization problem is decomposed into several subproblems linked by
augmented Lagrangian, the local solutions to these subproblems are then coordinated to
reach a global solution to the original optimization problem.

Here we show how ADMM can be used to solve the optimization problem for FPM.
We introduce the intermediate variables qj = diag(p)Qj s and solve:

min
s,{qj}

∑N
j=1 f j

(
qj
)
+

1
2

g(s) := ∑N
j=1

∥∥∥∣∣∣FHqj

∣∣∣−√Ij

∥∥∥2

2
+

γ

2

∥∥∥s− δ
∥∥∥2

2
(6)

which is equivalent to (5). The augmented Lagrangian function of (6) is defined as:

L
(

p, qj, s, λj
)
= ∑N

j=1

(
f j
(
qj
)
+ λj

[
diag(p)Qjs− qj

]
+

α

2

∥∥∥diag(p)Qjs− qj

∥∥∥2
)
+

γ

2

∥∥∥s− δ
∥∥∥2

2
(7)

where α > 0 is a penalty parameter and λj is the Lagrange multiplier corresponding to the
intermediate variables qj. If we denote xk as the k-th estimated value of x, the update of
variables is given according to the following order:

qk+1
j = argmin

qj
L
(

pk, qj, sk, λk
j

)
(8)

sk+1 = argmin
s
L(pk, qk+1

j , s, λk
j ) (9)

pk+1 = argmin
p
L
(

p, qk+1
j , sk+1, λk

j

)
(10)

λk+1
j = λk

j + αη
(

qk+1
j − diag(p)Qjs

k+1
)

(11)

where η > 0 is the step size appropriately chosen, which determines how fast the local
solutions get close to the global solution. We substitute ωj = λj/α and the scaled-form
ADMM iterations can be further expressed as:

qk+1
j = argmin

q
f j(q) +

α

2

∥∥∥q− diag(p)Qjsk + ωk
j

∥∥∥2

2
(12)

sk+1 =
γδ/α + ∑N

j=1 QH
j diag(p)

(
qk+1

j + ωk
j

)
γ/α + ∑N

j=1 QH
j |p|

2Qj
(13)

pk+1 = argmin
p

∥∥∥qk+1
j − diag(p)Qjsk+1 + ωk

j

∥∥∥2

2
+ β

∥∥∥p
∥∥∥2

2
(14)

ωk+1
j = ωk

j + η
(

qk+1
j − diag(p)Qjs

k+1
)

(15)

where β > 0 is the regularization parameter and determines how fast the pupil function
should be updated. The closed-form iterations of subproblem (12) and (14) are directly
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given as follows, detailed derivation of the approximation and Equation (13) is shown in
Supplementary Materials.

qk+1
j = q + diag

(
1

1 + α

)[
Fdiag

( √
Ij

|FHq|

)
FHq−FHq

]
q=diag(p)Qjsk−ωk

j

(16)

pk+1 =
∑N

j=1 QH
j sk+1

(
qk+1

j + ωk
j

)
∑N

j=1 QH
j
∣∣sk
∣∣2Qj + β

(17)

The termination of the procedure is determined by primal residual and dual residual,
whose definitions are given respectively as follows:

Rk
p = ∑N

j=1

∥∥∥qk
j − diag(p)Qjs

k
∥∥∥2

2
(18)

Rk
d = ∑N

j=1

∥∥∥qk
j − qk−1

∥∥∥2

2
(19)

To our knowledge, the process of finding a global solution based on the integra-
tion of local solutions should be consistent with the optimization model established in
Section 2.1; thus, we consequently rewrite the equivalent form of (18) as follows to simplify
the calculation.

Rk
p = ∑N

j=1

∥∥∥FHqk
j −

√
Ij

∥∥∥2

2
(20)

It is suggested that the reasonable stopping criterion for the method is that the primal
and dual residuals must converge to zero according to the optimality conditions. In
our simulations, we properly relax the conditions, terminating the iterations when the
corresponding normalized error metrics of both residuals converge to a stable level:(

Ek
p − Ek−1

p

)
/Ek

p < εtol (21)(
Ek

d − Ek−1
d

)
/Ek

d < εtol (22)

where εtol > 0 is the stopping tolerance and the normalized error metrics are defined as:

Ek
p =

∑N
j=1

∥∥∥FHqk
j −

√
Ij

∥∥∥2

2

∑N
j=1

∥∥∥√Ij

∥∥∥2

2

(23)

Ek
d =

αη∑N
j=1

∥∥∥qk
j − qk−1

∥∥∥2

2

∑N
j=1

∥∥∥λk
j

∥∥∥2

2

(24)

Table 2 offers the suggested ranges for parameters used in the procedure and additional
discussion is placed in Supplementary Materials. The pseudo-code listed in Algorithm 1
shows the flowchart of ADMM solution for FPM phase retrieval.

Table 2. Suggested parameter ranges for ADMM-FPM method.

Parameter α β γ η

Range 0.5~1 1000 0.1~0.5 1

We need to clarify that the method reported in this paper is based on a variant form of
standard ADMM. They adopt varying intermediate variables but share similar concepts and
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procedure. The performances with the standard are not very well according our testing. It
should be emphasized that the deduction of ADMM solution above is strictly applicable to
convex optimization only. However, the ptychographic phase retrieval problem is still non-
convex due to the presence of the Fourier magnitude constraint. Hence, the convergence of
ADMM-FPM is not guaranteed, at least in theory. Despite this uncertainty, the proposed
method seems still effective in practical FPM implementation when a sufficient amount
of overlap among different areas of illumination is provided. In addition, self-adaptive
step-size strategy for the ADMM method has been reported with the purpose of providing
superior convergence [55,56]. Although the modified method shows great potential for
large-scale datasets processing, it fails to generate desired results in FPM phase retrieval. A
detailed analysis with simulation comparison is shown in Supplementary Materials.

Algorithm 1: ADMM Solution for FPM (ADMM-FPM)

Input: Qj, Ij
Output: s, p

Initialize s0, p0, ω0
j, q0

j
for k = 1: Niter (iterations)

for j = 1: N (different incident angles)
update qk

j according to Equation (16)
update sk according to Equation (13)
update pk according to Equation (17)
update ωk

j according to Equation (15)
break when (21) and (22) are satisfied

end
end

3. Simulations

To examine the performance of our proposed ADMM-FPM method, we run the scheme
on simulated FPM data. According to the suggested parameter ranges given in Table 2,
the values of parameters used in this paper are set as: α = 0.5, β = 1000, γ = 0.3, η = 1.
The simulated FPM platform contains an image sensor with pixel size of 6.5 µm and a
4× objective with NA of 0.1. A programmable 15 × 15 LED array is placed 86 mm above
the sample, which provides an incident illumination wavelength of 632 nm and the distance
between adjacent LEDs is 4 mm. The number of LED has little impact on the reconstruction
quality but is closely related to the spatial resolution; thus, no extra simulations under
different numbers of LED should be designed. The raw LR diffraction patterns captured
each are limited to a small region of 128 × 128 pixels and the recovered HR images
come with a size of 384 × 384 pixels. Under regular circumstances, in order to accelerate
convergence, we choose the sampling interpolation of the LR intensity image captured by
positive incident illumination as the initial intensity guess [2]. In our simulation, full-one
matrix guess proves to yield better reconstruction results for the ADMM-FPM method.
NA order is used as the updating sequence of sub-pupils in the Fourier domain, which
starts at the center of the Fourier space and then gradually expands outwards [57]. Besides
the visual results, we also utilize a quantitative criterion to evaluate the reconstruction
performance of the method. The structural similarity (SSIM) [58] measures the extent to
which the spatial structural information is close between two images, which is widely used
in digital image processing and analysis. The SSIM index is given by:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (25)

where x and y are two virtual nonnegative images, which have been aligned with each
other, µx and σx denote the mean intensity and standard deviation (the square root of
variance), respectively, of the image vector x, and σxy represents the correlation coefficient



Cells 2022, 11, 1512 8 of 20

between two image vectors, x and y. Constants C1 and C2 are included to avoid instability
when these statistics are very close to zero. The SSIM index ranges from 0 to 1 and higher
value indicates that two images are of more similar structural information.

3.1. Performance Comparison under Noiseless Conditions

First, we compare the proposed ADMM-FPM method with two widely used phase
retrieval algorithms: Gauss–Newton method and mPIE. Gauss–Newton can be classified
as a sequential gradient approach, where we set the initial step size α0 = 1, β0 = 1. It is
noteworthy that the values of step size are not fixed but vary for each iteration. We adopt
the concept of self-adaptive step size and update the step size according to the following
rule [37]:

αk =

{
αk−1/2

(
Ek − Ek−1

)
/Ek > ε

αk−1 otherwise
(26)

It is the same with the other step size β, where Ek denotes the normalized error metric
at the k-th iteration and ε should be a constant much less than 1. It is found that fixed
ε = 0.01 usually works well to produce desired reconstruction results [37]. The introduc-
tion of this strategy allows the algorithm to approach a solution promptly at the early
iterations and then gradually converge to a stable level as the step size decreases. Hence,
the Gauss–Newton method we use as contrast is actually a modification of the original
algorithm intended to improve robustness. Empirical evidence in terms of ptychography
reveals that appropriately delaying the update time of reliable variables helps to achieve
more stable reconstruction in mPIE algorithm. In our simulations, we are confident about
the initial pupil, which is designed to update at the 15th illumination position while the
object function is updated at the very beginning. Simultaneously, the momentum parameter
for pupil update should accordingly be tuned smaller. Referring to [39], the parameters
of mPIE algorithm are properly chosen as: α = 0.1, β = 0.8, γ = 1, ηobj = 0.9, ηpupil = 0.3,
Tpupil = 15.

All algorithms are designated to run for 100 iterations. Figure 2(a1,a2) plot the am-
plitude and phase reconstruction performance of the three algorithms as a function of
iteration numbers with their corresponding visual results compared with ground truth
demonstrated below. The SSIM values are marked precisely. We find that all of the al-
gorithms achieve convergence and realize stable reconstruction when there is no noise,
mPIE algorithm stands out for its fast convergence and high-quality reconstruction results.
Our proposed ADMM method can be much slower to achieve convergence with a slightly
smaller value of SSIM. However, it is often the case that converging to modest accuracy
within a few tens of iterations is sufficient to produce acceptable results of practical use; at
least, we can hardly distinguish their differences with the naked eye. The Gauss–Newton
method with self-adaptive step size performs roughly in between, merely at a disadvantage
in amplitude reconstruction performance. In addition, the reconstruction process involves
constant updates to pupil function, which effectively eliminates artifacts derived from
objective aberration. Figure 2(b3–e3) intuitively show the introduced pupil for simulation
and the reconstructed results of pupil via three algorithms. It can be seen that all algo-
rithms have the ability to correct the aberrations so that a quantitative phase image can
be obtained.

3.2. Performance Comparison under Noisy Conditions

Ideally, all algorithms based on the forward model demonstrated in Section 2.1 should
provide good reconstructions. However, LR images are inevitably corrupted by different
degrees of noise in practical implementation of FPM. Hence, it is necessary to analyze the
performance of our proposed ADMM method under noisy conditions. Since the bright-
field images concentrate the majority of signal power, darkfield images from high-angle
illuminations are more susceptible to noise. In order to simulate the actual experimental
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conditions, we add noise to images whose mean value of intensity is below 0.2. Here, we
mainly discuss the cases of Gaussian noise and Poisson noise.
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Figure 2. Comparison of simulated reconstruction results under noiseless conditions. (a1,a2) Amplitude
and phase SSIM curves for 100 iterations. (b1–b3) Simulated ground truth of amplitude, phase and pupil
for FPM reconstruction. Corresponding visual reconstruction results: (c1–c3) Gauss–Newton method.
(d1–d3) mPIE algorithm. (e1–e3) ADMM method.

We compare the noise-tolerance capacity of three algorithms under different propor-
tions of Gaussian noise. Figure 3(a1,a2) show the comparison curves of amplitude and
phase reconstruction performance. The general trend of the curves is moving downward
as Gaussian noise becomes stronger, among which the ADMM method declines at the
lowest rate and therefore generates the optimal outcome especially when the noise level is
more than 50%. The performance of mPIE algorithm in the presence of Gaussian noise is a
considerable departure from its significant advantage presented in the previous simula-
tion. Actually, it can be explained by the fact that the iteration curve of mPIE algorithm
becomes extremely unstable with dramatic fluctuations and fails to achieve convergence.



Cells 2022, 11, 1512 10 of 20

The SSIM values are recorded at the iteration where the normalized error metric of the
captured intensity images arrives at a plateau despite its irregular oscillation during the
later iterations. To intuitively explain the advantage of the ADMM method in noise toler-
ance, we show one typical group of visual results under 70% Gaussian noise in Figure 3b.
The reconstruction results of mPIE algorithm are covered with intense background noise,
while the other two algorithms produce a much cleaner result. From the reconstruction
results of amplitude, we find that the Gauss–Newton method suffers from slightly more
obvious crosstalk between amplitude and phase information than the ADMM method. As
is shown in the magnified area [Figure 3(b1–b4)], the ADMM method presents a significant
smoothing action, resulting in efficient performance of noise removal.
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Figure 3. Comparison of simulated reconstruction results under Gaussian noise. (a1,a2) Amplitude
and phase SSIM curves as a function of Gaussian noise level. (b) Visual reconstruction results of
three algorithms under 70% Gaussian noise with SSIM values marked below the images. Magnified
images for the religion of interest in phase reconstruction results are shown in (b1–b4).
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Poisson distribution is a discrete probability distribution used to describe the statistics
of the incoming photons at each pixel. It is assumed that the intensity is proportional to the
photon count so that the distribution of intensity can be regarded as Poisson distribution.
According to the property of Poisson distribution, a large intensity value measured at a
certain pixel indicates severe noise corruption at that pixel. In our simulation, we define
a Poisson noise parameter σ and generate Poisson noise at each pixel whose mean value
equals the ratio of pixel intensity to σ, hence σ and noise level are negatively correlated.

Since our test proves that noise level σ > 0.01 is pretty close to noiseless condition,
we only show the comparison curves of three algorithms under Poisson noise ranging
from σ = 10−5 to σ = 0.01 in Figure 4(a1,a2). Here, the horizontal axis of coordinate
system takes the form of logarithm in order to display the trend of curves more reasonably.
Similar behavior can be observed in the graphs as the case of Gaussian noise that the
curves extend downward with Poisson noise increasing. The curve of mPIE algorithm is
always located at the bottom, implying its equally poor performance under Poisson noise.
From somewhere between σ = 10−4 and σ = 10−3, the Gauss–Newton method starts to
outperform the ADMM method especially in phase reconstruction, which benefits from
the self-adaptive step size strategy adopted in Gauss–Newton. At this range, the iteration
curve of the Gauss–Newton method goes through a stair-type increase when the step size
updates for each iteration [Figure 4(b1,b2)]. Generally speaking, we can safely conclude
that our proposed ADMM method holds an advantage when σ < 10−4. Figure 4d gives
one typical group of visual results when Poisson noise is valued σ = 10−4. For the mPIE
algorithm, high-frequency details seem to be oversmoothed and many small-scale features
are so blurred that they cannot be distinguished easily. The reconstruction results are also
corrupted with strong artifacts, which leads to the uneven distribution of background. The
Gauss–Newton method and ADMM method perform similarly from the perspective of
visual perception, both with crosstalk between amplitude and phase information as well
as artifact corruption, but the ADMM method works better in terms of numerical results.
Overall, the removal of Poisson noise seems not so efficient as in Gaussian noise simulations,
which we guess might stem from different characteristics of the two kinds of noise. To our
knowledge, Poisson distribution can be approximated to Gaussian distribution when the
arrival rate of photons is high enough, thus the performance of reconstruction methods
under high-intensity Poisson noise should generally resemble that under Gaussian noise.
Actually, Gaussian noise and Poisson noise respectively correspond to readout noise and
photon shot noise in practical imaging systems. In our simulations, the former is “added
to” the darkfield images, while the latter is “generated” based on the pixel intensity
according to certain statistical property. Since the simulated Poisson noise added by the
above-mentioned method does not certainly conform to strict Poisson contribution, the
relationship of approximation cannot be established. Consequently, the performance of the
ADMM method is quite different or can be even worse.

3.3. Comparison and Analysis of Algorithm Efficiency

In the discussions above, we run each algorithm for a fixed number of 100 to analyze
their trends of reconstruction performance. However, the SSIM values are recorded when
the termination conditions are satisfied, hence practical iteration numbers should be fewer
than 100 normally. Table 3 gives the iteration numbers and total runtime of three algo-
rithms so that we can study the convergence speed and computational complexity for each
algorithm. Typical choices of noise level for the cases of Gaussian noise and Poisson noise
generally follow the previous simulations.
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Figure 4. Comparison of simulated reconstruction results under Poisson noise. (a1,a2) Amplitude
and phase SSIM curves as a function of Poisson noise level. (b1,b2) Amplitude and phase SSIM
curves as a function of iteration numbers under Poisson noise (σ = 10−3). (c1,c2) Amplitude and
phase SSIM curves as a function of iteration numbers under Poisson noise (σ = 10−4). (d) Visual
reconstruction results of three algorithms under Poisson noise (σ = 10−4) with SSIM values marked
below the images.
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Table 3. Runtime performance comparison of algorithms.

Approach
No Noise Gaussian Noise Poisson Noise

Iterations Time Iterations Time Iterations Time

Gauss–Newton 72 21.84 35 10.33 46 15.13
mPIE 17 8.80 6 2.73 5 2.28

ADMM 80 35.54 42 15.81 50 20.82

When there is no noise, the data is consistent with the convergence rate of each
algorithm, as we demonstrate in Section 3.1. Among the three algorithms, the mPIE
algorithm spends the shortest time reaching convergence and realizing stable reconstruction.
Based on the concept of momentum, mPIE estimates an advance velocity in the right
direction by contrasting variables before and after update and boldly takes another step
in that direction at the end of each update. This unique idea proves to be an efficient way
to accelerate convergence greatly. When noise interferes, the “bold step” might induce
the risk that the curve of normalized error metric suddenly oscillates after converging to
stabilization (Figure 5). Consequently, the algorithm fails to reach convergence and the
reconstruction quality cannot be guaranteed [Figure 4(b1,b2)]. For this case, we terminate
the algorithm right as the normalized error metric becomes stable. The iteration numbers
and runtime are recorded simultaneously. We should recognize that the normalized error
metric is vital to the judgement of algorithm convergence. However, lower error values do
not always indicate higher reconstruction quality as the reconstruction results are likely to
consist more with the contaminated data and the results are more likely to fall into local
limits. As is shown in Figure 5, the error curves of ADMM method do not achieve the
lowest stable level, while producing the best noise tolerance performance. Moreover, it
should be emphasized that the normalized error metric mentioned here specially refers
to normalized “prime error” metric for ADMM method, as given in Equation (23). The
calculation of normalized error metric for the other two algorithms also follows the formula.
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Figure 5. The curves of normalized error metric for three algorithms under (a) 50% Gaussian noise
and (b) Poisson noise (σ = 10−4). All algorithms are designed to run for 100 times of iteration.

The time cost of our proposed ADMM method is the highest whether there is noise
or not, which might be attributed to its global and complex framework. On the one
hand, the iteration process of the ADMM method consists of alternating update to four
variables, while Gauss–Newton and mPIE only update two variables (object function and
pupil function) for each iteration. On the other hand, the termination conditions of the
ADMM method impose more strict constraint because two factors (primal residual and
dual residual) jointly determine the termination of algorithm. By contrast, Gauss–Newton
and mPIE terminate as long as a single factor (step size for Gauss–Newton and error metric
for mPIE) meets predetermined conditions. The Gauss–Newton method performs at an
intermediate level in algorithm efficiency. It should be emphasized that the application
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of self-adaptive step size strategy introduces no extra computational cost as the error
metric is calculated after each cycle of sub-iterations no longer to judge convergence but
to determine the step size for the next iteration instead [37]. Given the above, the ADMM
method provides the best reconstruction results at the expense of larger iteration number
and longer runtime when there is serious noise interference. However, if compared to
those global algorithms with hundreds of seconds [35,36], the efficiency of the ADMM-FPM
approach is acceptable.

4. Experiments

The experimental setup of the real FPM platform is slightly different from our simula-
tions. The programmable 32 × 32 LED array (Adafruit, controlled by an Arduino) is placed
68 mm above the sample, whereas only the central 9 × 9 LEDs are lighted up sequentially
for data acquisition. All the data are captured by an 8-bit CCD camera (DMK23G445,
Imaging Source Inc., Bremen, Germany, 3.75 µm pixel pitch, 1280 × 960 pixels), and the
rest of the parameters chosen for algorithms generally follow the simulations. In practical
implementation, the noise level is largely determined by the performance of sensors. In
order to emulate experiments with lower-cost sensors, we artificially increase the gain of
our camera in the process of data collection, resulting in the captured intensity images with
higher brightness and more noise points exposed. Accordingly, the exposure time should
properly be adjusted to accommodate the high intensity of brightfield images in case of
sensor saturation.

We first image a USAF resolution target for each algorithm. Since we mainly focus
on the noise-tolerance capacity of algorithms rather than the resolution improvement, our
observation view of interest should not necessarily be limited to the smallest group of
features. Here, we extract a small region of 310 × 310 pixels from the full FOV image for
analysis, which contains all elements of group 6~9. Figure 6 offers the comparison results
of three algorithms under the condition of 20 dB and 30 dB, where the phase reconstruction
images display in pseudo-color so that detailed information can be identified clearly. It
can be seen that the Gauss–Newton method and mPIE algorithm are not effective enough
to remove noise. The background of the Gauss–Newton method is covered with dense
noise points evenly, while the noise presents a nonuniform distribution for the mPIE
algorithm. Similar phenomena can be significantly observed inside the rectangle bars from
the phase reconstruction images. Comparatively, the ADMM method provides a much
neater background and internal structure, confirming our conclusions in the simulations
under noisy conditions. Additionally, the amplitude reconstruction results of the other two
algorithms seem darker than that of the ADMM method. This actually reflects that the
contrast of images is not high enough, to some extent indicating that the two algorithms
provide poor performance of noise removal. Figure 6(c1,c2) plot the grayscale value of
pixels along a certain horizontal section for amplitude reconstruction images under 20 dB
and 30 dB gain. Since the contaminated pixels have significant difference in grayscale
values compared with the rest of the pixels in the image background, the ADMM method
whose curve maintains minimum degree of fluctuation proves to be the most effective
to remove noise. Here, the number of pixels does not equal the size of extracted religion
as the reconstructed images will be magnified several times. By horizontal contrast, the
results of each algorithm prove the correspondence between gain and noise level, namely
a larger gain indicates a higher level of noise. At last, we should add that there is no
obvious difference in the reconstruction resolution, as we can observe all elements in group
8 through the three algorithms.
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(a) 20 dB gain and (b) 30 dB gain. (c1,c2) Plot of the grayscale value of pixels along a certain
horizontal section (marked in (a,b)) for amplitude reconstruction images under 20 dB and 30 dB
gain, respectively.

Finally, ADMM method is tested on a biological sample (a pathological section of onion
scale leaf epidermal cells), where the phase property often contains valuable information
for study. Figure 7a provides the full FOV image of the sample under a 4 × /0.1 NA
objective with 20 dB gain. The small region of interest extracted from the full FOV image
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has a size of 210× 210 pixels (Figure 7(a1)). Figure 7b,c give the comparative reconstruction
results under 20 dB and 30 dB gain, respectively. Here, we can determine, according to
the original LR image, that the darker reconstruction results of the Gauss–Newton method
and mPIE algorithm do not arise from the low contrast of the original data, but from their
vulnerability to the interference of noise as in the USAF experiment. We do not adjust the
grayscale to a consistent visual level in order to ensure the authenticity of reconstruction
results to the greatest extent. All the results are fairly compared within the same scale
of grayscale. It can be found that the majority of basic details in the sample have been
preserved via the three reconstruction methods, while much noise accumulates around the
cell walls of the sample for the Gauss–Newton method and mPIE algorithm. The ADMM
method effectively eliminates the noise, and once again outperforms other algorithms with
high-quality reconstruction and low-intensity noise distribution.
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Figure 7. Comparison results of experimental reconstruction for a biological sample (a pathological
section of onion scale leaf epidermal cells). (a,a1) The full FOV image under 20 dB gain and magnified
image for the region of interest. (b) Reconstruction results under 20 dB gain. (c) Reconstruction
results under 30 dB gain.
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5. Conclusions and Discussions

To summarize, we reported an ADMM-FPM algorithm. Although the proposed
method performs quite commonly under noiseless conditions, its prominent potential is
experimentally demonstrated in noise tolerance, which trades moderate time cost for the
improvement of reconstruction quality. In this paper, we add a regularization term to stabi-
lize optimization for weak-phase objects. Diverse regularizations can be selectively adopted
according to the property of objects as our proposed method displays good compatibility
with them. How to determine the category that ADMM method belongs to is worthy of
our consideration. The grace of ADMM method originates from its unique algorithmic
mechanism that the global optimization problem is divided into several subproblems, the
solutions of which are updated alternately. The update of object function and pupil is ob-
tained based on the batch update of other variables, normally in the form of accumulation.
Unlike conventional global update algorithms, this update is placed in the middle of each
iteration period instead of at the end. Compared with sequential update algorithms, the
iteration procedure of ADMM method is highly parallel so that it can operate efficiently on
GPU or distributed CPUs. In this sense, we might roughly classify the ADMM method as a
special global gradient method with the advantages of sequential algorithms.

More modifications and innovations remain to be implemented in this work. We
have confirmed that the ADMM method falls short in algorithm efficiency to a certain
degree. In terms of noise tolerance performance, we find that ADMM methods are superior
only when the noise reaches a certain level. Particularly for the case of Gaussian noise,
noise removal usually comes along with blurred detailed information. Hence, under the
same computational efficiency, we hope for a more robust strategy to achieve a faster rate
of convergence without the sacrifice of reconstruction quality. Ref. [44] has proved the
feasibility of a step size update scheme in ptychography when the limit point of the ADMM
iteration sequence satisfies certain conditions. This idea might provide some inspiration,
though a widely used self-adaptive step-size strategy has been found to not produce the
desired results in Supplementary Materials. We emphasize that for any particular problem,
it is likely that some variation on ADMM will substantially improve performance. The
breakthrough of the ADMM method might be found out in itself by introducing different
intermediate variables to create an extended ADMM method. In addition, the performance
of the ADMM method suffers from a large set of parameters currently. We are working
to give the optimal choices of parameters that make sense mathematically. The demo
code is released on our website for noncommercial use and further understanding of this
article [59].

Supplementary Materials: The following supporting information [60–65] can be downloaded at:
https://www.mdpi.com/article/10.3390/cells11091512/s1.
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