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Abstract: Male infertility is an increasing and serious medical concern, though the mechanism re-
mains poorly understood. Impaired male reproductive function affects approximately half of infertile
couples worldwide. Multiple factors related to the environment, genetics, age, and comorbidities
have been associated with impaired sperm function. Present-day clinicians rely primarily on standard
semen analysis to diagnose male reproductive potential and develop treatment strategies. To address
sperm quality assessment bias and enhance analysis accuracy, the World Health Organization (WHO)
has recommended standardized sperm testing; however, conventional diagnostic and therapeutic
options for male infertility, including physical examination and semen standard analysis, remain
ineffective in relieving the associated social burden. Instead, assisted reproductive techniques are
becoming the primary therapeutic approach. In the post-genomic era, multiomics technologies that
deeply interrogate the genome, transcriptome, proteome, and/or the epigenome, even at single-cell
level, besides the breakthroughs in robotic surgery, stem cell therapy, and big data, offer promises
towards solving semen quality deterioration and male factor infertility. This review highlights the
complex etiology of male infertility, especially the roles of lifestyle and environmental factors, and
discusses advanced technologies/methodologies used in characterizing its pathophysiology. A com-
prehensive combination of these innovative approaches in a global and multi-centric setting and
fulfilling the suitable ethical consent could ensure optimal reproductive and developmental outcomes.
These combinatorial approaches should allow for the development of diagnostic markers, molecular
stratification classes, and personalized treatment strategies. Since lifestyle choices and environmental
factors influence male fertility, their integration in any comprehensive approach is required for safe,
proactive, cost-effective, and noninvasive precision male infertility theranostics that are affordable,
accessible, and facilitate couples realizing their procreation dream.

Keywords: male infertility; sperm; etiology; aging; biomarkers; lifestyle; multiomics; precision thera-
nostics

1. Introduction

Infertility has been defined as a reproductive disease that prevents a healthy woman
from conceiving after at least 12 months of regular unprotected sexual intercourse [1]. Male
infertility encompasses any health issue that impedes the likelihood of conception and
can be caused by abnormal sperm function or obstructions that prevent ejaculation. Mul-
tiple factors, including illness, injury, chronic morbidity, and lifestyle choices, contribute
to its onset and progression [2]. Male fertility is largely determined in spermatogene-
sis, the development of spermatozoa from spermatogonia in the testes. This meticulous
developmental process is marked by both mitotic and meiotic divisions, followed by ex-
tensive morphological and biochemical differentiation, leading to a mature spermatozoan.
Male infertility is attributed to abnormal spermatozoa parameters (spermatogenic failure),
such as total absence (azoospermia), low count (oligozoospermia), abnormal morphology
(teratozoospermia), and/or abnormal motility (asthenozoospermia).
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Globally, infertility affects 15% of couples at reproductive age, with male infertility
accounting for up to half of all cases [2,3]. The age-standardized prevalence of male
infertility reportedly increases by 0.3% annually [4]. However, the increased male factor
infertility rate was geographically inconsistent and ranged from 20–70% [4].

Male infertility rates may be underestimated because of cultural differences, social
dilemmas, and patriarchy preventing accurate sampling and analysis [4]. In men, it can also
trigger anxiety about the stigma of hegemonic masculinity. It is particularly challenging in
pronatalist societies, where both virility and fertility are considered hallmarks of manhood,
but also in Western societies, where male infertility and impotence are conflated. Para-
doxically, assisted reproduction technologies (ARTs) can create additional layers of stigma
and secrecy [4]. Moreover, male infertility is associated with significant psychosocial and
marital stress, increased cancer risk, poorer overall health, and decreased life expectancy [4].

Semen quality, especially sperm concentration and motility, is the most widely ac-
cepted diagnostic marker of male infertility. The WHO has stipulated standard operating
procedures (SOPs) for sperm parameters’ analysis [5] to prevent assessment bias and en-
hance analysis accuracy. However, certain limitations, including ambiguous threshold
values, affect the reliability of semen analysis. Irrespective of the ongoing effort to refine
these reference values into more relevant subcategories, such as subfertile, indetermi-
nate, and fertile groups, the standard approaches still lack accuracy, reproducibility, and
therapeutic efficacy.

2. Male Infertility: Complex and Interconnected Roots

The lack of progress in treating male infertility owes largely to the underlying complex
etiology resulting from interactions among genetics, lifestyle choices, environmental factors,
and comorbidities (Figure 1). The influence of aging on male fertility has also become more
pronounced with the modern trend of planning pregnancy at later ages (≥40 years) [6].

Figure 1. Multifactorial etiology of male infertility.
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2.1. Anatomo-Pathophysiological Factors

Several anatomical and pathophysiological factors influence male infertility, including
blockage of sperm ducts (epididymis or vas deferens), ejaculation complications, testicular
injury/disease, hormonal disturbance, genetic disorders, and other medical conditions
(e.g., iatrogenic factors). Duct obstruction, which prevents ejaculation, occurs in ~5% of
infertile men and is indicative of azoospermia or severe oligozoospermia [7]. Testicular
injury/disorder can cause hormonal imbalance, sexual dysfunction, and infertility [8].
Retrograde ejaculation, a dysfunction of the bladder sphincter, is manifested by semen
ejaculation into the bladder and causes ~2% of infertility cases [9].

Male reproductive hormones are essential for sexual development and function. Some
endocrine disorders related to the hypothalamus, pituitary, and testicular glands can
cause infertility through the malfunctioning of sexual hormones and/or compromised
sperm production [10]. Sperm antibodies released in certain autoimmune disorders also
impair sperm function. Varicocele, an excessive enlargement of the scrotal veins, results in
retrograde blood flow and may cause infertility [9].

Besides certain sexually transmitted diseases (STDs) that infect the reproductive tract
and induce infertility [11], some bacteria [12] and the Zika virus [13] induce infertility.
Indeed, several pathologies of the male reproductive system, such as genitourinary tract
infection, induce oxidative stress (OS), associated with male infertility [14,15].

2.2. Environmental Factors

Several environmental factors, including pollutants, affect fertility through epi-/genetic
routes [16]. The epigenome links the genome and environment and can propagate epige-
netic tags across generations [17]. Several recent studies have addressed the sperm-specific
epigenetic signature, its transfer to oocytes, and effects on embryo development [17]. For
instance, occupational exposure to harmful physical and chemical agents is associated
with an increased risk of male infertility, poor semen quality, and decreased motile sperm
count [18,19]. Prolonged sitting, exposure to high temperatures (e.g., bakeries and metal-
lurgical industries), or high stress levels can also affect fertility. Job demand or workload
is positively correlated with early andropause besides psychological, somatic, and sexual
symptoms [20].

Other environmental factors include radiation exposure through mobile phones/laptops,
tight-fitting underwear, recurrent hot baths/saunas, and exposure to endocrine-disrupting
chemicals (i.e., pesticide residue, bisphenol A, phthalates, and dioxins) [21]. Recent meta-
analyses reported a relationship between mobile phone exposure (especially when posi-
tioned close to the genitalia) and reduced sperm motility and viability [22,23].

The human microbiome participates in both health and disease regulation through
endocrine, circadian, and molecular interactions. Microbial dysbiosis is a risk factor for
most non-communicable diseases. Some associations between the microbiome and male re-
production have been reported, though the mechanisms remain ambiguous [24,25]. Either
testicular and/or gut microbiome-induced immune system activation may lead to epididy-
mal inflammation and perturbed hormone secretion, including that of leptin, ghrelin, LH,
FSH, and testosterone, affecting both spermatogenesis and erectile function [26].

2.3. Lifestyle

Lifestyle encompasses all behavioral factors affecting health, including diet, exercise,
and the consumption of harmful substances (e.g., tobacco and alcohol). Diet-induced obe-
sity, for example, can affect male fertility by altering sleep and sexual behavior, hormonal
profiles, scrotal temperatures, and semen parameters; the risk of a non-viable pregnancy
is high for obese men [27]. Moreover, the risk of azoospermia sperm is high in both
underweight and overweight men compared to normal-weight counterparts. Decreased
sex-hormone-binding globulin levels have been reported in obese men, resulting in hyper-
insulinemia and elevated total estradiol levels; contrastingly, weight-loss programs have
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been associated with reduced cellular DNA damage, increased total motile sperm count,
and improved semen morphology [28].

Nutritional habits, alcohol and tobacco consumption, recreational drug usage, and
psychological stress affect fertility (Table 1) [21]. Through gut microbiota composition
alteration, a high-fat diet can induce intestinal dysbiosis and impede fertility through
elevated blood endotoxin levels, inflammation, epididymitis, and dysregulated gene ex-
pression in the testes [29]. High-energy and nutritionally poor processed foods have been
associated with asthenozoospermia risk, whereas a balanced diet (e.g., Mediterranean diet)
is associated with better sperm quality. Lifestyle modifications, particularly on the quality
of food consumed, are recommended besides common prescriptions to treat poor semen
quality [30].

Table 1. Associations between dietary habits and male fertility.

Nutritional Factors Findings References

Dietary patterns Unhealthy diets (western diet) increased
the risk of infertility. [31,32]

Dietary fats

High-fat dairy products may increase the
risk of infertility. Trans fatty

acids may increase the risk of metabolic
disorders that negatively affect

ovarian function.

[33–35]

Vegetables and fruits

Although vegetables and fruits were
associated with improved semen quality
and fertility related to antioxidants, folic

acid, fiber, and minerals, pesticide residues
may modify the beneficial effects.

[35–40]

Beverages High intake of sugary beverages increased
infertility risk.

High alcohol intake and smoking have adverse effects on several sperm parame-
ters [41], reducing fecundity and transmitting epigenetic aberrations to the offspring [16].
Excessive consumption of caffeine and recreational drugs, such as cannabis, opioids, and
anabolic steroids affect male fertility [41]. Other crucial lifestyle factors impeding reproduc-
tive function in men include lack of physical activity, exposure to stressful conditions, and
lack of sleep [42].

2.4. Aging and Male Infertility

Aging, a complex multifactorial process, progressively impairs cellular function
and promotes vulnerability to diseases. It is associated with disturbances in reproduc-
tive endocrinology that potentially causes andropause or late-onset hypogonadism in
males [20,43]. However, the molecular underlying mechanisms impacting semen quality
and common test parameters are poorly understood. Although the global mean paternal
age is 21 years, the most widely referenced cutoff age for advanced paternal aging or
andropause is 40 years [6]. Andropause increases infertility risk and affects semen vol-
ume and both sperm morphology and motility. However, the effects of aging on sperm
concentration remain unclear [44].

Andropause increases the risk of spontaneous abortions and complications in infancy,
including lower birth weights, genetic diseases, schizophrenia, and autism [45,46]. Aging
can induce several cumulative molecular and/or cellular events, including DNA damage
and sperm telomere shortening, leading to cellular senescence or apoptosis [43,47]. An-
dropause is associated with the accumulation of de-novo mutations, male infertility, and
increased genetic risk in the offspring. Telomerase dysfunction seemingly induces a DNA
damage response during senescence. However, the effects of andropause on sperm DNA
damage remain controversial [48]. Andropause also suppresses the antioxidant defense
system and DNA repair machinery, increasing reactive oxygen species (ROS) production
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and possibly causing genomic instability [49], which can lead to gene expression dysregu-
lation and microRNA (miRNA) patterns [48], both of which are key regulators of normal
spermatogenesis.

The multiple facets affecting male infertility (Figure 1), deeply embedded in genome–
lifestyle–environment crosstalk, complicate accurate diagnostics development and effective
therapeutics. The increasing rates of male infertility highlight the need for integrative
approaches that address its complex etiology.

3. Markers of Male Infertility

Given the complex etiology of male infertility, several factors possibly interact. In
the era of precision medicine, more comprehensive biomarker sets, combining conven-
tional parameters (e.g., sperm morphology, seminal fluid parameters, and DNA damage)
and omics-technology-driven markers (e.g., mutations, single-nucleotide polymorphisms
(SNPs), transcripts, proteins, and metabolites), are required to elucidate the molecular
and pathophysiological basis of male infertility. Hence, improved molecular stratification
using effective testing approaches can be implemented towards developing more accurate
diagnostics and effective therapeutics.

3.1. Seminal Fluid Parameters and Sperm Morphology

Sperm morphology and seminal fluid parameters are considered primary morpho-
logical and physicochemical diagnostic markers of male infertility and are crucial for
the development of suitable treatments. To avoid inter-laboratory bias, the WHO pub-
lished a standardized laboratory manual in 1980 for the examination and processing of
human semen; the most recent revision was published in 2021 and includes the latest tech-
niques (https://www.who.int/news/item/27-07-2021-who-launches-updated-manual-to-
ensure-high-quality-testing-of-human-semen-in-clinical-and-research-settings, accessed
on 21 February 2022). According to these guidelines, the two primary quantifiable attributes
are spermatozoa number and the fluid volume secreted by various accessory glands [5],
though several other microscopic determinants exist (Figure 2A). According to the guide-
lines, the main semen parameters used in the diagnosis of infertility are: (i) liquefaction
(coagulated semen should liquify in 15–20 min at room temperature), (ii) viscosity (high
viscosity could indicate prostatic dysfunction), (iii) volume (after 3 to 5 d of sexual absti-
nence, the average ejaculate volume should be 1.5 to 6 mL, while higher and lower volumes
indicate hyperspermia and hypospermia, respectively), (iv) color (normal semen is pearl
white and slightly yellowish), (v) pH (must be >7.1, lower values could indicate efferent
vessel dysgenesis that leads to low sperm concentration), (vi) concentration (15 million
spermatozoa per milliliter of ejaculated volume), (vii) motility (the proportion of motile
spermatozoa should be >32%), (viii) vitality (proportion of live spermatozoa must be >58%),
(ix) leukocyte concentration (more than 1 million/mL of sample), (x) morphology (≥4% of
spermatozoa in a sample should be normal), and (xi) anti-sperm antibodies (according to a
mixed antiglobulin reaction (MAR) test, attachment of ≥50% of spermatozoa to other cells
or particles indicates an immune disorder) [5].

Advanced microscopic tools have enabled in-depth structural investigation of sperm
morphology (Figure 2B) and identification of potential abnormalities (Figure 2C). The
sperm tail is essential for motility and fertility. Abnormal tail structures may result from
tissue-specific gene and protein expression/aberration [50,51]. Motile cilia malfunction
causes primary ciliary dyskinesia, a genetic condition (briefly described in Section 3.4)
associated with sperm phenotypic defects. While ciliary structural defects can be identified
by transmission electron microscopy, both ciliary beat patterns and frequency defects can
be identified by high-speed video microscopy analysis [52].

https://www.who.int/news/item/27-07-2021-who-launches-updated-manual-to-ensure-high-quality-testing-of-human-semen-in-clinical-and-research-settings
https://www.who.int/news/item/27-07-2021-who-launches-updated-manual-to-ensure-high-quality-testing-of-human-semen-in-clinical-and-research-settings
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Figure 2. Standard analysis of sperm parameters. (A) First-line markers of male infertility diagnosis
in seminal fluid and sperm morphology. (B) Structure of normal sperm. (C) Abnormal morphology
due to defects of the head, midpiece, or tail of the sperm. (D) Conserved axonemal structure of
motile cilia and flagella with a ring of nine microtubular doublets and a central pair of microtubules.
(E) Inner and outer dynein arms.

3.2. Reactive Oxygen Species

Approximately 30–80% of men with idiopathic infertility show increased concen-
trations of free oxygen radicals or ROS [53], a candidate marker for male infertility. OS
occurs when ROS levels increase disproportionately to antioxidant-neutralizing capacity.
In the male reproductive system, ROS can be derived from sperm cells, though leukocytes
produce at least 1000-times more ROS than spermatozoa. Approximately 10–20% of in-
fertile men have an increased number of leukocytes in the ejaculate [5], but this is likely
underestimated, given the relatively high cutoff value for leukocytospermia (>106/mL).
The accuracy of the clinical cutoff value for leukocytospermia remains controversial due
to conflicting data on the physiological and pathological roles of leukocytes in semen
samples [54].

Although free radicals control sperm maturation, capacitation and hyperactivation,
acrosome reaction, and sperm–oocyte fusion, they can also initiate protein damage, lipid
peroxidation, DNA damage, and apoptosis [55]. Both high and low levels of OS can affect
sperm function by impairing viability, motility, and fertilization potential [14,15,56], with
sperm being particularly susceptible to OS due to high polyunsaturated fatty acid (PUFA)
concentrations in their plasma membranes, a lack of antioxidant defense, and limited cell
repair systems.

3.3. Sperm DNA Fragmentation (SDF)

DNA damage/fragmentation represents an alteration in the DNA structure that causes
cellular injury and reduces cell viability. As a major molecular cause of male infertility,
sperm DNA fragmentation (SDF) has become an important prognostic and diagnostic
marker [57] and correlates well with conventional semen parameters, including abnormal
head shape and reduced progressive motility [58]. The assessment of SDF also offers a tool
for selecting sperm with the best DNA integrity for use in ARTs [58].

DNA damage can broadly be classified into two categories: endogenous and ex-
ogenous. Endogenous DNA damage arises from naturally present factors or chemicals;
exogenous DNA damage is induced by foreign agents or factors [59]. The main endogenous
DNA damage types caused by ROS include (i) DNA fragmentation, (ii) mitochondrial
DNA damage, (iii) telomere attrition, (iv) Y chromosome microdeletions (Y-CMs), and
(v) DNA methylation and acetylation (epigenetic factor) (Figure 3). DNA fragmentation
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can occur on either single- or double-stranded DNA. ROS induces DNA fragmentation
by modifying DNA bases and inducing the release of 8-hydroxy-2′-deoxyguanosine, a
marker of DNA fragmentation [60]. Unlike genomic DNA, circular mitochondrial DNA are
more vulnerable to ROS given their lack of histones and protamines. Since mitochondria
produce ATPs, mitochondrial dysfunction leads to higher ROS production [61]. Telomeres
contain non-coding DNA repeats and protect chromosomal DNA from degradation by
ROS. The shortening of telomere repeats indicates cellular aging. Epigenetic modifications
in methylation and acetylation processes induced by ROS result in harmful effects on sperm
production and function [62].

Figure 3. Different types of DNA damage and their possible methods of assessment.

DNA replication errors and base mismatches can occur during cell division. These
errors or mismatches escape proofreading and mismatch repair (MMR) pathways and
become mutations in the ensuing replication round or result in DNA damage [63,64].
Topoisomerase enzymes, which remove super-helical tension from DNA during replication
and transcription, can cause endogenous DNA damage. Base deamination is another
source of mutation that converts cytosine, adenine, guanine, and 5-methyl cytosine to
uracil, hypoxanthine, xanthine, and thymine, respectively, by removing the exocyclic amine
group. Unstable basic sites are continuously generated in DNA when the N-glycosyl bond
is cleaved or hydrolyzed, which may influence endogenous DNA damage [59]. Besides
endogenous DNA damage and epigenetic changes, Y-CMs are an important cause of male
infertility [65].

Several assays are used to assess SDF, despite varying results between tests (Table 2).
Based on their ability to measure sperm chromatin integrity or DNA damage, they are
classified into direct and indirect tests. The terminal deoxynucleotidyl transferase nick-end
labelling (TUNEL) assay is recommended, given its ease of use, and allows for stronger
correlations with embryo viability. Moreover, the TUNEL assay is robust and highly
reliable in identifying both single- and double-strand DNA breaks in spermatozoa from
neat, washed, and cryopreserved semen samples [66].

Several techniques are used to assess sperm DNA fragmentation, including: (i) aniline
blue staining and the chromomycin A3 test, (ii) sperm chromatin structure assay (SCSA),
(iii) sperm chromatin dispersion (SCD) test, (iv) comet assay or single-cell gel electrophore-
sis (SCGE), and (v) DNA-breakage detection-fluorescence in-situ hybridization [67,68]
(Table 2).
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Table 2. Techniques used to assess sperm DNA fragmentation.

Test Purpose Method Principle Result

TUNEL
To identify single- and

double-strand DNA
breaks

Fluorescence-labeled
nucleotides are added

to the site of
DNA fragmentation

Quantifies the
enzymatic

incorporation of
dUTP in DNA breaks

Sperm with fragmented
DNA fluorescence

CMA3 staining To determine DNA
integrity Staining by CMA3

Competes with
protamine for the same

binding site in DNA

A positive test indicates a
low DNA

protamination state
associated with poorly

packaged sperm
chromatin

SCSA/AO test
To detect breaks in

single-stranded
DNA (ssDNA)

Acid denaturation,
followed by staining

with AO

AO emits fluorescence
after binding
with breaks

Denatured DNA emit an
orange-red fluorescence,
normal DNA emits green

SCD/Halo test To detect DNA breaks
in lysed sperm nuclei

Agarose-embedded
sperm are subjected to a
denaturing solution to

remove nuclear proteins

Assesses dispersion of
DNA fragments after

denaturation

Sperm with fragmented
DNA do not produce

the halo
characteristic; halo of

dispersed DNA loops are
observed in sperm with
non-fragmented DNA

SCGE/
Comet
assay

To detect DNA
single-strand breaks,

ALS, and cross-linking
Gel electrophoresis

Electrophoretic
assessment of

DNA fragments

Comet tail size represents
the amount of

DNA fragments

ALS, alkali-labile sites; AO, acridine orange; CMA3, chromomycin A3; SCD, sperm chromatin dispersion; SCGE,
single-cell gel electrophoresis, SCSA, sperm chromatin structure assay; TUNEL, terminal deoxynucleotidyl
transferase nick-end labelling.

However, these tests do not reveal the type and location of DNA damage. Therefore,
high-throughput DNA sequencing platforms are recommended for improved specificity,
accuracy, coverage, and discovery of DNA fractures, microdeletions, and SNPs, besides
improved statistical power in infertility status analysis.

3.4. Genomic Markers

Approximately 2000 protein-coding genes contribute to the genesis and maturation
of millions of male gametes, which takes 72 days to complete. Therefore, the genetic
landscape of male infertility is highly complex and is an emerging area of research. Genetic
factors impact all major etiological categories of male infertility, and some can be tested
by routine diagnostics [69]. Genetic factors have been identified in 10–20% of spermato-
genic impairment cases, though the majority of these gene–disease relationships require
verification [70].

Although karyotype is the oldest known genetic testing of azoospermia/oligozoospermia,
Y-CMs have become increasingly relevant genetic causes of male infertility, thanks to the
development of potent molecular analysis tools. Y-CM is more prevalent in spermatogenic
failure than in normochromic men, and occurs in 5% of oligozoospermic men and 10% of
men with azoospermia [71]. The vast majority of these are de-novo microdeletions, i.e.,
microdeletions that occur as cellular events during spermatogenesis, indicating that the Y
chromosome is particularly unstable. The Y chromosome is acrocentric, with a short arm
(Yp) and a long arm (Yq) (Figure 4). During meiosis, only pseudoautosomal regions of the
Y chromosome undergo recombination with the X chromosome, whereas the male-specific
region, which comprises 95% of the Y chromosome and contains 78 protein-coding genes,
does not. Among them, 27 genes are involved in spermatogenesis and testis develop-
ment, among other organs [72] (Figure 4). Frequent microdeletions in the azoospermia
factor (AZF) region of Yq are associated with spermatogenesis failure. There are three
distinct regions in AZF, AZFa, AZFb, and AZFc, each containing various genes for a variety



Cells 2022, 11, 1711 9 of 29

of functions. AZFa is located most proximally from the centromere, followed by AZFb
and, most distally, AZFc [73]. Severe deletions of AZFa and AZFb are not transmissible,
while men with AZFc deletions will commonly require ART. Therefore, individuals with
azoospermia and severe oligozoospermia are recommended to undergo Y-CM screening
and karyotype assessment, according to the American Society for Reproductive Medicine
guidelines [74]. Currently, the molecular diagnosis of Y-CM involves PCR-based analysis
of sequence-tagged site markers that are mapped within specific AZF regions of the Y chro-
mosome. Contrastingly, routine PCR may fail to identify novel Y-CMs or microduplications.
Hence, a higher-resolution analysis of all the Y chromosome loci is required in order to
simultaneously assess its integrity in a single assay. A new microarray procedure targeting
known Y-CMs that are undetectable using conventional multiplex PCR technologies has
recently been developed [75]. However, multiplex PCR is the most commonly applied
Y-CM detection method and is used to amplify small portions of each region, with losses
reported only as AZFa, AZFb, and/or AZFc deletions [65,76]. Recently developed panels
for male/female infertility genes achieved high accuracy in diagnosing copy number vari-
ants (CNVs), insertion/deletions, sex chromosome aneuploidies (94% accuracy for Y-CM),
cystic fibrosis transmembrane conductance regulator (CFTR) gene, and thymidine tract
length quantification [65,76].

Figure 4. Structure and genes of the Y chromosome. Genes of each region are listed in a color-coded
box with corresponding segments. The pseudoautosomal region and centromere (C) are shown
in dark grey. The short arm (Yp) and long arm of the Y chromosome (Yq) are shown in light grey.
AZF (-a: blue, -b: green, -c: orange, -b/c overlapping region: lime green), azoospermia factor; H1,
HERV15yq1; H2, HERV15yq2. The palindromic regions (P1 to P8) are shown above the chromosome
in black alongside various Y chromosome deletions.

The X chromosome does not undergo replication during meiosis; therefore, it is
seemingly protected from unpaired chromosome inactivation, similar to the Y chromosome.
Although the X chromosome may have an important function in germ cell survival, X-linked
palindromic genes might not be essential for spermatogenesis [77]. Most single-copy genes
of X chromosomes are conserved among species, which complicates the study of these genes
in animal models. Furthermore, validated X chromosome-linked monogenic causes of male
infertility are surprisingly uncommon [78], with a few exceptions: (i) aneuploidy of the X
chromosome in Klinefelter syndrome, (ii) X-chromosome or X-autosome translocations (XX-
male syndrome), and (iii) point mutations disrupting X-chromosomal genes [79]. Klinefelter
syndrome is a chromosomal condition caused by the presence of an extra X-chromosome.
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Approximately 0.2% of the general population has this syndrome, compared to 15–20% of
nonobstructive azoospermia (NOA) patients [78,79].

CNVs are structural variants with changes in the number of copies of specific DNA
regions compared with the reference genome. CNVs are major causes of human genome
variability due to deletion or duplication of the original sequence, without any additional
mutation, resulting in unequal crossover between or within chromosomes. Quantitative
spermatogenic disturbance analysis revealed that X-linked CNVs were associated more
with infertile men than controls [80]. For example, CNV67 deletion affects MAGEA9, a
gene on the X chromosome that is specifically expressed in the testis under physiological
conditions [78]. Similar to the X chromosome, there is a strong belief that several other
autosomal loci may impair male fertility as a consequence of CNVs [81]. Indeed, some
gene mapping on the Y chromosome seems to directly affect male fertility [73]; thus,
any chromosomal anomaly causing under-expression or loss of function can impair male
fertility. From this perspective, the SRY and AZF loci can be considered models. However,
more complex contexts with additional copies of one or more genes can be expected,
such as aneuploidies, duplications, or unbalanced translocations. There is little evidence
supporting a direct relationship between CNVs and other male-sterility-related genes, such
as RBMY1 and DAZ. However, other male-fertility-related Y-linked genes may be involved,
given that some show clear up- or down-regulation in infertile men [80].

Gene polymorphisms are genomic variations, in which two or more discontinuous
genotypes or alleles are simultaneously present in a population. SNPs are variations caused
by mutations at a single position in a DNA sequence. Disease-associated genetic variants
are highly penetrant monogenic variants—a single gene mutation leading to a consistent
disease phenotype. Although these variants may be associated with the disease, they do not
directly affect gene function [82]. The majority of male-infertility-associated genetic variants
are located on sex chromosomes [82–84]. Other autosomal polymorphisms have also been
identified. For example, SNPs in methylene-tetra-hydro-folate reductase (MTHFR), a key
enzyme in folate metabolism, contribute to an increased risk of male infertility [85,86].
Another gene that encodes DNA polymerase gamma (POLG), an enzyme responsible for
the replication and repair of mitochondrial DNA, is also associated with sperm dysfunction;
however, the role of POLG in male infertility remains controversial [87,88].

The MMR pathway plays a critical role in the maintenance of genome integrity, meiotic
recombination, and gametogenesis. SNPs in MMR genes reduce MMR function and may
lead to mutations in other genes. SNPs (MLH1, MSH2, PMS2, MLH3, MSH4, MSH5, and
MSH6) in MMR genes result in male infertility [63,64,89]. The MMR gene MLH1 is involved
in spermatogenesis and is associated with male infertility (i.e., oligozoospermia), likely
through epigenetic regulation (i.e., methylation) [90].

Mitochondrial genes are the key molecular components of sperm cells. Mature mam-
malian spermatozoa contain large amounts of mitochondria required for energy production
to support motility. Mitochondria also regulate several pathways involved in spermatogen-
esis [91]. A higher prevalence of 4977 mtDNA was found in subjects with impaired sperm
motility and fertility, indicating that the maintenance of the mitochondrial redox microen-
vironment and genome integrity influence sperm function regulation [92]. Although 785
point mutations have been identified in the non-coding control regions, rRNA genes, tRNA
genes, and the coding regions of mtDNA samples, which were mainly transition mutations,
identifying the roles of these genes in male fertility requires further investigation [93].

3.5. Transcriptomic and Epigenomic Markers

Spermatozoa are considered sophisticated paternal-genome-delivery vehicles that
contain several nucleic acids (DNA and RNA) in their cytoplasm [94]. More than 270 types
of RNAs have been reported in mature human spermatozoa and their functions in embryo
development remain unclear [95]. Interestingly, seminal plasma RNAs influence the sperm
RNA content, which is modulated during epididymal transit. Spermatozoa in the caput
epididymis are enriched with miRNAs, while tRNA-derived fragments are more abundant
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in the cauda. Spermatozoa retrieved from the caput epididymis were unable to penetrate
the oocyte, possibly due to a lack of competence/capacitation for fertilization provided by
the RNAs, proteins, and metabolites of the cauda [96]. Differential expression of miRNAs
has been observed in the seminal plasma of fertile and infertile men [97,98]. Additionally,
efforts are also diverted towards the identification of differentially expressed circular RNAs
as possible epigenetic regulators/markers of spermatic function and sperm quality [99].
Although further validation is needed, some potential miRNA markers that may facilitate
accurate male infertility diagnosis and treatment have been reported (Table 3). Collectively,
these findings support the importance of the seminal plasma transcriptome in fertility.

Epigenomics is the main route of environmental impact on male (in)fertility [17]. DNA
methylation is an epigenetic factor that plays a critical role in spermatogenesis [100,101].
Proper methylation ensures successful chromatin condensation in the sperm head, enabling
sperm maturation and regulating fertilization and post-fertilization events [102,103]. Sev-
eral studies have analyzed the association between male infertility and methylation of
sperm DNA [104]. For example, the impairment of MTHFR by methylation can contribute
to diseases, including male infertility [105].

Table 3. Transcriptomic and epigenetic factors associated with male infertility.

miRNA/Transcriptomic
and Epigenomic Factors Regulation Association with Ref

miR-196a-2, miR-196a-5p,
miR-141, miR-429,

and miR-7-1-3p
Up-regulation Idiopathic male infertility [97,106]

miR-424 Down-regulation Idiopathic male infertility [107]
MiR-371a-3p Up-regulation Sperm concentration and total sperm count [108]

piR-31068, piR-31098,
piR-31925, piR-43771,

and piR-43773

Differentially
expressed/

down-regulation
Asthenozoospermia [109]

miR-19b and let-7a Up-regulation Idiopathic infertility [110]
hsa-let-7b-5p Down-regulation Asthenozoospermia/idiopathic male infertility [111]

miR-192a Up-regulation Germ cell apoptosis [112]
miR-23b, miR-146a, miR-155,

miR-223, miR-17-92,
and miR-34a

Down-regulation Miscarriage, pre-eclampsia, and small for
gestational age fetuses [113]

MTHFR promoter Hypermethylation Abnormal concentration/motility of sperm [114–116]

Histones are suitable candidates for the transmission of epigenetic information, given
their involvement in chromatin folding and transcription regulation [117]. Aberrant H4
acetylation is associated with impaired spermatogenesis and Sertoli cell-only syndrome
in infertile men. Other epigenetic alterations that involve changes in factors that regulate
gene expression have also been associated with various conditions and disorders, including
abnormal sperm profiles in infertile men [62].

The emergence of high-throughput techniques has enabled exploration of the relation-
ship between DNA methylation and male infertility [118]. These genome-wide association
(GWAS) studies could help investigating the changes in methylation patterns in the male
reproductive system, either in fertile or infertile men, to identify spermatogenesis-related
genes and reliable biomarkers [62]. An array-based DNA methylation profile using pe-
ripheral blood from infertile men can also be considered for diagnostic purposes [119].
However, these approaches require large and multicentric studies to identify benchmark
biomarkers with tangible outcomes.

3.6. Proteomic and Metabolomic Markers

The spermatozoon is a highly specialized and easily accessible cell. Therefore, it
is remarkably suitable for proteomic analysis, as a whole cell or isolated organelles, of
the expression of functional and structural proteins, during either spermatogenesis or
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spermiogenesis and all their post-translational modifications. Other techniques, including
Western blotting and ELISA, are used to identify targeted proteins. Despite the progress
made in understanding some molecular events associated with sperm maturation and
fecundity, additional studies are required to unravel the pathophysiology of male infertility
at the proteomic level [120,121].

Proteomics of mature sperm cells generally reveals two types of proteins: (i) proteins
of extracellular origin (i.e., accessory sex glands), adsorbed on the surface of the ejaculated
sperm cell, such as seminogelin-1 and prostate-specific antigen (PSA), and (ii) sperm
cell proteins divided into detergent soluble and insoluble fractions. The detergent-soluble
fraction comprises proteins in the cytoplasm, signaling molecules, and membrane receptors,
whereas the detergent-insoluble fraction comprises cytoskeletal/structural and nuclear-
chromatin-binding proteins. Up to 11% of sperm proteins participate in cell defense against
OS and apoptosis. Therefore, the differential expression of these protective factors in the
sperm of infertile men with leukocytospermia may explain the generation of OS in these
patients. Additionally, several proteins that correlate with sperm DNA integrity have
been identified and can serve as markers to discriminate obstructive from nonobstructive
azoospermia [122,123]. Clusterin, epididymal secretory protein E1, and PSA have been
proposed as seminal biomarkers for in-vitro fertilization (IVF) success in unexplained
infertile couples [124] and correlated with sperm quality, motility, and viability [125].

Metabolomics is another high-throughput technology used to study disease mech-
anisms and diagnosis, with seminal fluid, serum, and urine samples being commonly
used for metabolomic fingerprint research in male infertility [126,127]. A seminal plasma
metabolic signature study demonstrated that environmental exposure to arsenic, phtha-
late esters, and perfluorinated compounds was associated with poor semen quality [128].
Metabolomics can also function as an infertility diagnostic tool [129,130], and about 44
metabolites were differentially expressed in infertile men [131]. Interestingly, these metabo-
lites predicted infertility with a specificity of 92%.

Despite efforts to use omics technologies in identifying clinically actionable biomark-
ers, the studies are scattered and performed mostly at an institutional level, therefore,
requiring multicentric validation and association with other omics and clinical settings to
be translated safely and effectively. High-throughput technologies are required to study
the genomic, transcriptomic, proteomic, metabolomic, and metagenomic profiles of infer-
tile men and their association with sperm DNA damage, inflammation, and ROS using
appropriate controls (fertile donors).

4. Current Therapeutic Options

So far, no pharmacological treatments for stimulating spermatogenesis in primary
testicular failure have been approved. The main therapeutic option for infertile men is
assisted reproductive technologies (ARTs) followed by surgery.

4.1. Assisted Reproductive Technologies (ARTs)

In the USA, ~1% of successful births were attributed to ARTs in 2001. ARTs encompass
ovarian stimulation, sperm retrieval, in-vitro gamete assessment, intrauterine insemination
(IUI), intracytoplasmic sperm injection (ICSI), gamete and/or embryo cryopreservation,
and IVF. Other procedures, such as preimplantation genetic diagnosis and -screening (PGD
and PGS), are also considered adjunctive tools for ART. In the absence of evidence-based
science, management of male factor infertility relies extensively on ARTs. IUI is the primary
option when the female partner is fertile and enough motile spermatozoa (>106 motile cells)
can be retrieved. When >3 cycles of IUI fail, optimized in-vitro fertilization (IVF) using
ICSI is usually recommended. Sperm cells, in this case, are recovered either surgically or
from seminal fluid [132].

Although ART is the main procedure for effective subfertility treatment, its availabil-
ity, accessibility, and affordability differ between countries [133,134], and post-treatment
complications remain a concern [135]. Some common complications include ovarian hy-
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perstimulation syndrome, a risk of multiple pregnancies, and low birthweight [136–138].
Therefore, the development of safe and cost-effective therapeutic options to address male
infertility is necessary in this post-genomic era.

4.2. Surgical Approaches

Surgical approaches, including robotic surgery, are increasingly used to treat particular
types of male infertility. Men with obstructive azoospermia can be treated with epididymal
or testicular sperm extraction (TESE), using microsurgical epididymal sperm aspiration
(MESA), percutaneous epididymal sperm aspiration (PESA), or reconstructive surgery.
TESE/micro-TESE can retrieve testicular sperm in up to 50% of NOA patients [139]. How-
ever, mean serum testosterone levels were reduced after six months of TESE [140]; thus,
endocrine surveillance for hypogonadism should be considered in men with NOA after
TESE. Furthermore, genetic disorders, such as AZFa/AZFb microdeletions or XX male syn-
drome, are contraindications to TESE because of their incompatibility with spermatogenesis.

Reconstruction of the testes and scrotum for male infertility treatment may fall under
simple hydrocelectomy; however, this could be complex in some cases. In adults, hydroceles
were found in 1% of fertile men, while 0.7% were found in infertile conditions. In the
primary stage, tetracycline or phenol is injected into the hydrocele, a technique known as
sclerosing or sclerotherapy, which can alleviate 60–90% of scrotal problems. This constitutes
a simple option for removing hydroceles and improving male fertility [141].

Although conventional penile reconstruction has many disadvantages [142], advanced
microsurgery facilitates phalloplasty technique, including a radial artery forearm flap,
thigh flap, and latissimus dorsi flap. The radial forearm is the most commonly used
technique, with 80% of patients reporting improved sensation, 99.1% reporting normal
urination, and 98% reporting satisfactory outcomes [143]. Most importantly, 75% of the
treated population can achieve orgasm [144], though some patients require post-surgery
anastomotic revision. A fibular osteocutaneous flap can provide long-term rigidity to the
penis that allows for normal sexual intercourse [145]. Disadvantages of this technique
include partial flap loss (~12% of total cases) and fistula formation [146]. Another advanced
approach in penile reconstruction is an anterolateral thigh flap, where 100% of patients
report improved sensation.

4.3. Antioxidants

Antioxidants can scavenge free radicals and treat OS in infertile patients [147]. The
therapeutic use of enzymatic antioxidants, such as superoxide dismutase (SOD), is limited
due to its high instability, low half-life, and high immunogenicity [148,149]. Catalase (CAT),
another antioxidant, assists in the conversion of H2O2 into molecular oxygen and water;
however, its usage and effect in human sperm remain uninvestigated [149]. Glutathione
peroxidase (GPX) is a CAT that may influence human fertility, with higher sperm recovery,
motility, and bioavailability after cryopreservation [150]. Another promising enzymatic
antioxidant is inositol, which shows improved sperm parameters [151,152].

A non-enzymatic antioxidant group, obtained either through endogenous metabolism
or diet, can be used to address male infertility (Table 4). This group includes Q-10 coenzyme
(CoQ10), carnitine, and lycopene. CoQ10 reduces ubiquinol by oxidizing ubiquinone and
protects the cell membrane from lipid peroxidation; CoQ10 oral supplements significantly
improved sperm concentration and motility [153]. Carnitines are long-chain fatty acid
transporters in the mitochondria that contribute anti-apoptotic effects, which have a positive
relationship with sperm quality [149]. Lycopene, a primary carotenoid found in the testes
at high concentrations, has antiproliferative, immunomodulatory, and anti-inflammatory
effects, which promote cell differentiation, improve sperm count, decrease seminal OS, and
increase IVF success rates [154].
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Table 4. Main non-enzymatic antioxidants used to treat male infertility.

Antioxidant Dose Effects on Sperm Parameters/Quality References

CoQ10 200–300 mg/day Improved sperm motility and TAC concentrations
and decreased MDA levels. [153,155,156]

Carnitines 25 mg/day Improved sperm count, motility, and morphology. [157–159]

Lycopene 20–25 mg/day
Increased seminal omega-3; improved sperm count,

concentration, motility; and improved TAC;
decreased seminal oxidative stress.

[154,160,161]

NAC 600 mg/day
Reduced apoptotic rate; improved sperm morphology,

volume, motility, viscosity, TAC, DNA fragmentation, and
protamine deficiency; decreased ROS production.

[162–164]

Melatonin N/A
Sperm melatonin incubation was positively correlated

with reduced DNA damage, MDA levels and
higher sperm viability and motility.

[165–169]

Alpha-lipoic acid 600 mg/day Improved sperm viability, motility, count, concentration,
and TAC; decreased DNA damage and MDA levels. [170–173]

Omega-3 1.5–2.0 g/day
Improved sperm volume, count, concentration, motility,

and morphology; improved testis size, TAC,
and reduced DNA fragmentation.

[174–176]

CoQ10, Q-10 coenzyme; MDA, malondialdehyde; ROS, reactive oxygen species; TAC, total antioxidant capacity.

Other antioxidants, such as N-acetylcysteine (NAC), melatonin, alpha-lipoic acid
(ALA), and omega-3 fatty acids (OFA), can also be applied in fertility management. NAC,
a precursor of GPX, can directly stabilize free radicals by donating an electron from its
outer layer. Multiple studies involving NAC have shown that it improves male fertility
by increasing seminal fluid [163], reducing ROS molecules in sperm [177], and improving
other sperm parameters [149]. Melatonin is an amphiphilic hormone that increases SOD,
CAT, and GPX activities [165] to scavenge ROS [178], and even abolish apoptosis [165].
Fertile men show higher seminal and serum levels of melatonin than infertile men [167],
and melatonin levels correlate with DNA fragmentation and sperm viability [165,167]. ALA
is another potent biological antioxidant that can enter the Krebs cycle and assist in ATP
production, promoting the functionality of SOD, CAT, and GPX [170]. Oral supplementation
with ALA or cell incubation improved sperm quality parameters, such as total sperm count,
concentration, motility, viability, and sperm morphology [170,172,173,179]. Finally, OFA
intake increased normal sperm morphology, volume, concentration, motility, and total
sperm count [175,180].

4.4. Vitamin and Mineral Supplementation

Vitamins play an essential role in the normal functioning of the human body, with
vitamins C, E, and B9 (folic acid) being the most relevant in male fertility (Table 5). In sperm
cells, vitamin C prevents agglutination, protects against DNA damage caused by ROS [181],
and improves sperm parameters [182]. Vitamin E serves multiple functions in male fertility,
including regulation of testosterone biosynthesis, telomerase activity [183], and lipid perox-
idation activity. Folic acid is essential for DNA metabolism and gene expression to prevent
abnormal chromosomal replication and mitochondrial DNA deletions; however, its role as
a suppressor in improving male infertility requires further exploration [184].
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Table 5. Some vitamins and minerals used as supplements to treat male infertility.

Vitamins/
Minerals Dose Main Conclusions References

Vitamin C 1.0 g/day

Improved semen agglutination
and sperm concentration, motility,
and viability; positively associated

with higher fertilization rates.

[182,185]

Vitamin E 100–600 mg/day Decreased MDA levels and
increased fertilization rates. [186]

Vitamin B9 5 mg/day Improved sperm count. [187]

Zinc 200–500 mg/day

Improved sperm count, motility,
and fertilization rates and
reduced the incidence of

anti-sperm antibodies;
improved sperm

chromatin integrity.

[188,189]

Selenium 200–1000 µg/day

Improved TAC and sperm count,
concentration, motility,

and morphology; positively
associated with pregnancy and

live birth.

[190–194]

MDA, malondialdehyde; TAC, total antioxidant capacity.

Minerals, especially zinc and selenium, influence male fertility. Zinc is a micronutrient
that participates in cell signaling, enzyme activity, normal growth and sexual maturation
regulation, and management of mitochondrial OS. Zinc incorporation into sperm may
protect against sperm decondensation and alleviate sperm motility, membrane stabiliza-
tion, antioxidant capacity [195,196], and normal sperm morphology. Low zinc levels are
widely reported in the seminal plasma of infertile men [197,198]. Selenium targets free rad-
icals, alleviates testicular toxicity, promotes DNA repair [199], and is positively associated
with sperm count, morphology, motility, and concentration [190,192,200]. Higher levels
of successful conception and live births were correlated with higher seminal selenium
levels [194].

4.5. Hormonal-Based Therapies

Hormone-based therapy involves the use of hormones or their antagonists in medical
treatment. Hormone therapy improved endogenous follicle-stimulating hormone and/or
androgen levels and, subsequently, spermatogenesis in infertile men [201]. Gonadotropin
replacement therapy and antiestrogens are administered to azoospermic men before sur-
gical sperm retrieval, although their efficacy is lacking. Gonadotropin therapy is highly
effective but not necessarily in men with idiopathic oligozoospermia. Improved birth
and pregnancy rates were observed in males receiving follicle-stimulating hormone [202].
However, a lack of standardization exists in the treatment duration and dose/type of
antiestrogen therapy. Moreover, the use of these pharmacological therapies for testicular
failure pre-ICSI or -TESE is still controversial and not supported by current guidelines [203].
Furthermore, antiestrogen therapies may have some side effects on male sexual function
(sexual desire and erectile function) [204].

5. Promotion of a Healthy Lifestyle: A Promising but Underexplored Approach

Selective lifestyle choices are cost effective, accessible, and useful as male infertility
prevention and treatment tools. The duration of infertility, age of the couple, and comorbidi-
ties are among the main factors influencing spontaneous conception [205]. Frequent sexual
intercourse (>3 times per week) can increase the likelihood of conception. Approximately
30% of couples in whom the male partner has a sperm concentration of 1 to 5 million/mL
will conceive spontaneously over 24 to 36 months. A low sperm concentration of 1 mil-
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lion/mL does not preclude natural fertility, though the chances decrease over time as sperm
defects, co-existing exposure, and disease increase with age [206].

Lifestyle changes associated with a healthy diet represent a potentially important
treatment for male infertility (Table 6). A high body mass index (BMI) is negatively
correlated with male fertility and bariatric surgery is an effective weight-loss therapy;
however, despite normalizing the reproductive hormone profile, it may not affect sperm
function within two years post-surgery [207]. Similarly, milder weight loss is associated
with improved sperm function in obese men, increased sperm count, motility, semen
volume, and testosterone, and reduced SDF [28,208]. BMI can generally be improved by
consuming a healthy diet and engaging in regular physical exercise. Resistance training
has been shown to improve fertility in men. Adequate sleep and mindful living are
crucial for general well-being and also affect reproductive health. However, the crosstalk
between reproductive hormones and sleep patterns is bidirectional in its effects on fertility
and, thus, more complex than is currently understood. Finally, amelioration of adverse
lifestyle factors, such as alcohol consumption and smoking, can also enhance male fertility
outcomes [16,30,41].

Table 6. Impact of positive lifestyle change on male fertility.

Factors Findings References

Dietary patterns

Healthy dietary patterns (Mediterranean and paleo diet) with low-fat
and high non-dairy protein (i.e., fish and white meat) has an important

influence on fertility. Dairy products rich in calcium and protein are
beneficial. Diets with a low-glycemic load and high amounts of

whole grains may benefit fecundity.

[31–33,40,209,210]

Oily sea fish, olive oil,
and rapeseed

oil intake

Fish and seafood are the main sources of omega-3 and fat-soluble
vitamins A, D, E, and K; therefore, their incorporation into the diet

may improve
semen quality. Vegetable oils containing unsaturated acid residues,

alpha-linolenic acid, vitamin E, and polyphenols can benefit fertility.

[13,37,211]

Vegetable, fruit, nut, and
seed intake

Vegetables and fruits provide antioxidants, folic acid, fiber, and minerals
associated with improved semen quality and fertility. Nuts and

unroasted unsalted seeds provide fiber, tocopherols,
phytosterols, polyphenols,

and minerals that have a beneficial effect on sperm quality.

[35–37,196,212]

Whole-grain
products in the diet

It is recommended that refined flour products be limited in the diet, with
whole-grain products that are rich in fiber being more beneficial

for fertility.
[36,213]

Physical exercise

Along with a healthy diet, regular exercise can improve BMI and fertility.
It affects general health and well-being and protects against

cardiovascular disease, type 2 diabetes, and psychological stress,
among others.

[214–217]

Resistance training

Combined aerobic and resistance training, moderate-intensity continuous
training, high-intensity continuous training, resistance training, and
high-intensity interval training strategies improved semen quality

parameters, seminal markers of oxidative stress, seminal markers of
inflammation, as well as measures of body composition.

[218–220]

Sleep

Adequate sleep is crucial for general health and well-being.
The relationship between sleep and reproductive hormones is

bidirectional; reproductive hormones may modify sleep, and sleep
disruption may alter the profile of reproductive hormone secretion.

Multiple pathways exist by which sleep and circadian rhythms influence
fertility. Additionally, good sleep can reduce mental stress.

[221–224]

Proactive stress
reduction

Yoga and mindfulness training benefits fertility by reversing cellular
dysfunctions in male reproductive organs and alleviates mental

disturbances that influence reproduction.
[225–228]

BMI, body mass index.
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6. The Potential of Multiomics

In the post-genomic era, advanced multiomics and digital approaches have revo-
lutionized biomedical research. These omics technologies have allowed unprecedented
resolution of molecular processes, as well as the accurate diagnosis and molecular stratifi-
cation of diseases, including idiopathic male infertility. Advances in whole-genome and
whole-transcriptome amplification have expedited the sequencing of minute amounts of
DNA and RNA from a single cell and provide a more representative scope of the nature
of genomic and transcriptomic heterogeneity that occurs in both normal and diseased
cells [229].

Stem cell therapy has recently emerged as a new approach to infertility management.
In addition, advanced cell culture technology and in-vitro cell proliferation models allow
somatic cell use in infertility treatment [230]. Advances in single-cell omics techniques are
accelerating the elucidation of male infertility mechanisms and malfunctioning affecting
spermatogenesis [230]. A recent review discussed the usefulness of various stem cells in
male infertility treatment [231]

Male infertility microsurgery has significantly progressed, with new and emerging
techniques, technologies, and methodologies being continuously developed [232]. Robotic
surgery offers improved visualization, ergonomics, and tremor reduction [233]. The use of
artificial intelligence, deep learning, and machine learning have been widely applied in
urologic oncology and show great potential in the study of infertility treatment [234,235].

Among others, genomics, transcriptomics, epigenomics, proteomics, metabolomics, re-
actomics, pharmacogenomics, and bioinformatics are particularly relevant “spermomics”/
multiomics technologies in the assessment of sperm cells and seminal fluids and can
enhance our understanding of the molecular events driving spermatogenesis and spermio-
genesis in fertile versus infertile men. These approaches provide unprecedented power of
data analysis, visualization, interpretation, and compilation [236].

In male reproductive medicine, efforts in “spermomics” technologies and associated
efforts are scattered, hampering tangible, reproducible, and clinically actionable outcomes
(Figure 5). Therefore, the integration of spermomic approaches and microsurgery or robotic
surgery could constitute effective theranostic options and allow increased success rates, for
induction of spermatogenesis, reconstruction of the reproductive tract, or the retrieval of
spermatozoa for assisted conception.

Figure 5. An overview of current advanced approaches to assess and restore male fertility.
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7. Advances towards Precision Male Reproductive Medicine

While advanced molecular biology and DNA damage assays allow clinicians to assess
idiopathic male infertility, microsurgery has increased the success rates of spermatozoa
retrieval for assisted conception. In reproductive endocrinology, PGD and PGS are used
for genetic and aneuploidy testing to identify the relevant cause(s) of infertility, provide
personalized management, and improve IVF outcomes. Although some individuals with an-
tioxidant/ROS imbalance could be treated with oral supplementation of antioxidants [237],
deeper investigation into the hidden roots of idiopathic infertility is necessary to address
the effects of potential factors and/or pathogens that reduce sperm concentration and
motility and affect morphology [238]. The same integrative and investigative strategy is
required for treating pathogenic infections in human ejaculate and associated inflammation
(ROS) in the male genital tract by using antibiotics and/or anti-inflammatory agents to
prevent the deterioration of sperm parameters [239–241].

Precision medicine aims to provide an effective and individualized treatment plan
through a comprehensive data-driven approach based on omics techniques. Personal-
ized molecular treatment is the basis of all ongoing efforts in the development of male
reproductive medicine. Demystifying the complex etiology of male infertility requires
a comprehensive approach that combines all relevant aspects to achieve precision male
infertility theranostics (Figure 6), including standard sperm analysis, robotic surgery, stem
cell therapy, ARTs, multiomics analysis technologies, and single-cell testing/imaging. In
addition to the add-value of big data and digital visualization technologies, it needs to
be emphasized that male infertility theranostics should also integrate individual lifestyle
choices and environmental factors as key determinants that complement the clinical efforts.
Environmental factors can affect hormonal profiles, testis cell differentiation, sperm matu-
ration, and transport in the epididymis. Nutraceuticals, for example, have been shown to
provide additional health benefits, modulate sperm quality parameters, and affect male
fertility [196,242]. Dietary habits also determine the composition of gut microbiota, which
offers additional direct and indirect preventive and therapeutic options, though the role of
human microbiota remains unclear [25,26].

Of note, the progress in male infertility management and treatment have been associ-
ated with several ethical issues that need to be addressed, especially that more couples are
deferring having children to older ages due to several reasons. In fact, the IVF, ICSI, sperm
donation, long-term gametes freezing, posthumous sperm retrieval are ART procedures that
have been concomitantly associated with ethical debates, consenting dilemmas, and socio-
legal issues. The desire of having a child using the latest technologies, discussed herein and
elsewhere, is far from being a smooth decision for couples and/or doctors. The rights and
values of couples, their families, and their future children, should be integrated together
while considering the values and ideals of the society to reach an informed, concerted, and
balanced decision/judgement that maximizes the benefits while minimizing/preventing
the harms.

Since the pathophysiology of male infertility is still obscure, it is worthwhile to com-
bine the advanced approaches, especially high-throughput multiomics technologies and
big data tools, into comprehensive and large-scale strategies, along with lifestyle choices
and environmental factors, in order to develop diagnostic clues, management avenues, and
promising therapeutic options towards precision male infertility therapeutics and diagnostics.
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Figure 6. Areas of interest that should be integrated in a comprehensive approach towards precision
male infertility theranostics.

8. Conclusions

This review highlights the importance of integrative approaches that combine conven-
tional sperm analyses, omics technologies, digital tools, as well as the effects of lifestyle
and environmental determinants of male infertility. Sperm cells, along with the seminal
fluid, are the host of key biomarkers/bioindicators to assess male fertility power, accurately
diagnose possible infertility, and predict potential effects on embryo development and
offspring health. Given the increasing burden of male infertility on populations worldwide,
global networking and collaboration is urgently needed to establish comprehensive strate-
gies that are representative of the population being treated, consider the most immediate
environmental factors, and incorporate the latest advances in analytical technologies, in-
cluding omics tools, stem cell therapy, robotic surgery, ART, big data, and digital algorithms.
Therefore, collaboration across all relevant fields and the involvement of all stakeholders
would facilitate the success of future clinical approaches. Incorporation of biological, en-
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vironmental, socioeconomic, and lifestyle determinants will not only help elucidate the
intricate networks that govern susceptibility, causes, and molecular progression in male
infertility, but will also advance the characterization of accurate biomarkers, from genes to
metabolites, and establishment of comprehensive, proactive, cost-effective, precise, and
accessible curative strategies.

Multi-institutional efforts are crucial not only in alleviating the tremendous technical
and infrastructural limitations, but also to address cultural, educational, logistic, and
socioeconomic limitations. Most importantly, unless the public is educated to improve
awareness, break down stigmas, and inform patients of potential curative options and
their possible side effects (ethical counselling), no clinical advance will be successful.
Additionally, omics-driven medicine training should be provided to a broader range of
healthcare professionals to accelerate the application of new diagnostic tools and innovative
therapeutic options. Finally, the advent of digital health applications could also equip
patients to become proactive in addressing infertility.
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