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Abstract: Intracellular signal transduction in response to growth factor receptor activation is a funda-
mental process during the regeneration of the nervous system. In this context, intracellular inhibitors
of neuronal growth factor signaling have become of great interest in the recent years. Among them are
the prominent signal transduction regulators Sprouty (SPRY) and phosphatase and tensin homolog
deleted on chromosome 10 (PTEN), which interfere with major signaling pathways such as extracellu-
lar signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3K)/Akt in neurons and glial cells.
Furthermore, SPRY and PTEN are themselves tightly regulated by ubiquitin ligases such as c-casitas
b-lineage lymphoma (c-CBL) or neural precursor cell expressed developmentally down-regulated
protein 4 (NEDD4) and by different microRNAs (miRs) including miR-21 and miR-222. SPRY, PTEN
and their intracellular regulators play an important role in the developing and the lesioned adult
central and peripheral nervous system. This review will focus on the effects of SPRY and PTEN as
well as their regulators in various experimental models of axonal regeneration in vitro and in vivo.
Targeting these signal transduction regulators in the nervous system holds great promise for the
treatment of neurological injuries in the future.
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1. Introduction

The peripheral nervous system (PNS) is provided with the intrinsic capability to
regenerate following injury, although the regeneration rate is slow and functional outcomes
are often poor [1–3]. In contrast, the regeneration of the central nervous system (CNS) is still
highly limited due to the inhibitory effects of molecules associated with CNS myelin and a
weak intrinsic capacity for axon growth [4–6]. Intracellular signal transduction in response
to growth factor receptor activation is a fundamental process during nervous system (NS)
regeneration in the PNS and the CNS. The activation of the prominent signal cascades
rat sarcoma (RAS)/extracellular signal-regulated kinase (ERK) and phosphoinositide 3-
kinase (PI3K)/Akt promotes regeneration processes [1,7,8]. These intracellular signaling
molecules are activated by growth factors binding to receptor tyrosine kinases (RTKs) on
the cell surface (Figure 1). Major growth factor receptors in the NS are the neurotrophin
receptor tropomyosin receptor kinases (Trks) TrkA, -B and -C, which are activated by
nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3
(NT-3) and NT-4, respectively. All neurotrophins also interact with the p75 neurotrophin
receptor (p75NTR) which belongs to the tumor necrosis factor receptor family. The p75NTR
may enhance or suppress Trk activity and it induces apoptosis or survival autonomously
through Jun N-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) [9,10]. NF-κB
stimulates or inhibits axon growth of cultured developing neurons depending on the type
of neuron and the neurotrophic factor involved [11]. In the adult brain NF-κB initiates
the renewal of neurons and induces axogenesis of newborn granule cells [12]. NF-κB
is also involved in glial scar formation after injury and astroglial inhibition of NF-κB
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facilitates regeneration [13,14]. The glial cell-line-derived neurotrophic factor (GDNF)
family members include GDNF, neurturin (NRTN), persephin (PSPN) and artemin (ARTN)
which activate the ‘rearranged during transfection’ (RET) RTK. Neuropoietic cytokines
belonging to the gp130 receptor family such as ciliary neurotrophic factor (CNTF), leukemia
inhibitory factor (LIF) or interleukins (IL) are also involved in NS regeneration among
others [15]. Moreover, other growth factors that are not specific for the NS, such as fibroblast
growth factors (FGFs), have crucial functions during nerve regeneration. Among the 22
members of the FGF family and the four types of FGF receptors (FGFRs), FGF1 and FGF2
(acidic and basic FGF) as well as FGFR1 play a major role during NS regeneration [16].
Epidermal growth factor (EGF) signaling is important during NS development, but it
inhibits the regeneration of the CNS. EGF receptor (EGFR) inhibitors limit the release of
inhibitory molecules after injury and stimulate the production of neurotrophic factors [17].
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Figure 1. Major growth factor receptors acting in the NS are the tropomyosin receptor kinases (Trks)
TrkA, -B and -C, which are activated by nerve growth factor (NGF), brain-derived neurotrophic
factor (BDNF), neurotrophin 3 (NT-3) and NT-4. The p75 neurotrophin receptor (p75NTR) acts as a
co-receptor for Trks and induces nuclear factor-kappa B (NF-κB). Glial cell-line-derived neurotrophic
factor (GDNF) activates the ‘rearranged during transfection’ (RET) receptor tyrosine kinase (RTK)
and among the 22 fibroblast growth factors (FGFs) and four types of FGF receptors (FGFRs), FGF1
and FGF2 together with FGFR1 play a major role during nervous system (NS) regeneration. By
contrast, epidermal growth factor receptor (EGFR) activation by epidermal growth factor (EGF) limits
regeneration. The neuropoietic cytokine ciliary neurotrophic factor (CNTF) belongs to the gp130
receptor family and the CNTF receptor (CNTFR) is composed of three chains: A specific CNTFR
chain, gp130 and leukemia inhibitory factor receptor (LIFR). LIFR does not have intrinsic tyrosine
kinase activity but the gp130 and LIFRβ chains are constitutively associated with members of the
Janus kinase (JAK) family of tyrosine kinases. The rat sarcoma (RAS)/extracellular signal-regulated
kinase (ERK) and the phosphoinositide 3-kinase (PI3K)/Akt pathways are activated by all major
growth factor and cytokine families. Sprouty2 (SPRY2) inhibits RAS/ERK signaling in response to
NGF, BDNF, GDNF and FGF whereas EGF signaling is enhanced by SPRY proteins. Phosphatase and
tensin homolog deleted on chromosome 10 (PTEN) inhibits PI3K/Akt signaling in response to NGF,
BDNF, GDNF, FGF, EGF and CNTF.

The induction of the RAS/ERK and the PI3K/Akt pathway by different growth factors
and cytokines overlaps but the duration and strength of their activation differs. EGF induces
transient ERK activation which leads to the proliferation of PC12 pheochromocytoma cells,
whereas FGF2 and NGF result in sustained ERK activation that is required for neurite
outgrowth [18,19]. Activation of ERK by different FGFs is commonly observed whereas the
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activation of Akt differs among FGF isoforms and cell types [20]. In dorsal root ganglion
(DRG) neurons, the activation of ERK is induced by FGF2 and NGF to a similar extent
whereas Akt is much stronger activated by NGF than by FGF2 [21]. In comparison, NT-3
is a stronger activator of Akt than NGF in PC12 cells and DRG cultures [22]. In superior
cervical ganglion (SCG) neuron cultures, both NGF and BDNF induce the activation of
ERK and Akt to a similar extent [23,24]. GDNF induces sustained phosphorylation of Akt
and ERK in neuroectodermic cells [25]. CNTF enhances short-term ERK phosphorylation
whereas PI3K/Akt activation is delayed although it is crucial for motoneuron survival [26].

Intracellular inhibitors of neuronal growth factor signaling have become of great
interest in the recent years in neuroscience. The signal transduction modulators Sprouty
(SPRY; SPRY2 https://www.uniprot.org/uniprot/O43597; accessed on 1 April 2022) and
phosphatase and tensin homolog deleted on chromosome 10 (PTEN; https://www.uniprot.
org/uniprot/P60484; accessed on 1 April 2022) [27] are present in the PNS and the CNS
(Figure 2). Furthermore, microRNAs (miRs) and ubiquitin ligases are involved in the
regulation of SPRY and PTEN, among others. This review focuses on the signal transduction
regulators SPRY and PTEN together with related miRs and ubiquitin ligases involved in
axon growth during the development and regeneration of the NS. The fact that SPRY and
PTEN play a major role in the regulation of neuronal survival and axonal specification
during development, supports their function during axon regeneration in the adult NS.
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Figure 2. SPRY2 is a 315-amino acid (AA) protein containing a variable N-terminal region with
various phosphorylation sites and a highly conserved C-terminal cystein-rich region. RTK stim-
ulation induces tyrosine (Y) phosphorylation in the N-terminus of SPRY2 by Src kinase, which
serine dephosphorylates SPRY2 by protein phosphatase 2A (PP2A). This results in a conforma-
tional change at the C-terminal proline-rich binding site for growth factor receptor-bound protein
2 (GRB2), thereby preventing the interaction of GRB2 with son of sevenless (SOS) and subsequent
ERK activation, while its dephosphorylation by Src homology 2-containing phosphotyrosine phos-
phatase (SHP2) dissociates it from GRB2. PTEN is a 403-AA enzyme containing the N-terminal
phosphatidylinositol 4,5-bisphosphate (PIP2)-binding domain (PBD), a phosphatase domain, a
membrane-targeting C2 domain, a C-terminal tail and a PDZ-binding motif that regulates its stability
and subcellular localization.

2. The Role of RAS/ERK and PI3K/Akt Signaling in Axonal Regeneration

The main function of RTK signaling is to provide the proteins required for survival
and axon growth via changes in gene transcription and protein synthesis. Injured neurons
upregulate regeneration-associated genes (RAGs) including those that express cytoskeletal
components to form new axons and growth cones. Signaling of RAS/ERK and PI3K/Akt
(Figure 3) is fundamental for the induction of RAGs during nerve regeneration [1,7,8,15,28].
Activation of RTKs results in dimerization and phosphorylation of tyrosine residues at the
cytoplasmic site of the receptor. This creates binding sites for the growth factor receptor-
bound protein 2 (GRB2) adaptor molecule that recruits the guanine nucleotide exchange
factor son of sevenless (SOS) which activates RAS. RAS then recruits rapidly accelerated
fibrosarcoma (RAF) to the membrane where it is activated. RAF further induces mitogen-
activated and extracellular signal-regulated kinase (MEK) that phosphorylates ERK on
both threonine and tyrosine residues in the cyto- and axoplasm of neurons [8,29].

https://www.uniprot.org/uniprot/O43597
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Figure 3. The RAS/ERK (left) and the PI3K/Akt (right) pathways play an important role in axon
growth during development and regeneration in the adult. Both pathways induce gene expression in
the neuronal cell body and control cytoskeleton dynamics in the axon. Furthermore, both pathways
influence the growth cone reformation after lesion. The RAS/ERK pathway (left) is induced after RTK
activation by the GRB2 adaptor molecule that recruits SOS, which in turn activates RAS. RAS recruits
rapidly accelerated fibrosarcoma (RAF) to the plasma membrane where it is activated and induces
mitogen-activated and extracellular signal-regulated kinase (MEK) that phosphorylates ERK. SPRY2
interacts with the ERK pathway by interfering with GRB2 and RAF. Activation of ERK is increased
by SPRY2 deletion and enhances axon regeneration. MicroRNA-21 (miR-21) downregulates SPRY2
and is induced after nerve injury to promote axon regeneration. The PI3K/Akt pathway (right) is
induced by the adaptor protein GRB2-associated binder (GAB) which activates PI3K. Activated PI3K
phosphorylates PIP2 to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). The accumulation
of PIP3 recruits Akt to the plasma membrane, and Akt is phosphorylated by phosphoinositide-
dependent kinase 1 (PDK1) and mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Akt
then activates mTOR, and both Akt and mTOR promote axon regeneration. PTEN converts PIP3 to
PIP2 by dephosphorylation, thereby reversing the reaction catalyzed by PI3K and inhibiting Akt and
mTOR activation. MiR-222 and miR-26a downregulate PTEN and are regulated after nerve lesion
or during brain development, respectively. Deletion of PTEN enhances axon regeneration via the
activation of Akt and mTOR. MiR-222 and miR-26a promote axon growth by the downregulation of
PTEN whereas the disruption of the PTEN-regulating ubiquitin ligase neural precursor cell expressed
developmentally down-regulated protein 4 (NEDD4) upregulates PTEN and impairs axon growth.

Activation of ERK promotes axon elongation by cultured embryonic DRG and SCG
neurons [22,23]. However, ERK inhibition has no effect on spontaneous axon outgrowth of
adult DRG neurons while axon growth in response to NGF stimulation is impaired by ERK
inhibition [30,31]. Furthermore, the activation of ERK is required for axotomy-induced
growth cone reformation after lesion and for the polymerization of microtubules and actin
filaments [23,24,32,33]. In addition, ERK is activated in the proximal and distal nerve
stumps following sciatic nerve crush and inhibition of ERK impairs nerve regeneration
in vivo [34,35]. Although ERK signaling is important for axon regeneration after injury,
ERK is not a major mediator of neuronal survival after injury [35,36]. However, ERK plays
a role in neuronal survival in response to toxicity [37,38].

Activated RTKs induce PI3K/Akt signaling through direct binding or through tyrosine
phosphorylation of adaptor proteins such as GRB2-associated binder (GAB), which then
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activates PI3K. Activated PI3K phosphorylates the 3’ position of phosphatidylinositol
4,5-bisphosphate (PI4,5P2 or PIP2) to generate phosphatidylinositol 3,4,5-trisphosphate
(PIP3). The accumulation of PIP3 recruits Akt to the plasma membrane, which binds to
PIP3 via the pleckstrin homology (PH) domain. Akt is then phosphorylated at Thr308
and Ser473 by phosphoinositide-dependent kinase 1 (PDK1) and the mammalian target
of rapamycin (mTOR) complex 2 (mTORC2), respectively, resulting in full activation [39].
There is evidence that in addition to the plasma membrane, an endomembrane pool of
active Akt exists that is activated locally through PIP3 and PI3,4P2 [40]. Akt in turn inhibits
glycogen synthase kinase 3 (GSK3) through the phosphorylation of its amino-terminal
serine residue, which activates several transcription factors involved in axon growth and
enhances cytoskeleton dynamics [41,42]. Furthermore, Akt activates mTOR via mTORC1
and induces phosphorylation of the ribosomal protein S6, which plays a major role in CNS
regeneration [5].

Activation of Akt specifically increases the axon caliber and enhances axonal branching
of embryonic DRG neurons [22]. In addition, Akt activation contributes to NGF-induced
axonal branching of adult DRG neurons [43]. Activated Akt is present in cell bodies and
growth cones of adult DRG neurons, and inhibition of Akt suppresses both spontaneous
and growth factor-induced neurite outgrowth [44,45]. PI3K activity is also required for the
redevelopment of adult DRG growth cones after laser injury, and PI3K inhibitors strongly
inhibit growth cone formation even when applied exclusively to the axonal compartment
through microfluidic separation [46]. In contrast, regenerative axon growth in response
to a preconditioning lesion is not affected by PI3K inhibition in dissociated DRG cultures
although phosphorylation of Akt is enhanced in regenerating nerves after sciatic nerve
crush [7,47]. In the CNS, axonal PIP3 decreases at the time when neurons lose their
regenerative ability. Overexpression of the p110δ isoform of PI3K enhances axonal PIP3
and promotes axon regeneration after optic nerve crush injury as well as survival of retinal
ganglion cell (RGC) neurons [46]. This confirms that in addition to its role in axon growth,
the PI3K pathway represents a major survival-promoting pathway in neurons [45,48,49].

Most growth factors activate both the RAS/ERK and the PI3K/Akt pathway. Studies
that activate one signaling pathway independently are rare. Specific activation of optoRAF
or optoAkt enhances axon regeneration in the PNS and the CNS of Drosophila larvae [50]. In
embryonic DRG cultures, overexpression of RAF or Akt induces distinct axon morphologies,
and co-expression of RAF and Akt results in additive effects on axon elongation and
branching [22]. Although crosstalk between RAF and Akt was not observed in these
studies, crosstalk between the two pathways has been reported in tumor cells [51]. During
growth factor signaling, crosstalk between RAS/ERK and PI3K/Akt occurs upstream at
the level of activated RAS which induces PI3K/Akt signaling [52]. Strong Akt activation
inhibits ERK phosphorylation of adult DRG neurons indicating a crosstalk between these
two pathways in neurons [53]. This is confirmed during brain ischemia when strong Akt
phosphorylation suppresses ERK activation by phosphorylation of the inhibitory Ser259 of
RAF [54,55].

3. SPRY: Signal Regulators of RAS/ERK Signaling

SPRY proteins were first described as antagonists of FGF signaling that control api-
cal branching of the Drosophila airways. Inhibition of dSPRY induces excessive tracheal
branching caused by enhanced FGF signaling [56]. In mammals, four SPRY genes (SPRY1-4)
were identified with SPRY2 exhibiting the highest sequence homology to dSPRY, indicating
its distinct evolutionary conservation [57–60]. SPRY proteins modulate RTK signaling
in response to several growth factors including NGF [61,62], BDNF [63], GDNF [64] and
FGF [56,61,65]. By contrast, EGF signaling is enhanced by SPRY proteins [62,66].

The major function of SPRY proteins is the interference with the RAS/ERK path-
way [61,67]. SPRY2 interacts with GRB2 and RAF (Figure 3), thereby interfering with the
ERK pathway upstream and downstream of RAS [58,67,68]. Among the different SPRY iso-
forms, SPRY2 reveals the strongest inhibitory effect on ERK activation [67,69]. In addition
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to the ERK pathway, SPRY2 inhibits the activation of phospholipase C (PLC), RAS-related
C3 botulinum toxin substrate 1 (RAC1) and Akt in some reports [70–73]. In adult DRG
neurons the downregulation of SPRY2 leads to the activation of ERK in response to FGF2
treatment, whereas phosphorylation of Akt remains unchanged [21,74].

SPRY proteins are regulated at the transcriptional and the post-translational level, and
the expression of SPRY is influenced by growth factors through ERK activation [21,63,75,76].
All SPRY proteins contain a highly conserved C-terminal cystein-rich region and a variable
N-terminal region with various phosphorylation sites (Figure 2). Several kinases, phos-
phatases and ubiquitin ligases interact with SPRY [77]. Kinases such as dual-specificity
tyrosine-phosphorylated and -regulated kinase 1A (DYRK1A), testicular protein kinase 1
(TESK1) or MAPK-interacting kinase 1 (Mnk1) and phosphatases such as PTEN, protein
phosphatase 2A (PP2A), Src homology 2-containing phosphotyrosine phosphatase (SHP2)
or protein tyrosine phosphatase 1B (PTP1B) regulate the biological activity of SPRY [78].
Dephosphorylation of SPRY2 by PP2A results in a conformational change at the C-terminal
proline-rich binding site for GRB2, thereby preventing the interaction of GRB2 with SOS
and subsequent ERK activation, while its dephosphorylation by SHP2 dissociates it from
GRB2 [68,79,80]. The E3 ubiquitin ligases c-casitas b-lineage lymphoma (c-CBL) and seven
in absentia homolog 2 (SIAH2) interact with the N-terminus and control ubiquitination
and degradation of SPRY2 [81,82]. Furthermore, miR-21 downregulates SPRY2 at the
post-transcriptional level [83,84].

3.1. SPRY and Development

SPRY proteins were first studied in the NS during development. In ovo electroporation
of dominant-negative SPRY2 results in an anterior shift of the posterior border of the
tectum during brain development, whereas overexpression of SPRY2 induces a fate change
in the presumptive metencephalon to the mesencephalon [85]. SPRY1 and SPRY2 are
expressed at higher levels in the developing cerebellum than SPRY4 [86]. In primary
cultures of immature cerebellar granule neurons, inhibition of SPRY2 promotes neurite
outgrowth [63]. Cerebellar development is only mildly affected in SPRY2 knockout mice,
but the additional deletion of other SPRY isoforms results in severe developmental defects of
the cerebellum [86]. SPRY2 is expressed higher in the developing hippocampus than SPRY4,
and both SPRY isoforms are reduced up to 14 days postnatally compared to embryonic day
16.5. In embryonic hippocampal neuron cultures, SPRY2 and SPRY4 are concentrated in
growth cones of axons and dendrites, and knockdown of SPRY2 or SPRY4 enhances axon
outgrowth by hippocampal neurons which is further increased by treatment with FGF2 [76].
These data from developing neurons indicate a role of SPRY in axon regeneration.

In addition to brain development, SPRY proteins are also involved in the development
of the enteric NS. SPRY2 knockout mice reveal enteric nerve hyperplasia induced by GDNF-
induced hyperactivation of ERK that leads to esophageal achalasia [64]. In the inner ear,
homozygous SPRY2 deficiency disrupts the delicate cytoarchitecture of the organ of Corti.
Additional pillar cells due to a cell fate transformation of a Deiters’ cell into a pillar cell
in the early postnatal period and augmentation of the motile cochlear amplifying outer
hair cells (OHCs) are observed in response to SPRY2 knockdown [87]. The pillar cells
form the inflexible triangulated tunnel of Corti that changes in dimensions and stiffness
from high to low auditory frequencies [88]. This unique architecture together with the
active mechanical feedback of OHCs deforms the organ of Corti in a complex way that is
indispensable for the extraordinary sensitivity, dynamic range and tuning of hearing. Our
recent results confirmed that SPRY2 knockout mice reveal changes in the cytoarchitecture
of the organ of Corti. Homozygous SPRY2−/− mice reveal four to five rows of OHCs
with less regular planar cell polarity in contrast to the conventionally ordered three rows
of OHCs in heterozygous SPRY2+/− mice (Figure 4). Whether these cytoarchitectural
changes are the only abnormalities or other yet hidden changes contribute to the hearing
loss of 60 decibels in SPRY2−/− knockout mice and 7 decibels loss between SPRY2−/−
and SPRY2+/− [87] is unknown. However, auditory neurons (data not shown) and sensory
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epithelium innervations (Figure 4) appeared normal indicating that the absence of SPRY2
does not affect fiber guidance. FGF8 induces pillar cell fate and regulates cellular patterning
in the cochlea [89]. While the conditional deletion of FGF8 reduces the number of pillar
cells, SPRY2 deletion induces additional pillar cells (Figure 4). This effect in SPRY2−/−
knockout mice is partially rescued by reducing the FGF8 dosage, indicating that SPRY2
prevents the cell fate transformation of a Deiters’ cell into a pillar cell by the inhibition of
FGF8 signaling [87].
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Figure 4. Middle turns of the cochlea from one-month-old SPRY2−/− (A,C) and SPRY2+/− (B,D)
knockout mice. Whole mount preparations (A,B) were stained with fluorescent phalloidin (green)
which labels the actin-rich hair cells and an anti-neurofilament 200 antibody (red) labeling nerve fibers.
Images were acquired with a confocal microscope. SPRY2−/− mice revealed up to five rows of outer
hair cells (OHCs; A, 1–5) that are arranged less ordered compared to SPRY2+/− mice that reveal
the typical regular mosaic pattern of sensory and supporting cells with three rows of OHCs (B, 1–3).
Afferent and efferent nerve fibers intermingle in the inner spiral plexus (ISP) underneath the inner
hair cell (IHC) and appear normal. The additional pillar cell (p*) is best visible in plastic embedded
semithin sections (C,D). D shows the conventional cytoarchitecture in a SPRY2+/− littermate with a
normal outer pillar cell (p). An additional outer pillar cell (p* in subfigure (C)) resembles more the
first row of Deiters’ cells (D in subfigure (D)). Scale bars = 20 µm.

3.2. SPRY and Axonal Regeneration

Inhibition of SPRY2 reduces apoptotic cell death in primary cultures of mature cerebel-
lar granule neurons [63]. In addition to its effects on axon growth during the development
of cerebellar and hippocampal neurons, deletion of SPRY2 promotes neurite outgrowth by
adult DRG neurons [21,74]. Although SPRY2 mRNA is not altered in response to a sciatic
nerve lesion, SPRY2 is regulated post-transcriptionally in the DRG by miR-21 in response
to a peripheral nerve transection. Furthermore, the overexpression of miR-21 promotes
neurite outgrowth by adult DRG neuron cultures on a reduced laminin substrate [21,90].
MiR-21 is upregulated up to 28 days after axotomy and heterozygous SPRY2+/− knockout
mice recover faster in response to a sciatic nerve crush revealing a larger diameter of the
distal sciatic nerve, higher numbers of myelinated axons and a higher density of motor
endplates. Homozygous SPRY2−/− mice reveal enhanced mechanosensory function
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(demonstrated by the von Frey test) that is accompanied by increased innervation of the
epidermis and elevated numbers of non-myelinated axons [74,90].

In addition to PNS regeneration, the inhibition of SPRY proteins enhances the re-
generation of the damaged brain as well. Simultaneous partial knockdown of SPRY2
and SPRY4 limits secondary brain damage in response to kainate-induced epileptoge-
nesis. Neurodegeneration and granule cell dispersion are alleviated following kainic
acid-induced hippocampal lesion in SPRY2/4 double heterozygous knockout mice [91].
Injection of SPRY2/4 siRNAs into the rodent brain diminishes the size of the lesion after
endothelin-induced vasoconstriction, a model for human stroke [92]. Taken together, SPRY
is a promising target to enhance regeneration in the PNS and the CNS (Figure 3).

4. PTEN: Signal Regulator of the PI3K/Akt Pathway

PTEN was originally identified in 1997 as a tumor suppressor gene that is mutated in
several tumors, including glioblastoma [93,94]. Starting from one report in 2008 demon-
strating that the deletion of PTEN promotes robust axonal regeneration in the CNS [95],
PTEN became of emerging interest in the field of neuronal regeneration. PTEN is a dual
phosphatase that can act on both phosphoinositide and polypeptide substrates (Figure 2).
Through its lipid phosphatase activity, PTEN converts PIP3 to PIP2 (Figure 3) by dephos-
phorylating the 3’ position of the inositol ring in PIP3, thereby reversing the reaction
catalyzed by PI3K [96]. As a consequence, downstream signaling of PI3K including pAkt
and mTOR is inhibited [5]. PTEN inhibits PI3K signaling in response to a plethora of
growth factors including NGF [97], BDNF [98], GDNF [99], FGF [100,101], EGF [102] and
CNTF [103].

As an important inhibitor of PI3K signaling, the expression of PTEN is regulated at
multiple levels. Numerous miRs modulate PTEN expression at the post-transcriptional
level. Among them miR-21, miR-222, miR-26a and miR-182 suppress PTEN expression
in DRG or cortical neurons [104–109]. PTEN is downregulated by several E3 ubiquitin
ligases including neural precursor cell expressed developmentally down-regulated protein
4 (NEDD4) or X-linked inhibitor of apoptosis protein (XIAP) which are both involved in
axonal regeneration [110–112]. PTEN is co-expressed with its ubiquitin ligase NEDD4 in
DRG neurons, in the sciatic nerve and in growth cones of RGCs [111,113].

Phosphorylation of the C-terminus of PTEN (Figure 2) inhibits its lipid phosphatase
activity and enhances its stability [114]. PTEN phosphorylation mediated by GSK3 induces
the interaction of PTEN with myosin V. Abolishment of the interaction between PTEN and
myosin V increases the neuronal soma size similar to PTEN inhibition [115,116]. The translo-
cation of PTEN into the nucleus is mediated through mono-ubiquitination by NEDD4 and
different other mechanisms. The lipid phosphatase activity of PTEN, which interferes with
pAkt signaling, predominates in the cytoplasmic compartment, whereas the protein phos-
phatase activity is generally nuclear [117,118]. PTEN levels are enhanced in small isolectin
B4 (IB4)-positive neurons which are limited in their regenerative capability [119,120]. Glial
cells in DRG cultures exhibit reduced PTEN levels [53]. Phosphorylated PTEN is highly
expressed in the nuclei of large and medium-sized DRG neurons [120]. In the adult brain,
PTEN is preferentially expressed in neurons especially in Purkinje neurons, olfactory mitral
neurons and large pyramidal neurons but not in astrocytes or oligodendrocytes [121]. Thus,
PTEN expression appears to be mainly neuronal in the PNS and in the CNS.

4.1. PTEN and Development

In the rodent brain, PTEN protein levels increase starting at E17 and remain stable
during postnatal development and adulthood [121,122]. During development, axonal
PTEN activity is inhibited by plasticity-related gene 2 (PRG2), a protein which targets PTEN
at axon branch points and stabilizes membrane PIP3. PRG2 protein levels in the rodent brain
increase from E17 to P1 corresponding to cortical migration and branch formation of axon
projections [122]. Furthermore, miR26a targeting PTEN is upregulated in the hippocampus
after birth and promotes axon growth by hippocampal neurons [109]. PTEN deletion
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in the brain during early development reveals neuronal overgrowth, brain enlargement,
seizures and premature death. Depending on the promotor used in the different mouse
models of PTEN deletion, mice exhibit higher postnatal mortality or premature death in
the first weeks of life [123]. Deletion of PTEN enhances axon outgrowth by developing
hippocampal neurons through an increase in detyrosinated, stable microtubules [124].

PTEN is transiently expressed during cochlea development in hair cells (HCs) and
it is downregulated at postnatal day seven [125]. The number of HC progenitors that
differentiate into HCs is augmented in heterozygous PTEN+/− knockout mice and after
conditional PTEN knockout in the inner ear by increased activation of Akt. The levels of
the downstream target cyclin-dependent kinase inhibitor p27kip1 decrease which prevents
HC progenitors from cell cycle exit. Furthermore, the cytoskeletal differentiation of HCs is
affected by PTEN deletion [126,127]. Differentiation is a critical step during HC develop-
ment and this process is to some extent regulated by FGF20. Inhibition or deletion of FGF20
reduces the HC number and this effect is partially rescued by PTEN inhibition [128–130].
PTEN is present in the cytoplasm of embryonic DRG neurons and at low levels in the
nucleus, while it is highly enriched in the axonal compartment during axon extension.
PTEN protein accumulates in the central domain of the growth cone of embryonic DRG
neurons where it associates with microtubules [131]. PTEN increases in the DRG and in the
sciatic nerve postnatally in neuronal cell bodies and axons. Apparently, the expression of
PTEN in peripheral nerves is reduced preceding myelination [132].

4.2. PTEN and Axonal Regeneration

The first study about PTEN in axonal regeneration revealed that PTEN deletion
enables CNS regeneration after crush injury in the adult optic nerve through the activation
of Akt and subsequent downstream signaling of mTOR and phosphorylation of S6. In
addition, deletion of PTEN reduces retrograde degeneration of RGCs demonstrating a
positive effect on neuron survival [95]. The E3 ubiquitin ligase NEDD4 is expressed in
RGC axonal growth cones together with PTEN and the disruption of NEDD4 inhibits
terminal branching through PTEN [113]. Studies about the effects of PTEN deletion in
corticospinal tract (CST) regeneration confirmed the high potential of PTEN to enhance
CNS regeneration. Conditional deletion of PTEN before or following spinal cord injury
promotes axon regeneration across the lesion site, which is followed by the enhanced
recovery of motor functions [133–136]. Remarkably, PTEN deletion even induced CST
regeneration in a chronic injury model one year after injury [137]. Since PTEN deletion
is common in several cancers and disrupts brain development leading to neurological
abnormalities including brain enlargement, seizures and early mortality, deletion of PTEN
in the CNS may lead to adverse side effects. An important study demonstrated that the
deletion of PTEN one day after birth in the motor cortex of mice did not cause evident
pathology such as tumors after 12–18 months. However, cortical motoneurons lacking
PTEN were larger and the laminar organization of the cortex in the area of the PTEN
deletion was disrupted [138].

Studies in the PNS confirmed the effects of PTEN inhibition on axonal regeneration.
Sciatic nerve injury reduces PTEN mRNA and protein levels gradually post injury in the
DRG and the sciatic nerve [104,120,132]. PTEN protein is reduced as well in DRG neuron
cultures after 72 h during rapid axon outgrowth on laminin substrate [53]. Pharmaco-
logical inhibition or deletion of PTEN promotes axon outgrowth of adult DRG neurons
in vitro. In contrast to the CNS, neurite outgrowth of DRG neurons in response to PTEN
inhibition is independent of the mTOR pathway, but it requires the activity of PI3K and
Akt [53,95,120]. Knockdown of the PTEN-regulating ubiquitin ligase NEDD4 upregulates
PTEN in DRG neurons and impairs axon outgrowth [111]. MiR-222 is upregulated in
DRG neurons after sciatic nerve transection which suppresses PTEN and promotes neu-
rite outgrowth in vitro [104]. Pharmacological inhibition and deletion of PTEN promotes
regeneration and enhances myelination of the sciatic nerve after transection or crush in-
jury [120,132]. A conditioning injury of the sciatic nerve leads to the release of NADPH
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oxidases from inflammatory macrophages in exosomes at the lesion site, which are retro-
gradely transported to the cell body and decrease the PTEN activity by oxidation, thereby
increasing Akt activation [139]. PTEN mRNA and protein are upregulated in diabetic
mice, indicating the association of PTEN with diabetic regenerative failure. Thus, PTEN
knockdown also accelerates the recovery after sciatic nerve injury in a chronic model of
diabetic polyneuropathy [140]. These various studies in the PNS underscore the multiple
functions of PTEN inhibition to promote axonal regeneration (Figure 3).

5. Combined Approaches to Enhance Axonal Regeneration

Regeneration of the CNS is still highly limited despite major efforts being made in
research. In the PNS regeneration is possible; however, the functional outcomes are often
poor in patients [3,15,141]. Neuronal regeneration is influenced by multiple factors, and
recent studies concurrently targeting different regulators of axon growth and signaling
pathways are promising. Our recent study demonstrated that simultaneous deletion of
SPRY2 and PTEN promotes axon elongation by the activation of Akt in adult DRG neuron
cultures stronger than the single knockdown. Interestingly, PTEN protein was significantly
reduced in DRG cultures from homozygous SPRY2 knockout mice, and PTEN deletion
strongly reduced SPRY2 protein levels indicating the reciprocal regulation of SPRY2 and
PTEN in DRG neurons [53]. Bisperoxovanadium (bpV) compounds such as bpV(pic)
or bpV(phen) serve as PTEN inhibitors [98,103,120,142]. To the best of our knowledge
inhibitors for SPRY2 are not available to date (SPRY proteins have no enzymatic function).
MiRs targeting SPRY2 and PTEN may be useful for therapeutic approaches. MiR-21 reduces
SPRY2 in the DRG and promotes neurite outgrowth by adult DRG neuron cultures [90]. In
cortical neurons, miR-21 decreases the expression of PTEN and reduces neuronal apoptosis
after scratch injury in vitro [106]. Furthermore, numerous miRs inhibit PTEN in tumors
and other disorders such as stroke. A recent review provides a comprehensive overview
about miRs that regulate PTEN [143]. In addition to miR-21, SPRY2 is regulated by the miR-
23a/24-2/27a cluster and by miR-122, miR-124 or miR-330-5p [144–147]. Among these miRs
in tumors, miR-23a inhibits SPRY2 and PTEN. Thus, miRs targeting different inhibitors
may be useful for future therapies. In vivo studies in the PNS investigated the effect of the
conditional co-deletion of PTEN and the suppressor of cytokine signaling 3 (SOCS3), an
inhibitor of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT)
pathway using PTEN/SOCS3fl/fl floxed mice. Although co-deletion of PTEN and SOCS3
increases sciatic nerve regrowth after crush lesion to a similar extent as PTEN deletion
alone, simultaneous knockdown of PTEN and SOCS3 leads to more rapid recovery of
noxious thermo- and mechanosensation than PTEN deletion alone [148].

In the CNS, simultaneous knockdown of PTEN and SOCS3 reveals improved re-
generation after optic nerve crush lesion [149]. Furthermore, genetic deletion of SOCS3
significantly promotes optic nerve regeneration when combined with intravitreous injection
of CNTF [150]. Likewise, PTEN knockdown using adeno-associated virus (AAV) vectors
combined with AAV encoding CNTF or cyclic adenosine monophosphate (cAMP) ana-
logue, enhances RGC axon regeneration stronger than PTEN downregulation alone [151].
The combination of PTEN deletion with the elevation of intraretinal cAMP activity by
applying a cAMP analogue and additional induction of eye inflammation by Zymosan in-
jection, enables RGCs to regenerate axons the full length of the visual pathway. This strong
stimulation of optic nerve regeneration even partially restores optomotor response, depth
perception and circadian photoentrainment, demonstrating that combined approaches
are utterly necessary for functional regeneration to occur [152]. In addition to optic nerve
regeneration, CST regeneration induced by the transduction of cortical motoneurons with
hyper-interleukin-6 (hIL-6) to stimulate JAK/STAT3 signaling, is further enhanced by
PTEN deletion [153]. Thus, the simultaneous stimulation of different signaling pathways
that promote neuronal regeneration is promising for the development of novel treatments.
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6. Conclusions

Together these studies demonstrate the outstanding role of signal transduction regula-
tors in axonal regeneration of the PNS and CNS. In particular, the deletion of the signal
transduction regulators SPRY2 and PTEN improves axonal regeneration in the CNS in
ways that have scarcely been observed before. Approaches targeting both SPRY2 and PTEN
or combining PTEN deletion with cAMP, CNTF or hIL-6 had even greater effects, holding
great promise for new treatments of neurological injuries in the future.
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