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Abstract: Human Immunodeficiency virus (HIV) and its clinical entity, the Acquired Immunodefi-
ciency Syndrome (AIDS) continue to represent an important health burden worldwide. Although
great advances have been made towards determining the way viral genetic diversity affects clinical
outcome, genetic association studies have been hindered by the complexity of their interactions with
the human host. This study provides an innovative approach for the identification and analysis
of epidemiological associations between HIV Viral Infectivity Factor (Vif) protein mutations and
four clinical endpoints (Viral load and CD4 T cell numbers at time of both clinical debut and on
historical follow-up of patients. Furthermore, this study highlights an alternative approach to the
analysis of imbalanced datasets, where patients without specific mutations outnumber those with
mutations. Imbalanced datasets are still a challenge hindering the development of classification
algorithms through machine learning. This research deals with Decision Trees, Naïve Bayes (NB),
Support Vector Machines (SVMs), and Artificial Neural Networks (ANNs). This paper proposes a
new methodology considering an undersampling approach to deal with imbalanced datasets and
introduces two novel and differing approaches (MAREV-1 and MAREV-2). As theses approaches do
not involve human pre-determined and hypothesis-driven combinations of motifs having functional
or clinical relevance, they provide a unique opportunity to discover novel complex motif combi-
nations of interest. Moreover, the motif combinations found can be analyzed through traditional
statistical approaches avoiding statistical corrections for multiple tests.

Keywords: HIV-Vif; undersampling; machine learning

1. Introduction

Human immunodeficiency virus (HIV) and its clinical entity, the Acquired Immun-
odeficiency Syndrome (AIDS) continue to represent an important health burden world-
wide. Since the first reports of HIV more than 35 years ago, 78 million people have
been infected with HIV and 35 million have died from AIDS-related illnesses. In 2021,
approximately 1.5 million people contracted HIV and 650,000 people died from HIV-related
diseases (UNAIDS, https://www.unaids.org/en, accessed on 28 October 2022. Although
the overall number of new infections has declined since 2010, the resource limited coun-
tries of Latin America, Asia, and Africa have shown a steady increase in new infections
and excess deaths due to HIV [1]. Different strategies have been employed in the fight
against HIV and AIDS, mostly focused on either preventative measures or the development
of novel anti-retroviral drugs targeting the main viral enzymes involved in HIV replica-
tion [2]. On the other hand, current HIV research efforts continue to focus on increasing
our understanding of viral-host interactions at the molecular level, with the aim to discover
those worth exploiting to interfere with viral tropism, fusion, replication, integration, and
transmission.
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Our understanding of the function of some viral proteins such as the protease, reverse
transcriptase, and integrase enzymes has allowed for the development of potent preventa-
tive and therapeutic strategies [3]. However, for some accessory and non-structural viral
proteins, little is known with regards to the function and their potential as candidate targets
for antiviral drug development. While the use of molecular biology techniques allows for
an estimation of functional or clinical relevance of these proteins, complex genetic and
clinical variable comparisons decrease the statistical power of such studies.

The HIV genome has 9719 base pairs (HXB2 reference strain) and a total of 3 open
reading frames encoded in a prototypical lentivirinae genome organization comprised
of gag, pol, and env genes, long terminal repeat regions (LTRs) and accessory-protein-
encoding regions (Vif, vpr, tat, rev, vpu, and nef ). The gag gene encodes for the matrix,
capsid, nucleocapsid, and p6 proteins, pol encodes for the enzymes protease, reverse-
transcriptase, and integrase and env encodes for the glycoproteins GP41 and GP120. The
different aforementioned accessory proteins facilitate or promote HIV replication and viral
fitness. The best studied accessory proteins include tat (which acts as viral transcriptional
transactivator), rev (which regulates RNA trafficking), and nVifef which promotes viral
maturation and release from the host cell [4,5]. Vif is a 192-amino acid HIV accessory
protein essential for replication. Vif protein counteracts human antiviral proteins of the
APOlipoprotein Bmessenger RNA Editing enzyme, Catalytic polypeptide-like (APOBEC3)
family. APOBEC3 proteins are zinc-dependent deaminases which mutate viral cytidine (dC)
to uridine (dU) in both viral DNA and RNA molecules, thus interfering with the fidelity of
the viral genome. APOBEC3 is a host innate mechanism that protects human cells from
exogenous viruses and endogenous mobile retroelements. The Vif protein allows HIV to
evade such innate mechanisms. This viral protein has recently become a candidate target for
both therapeutic and preventive interventions in HIV/AIDS. Nevertheless, little is known
about the clinical relevance of Vif accessory protein, particularly among HIV-infected
patients of developing countries and Latin America [6].

Members of the human APOBEC family of proteins include APOBEC1, APOBEC2,
APOBEC3, and the poorly expressed APOBEC4. The APOBEC3 subfamily has seven known
members, including APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3DE, APOBEC3F,
APOBEC3G, and APOBEC3H. Among all APOBEC3 subfamily members, APOBEC3G is
notable for exerting the strongest antiviral effect [7]. APOBEC3G is incorporated into the
HIV-1 virions as they emerge from an infected cell when HIV-1 lacks the capacity to encode
for Vif protein. During the second round of viral replication, after infecting a second cell,
APOBEC3G would normally cause extensive dC to dU mutations of the single-stranded
viral DNA during reverse transcription [8]. HIV’s Vif protein inhibits and interferes with
APOBEC3G activity and thus renders the virus immune to this important innate immunity.
However, HIV-1 evolution and quasi-species diversification within a single human being
might lead to the accumulation of mutations in the Vif region, which might affect protein
function and have clinical significance by either decreasing viral replication or affecting
integration and transmission.

The use of machine learning approaches has been extensively applied to the search of
statistical associations between genetic and clinical variables during the last years given
their known capacity at tackling high dimensional data [9,10]. Previously, some research
groups have applied combined algorithm based approaches, such as ANN coupled to
genetic algorithms, grammatical evolution, and genetic programming, to the discovery of
genetic associations and classification [11–15]. Other combined-algorithm approaches have
been SVMs with genetic algorithms [16] and ANNs coupled to Rule Association Mining
(Apriori algorithm) [17]. Although combining different machine learning approaches
does not guarantee better performance, there is ample evidence supporting the statistical
benefits and capabilities at discovering novel genetic associations in the context of infectious
diseases [18,19].

One important factor in assessing the importance of different genetic variables men-
tioned in previously published studies is their combined effect on classification performance.
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We previously applied this approach to the study of HIV’s Vif gene mutations by using
four different machine learning approaches for the discovery of clinical endpoint associ-
ations [20]. A mayor caveat to our previous effort was the availability of an imbalanced
dataset arising from the difficulty in collecting large cohort samples and extensive genetic
data. Data imbalance is a fundamental and challenging problem in machine learning
that limits the power of small clinical datasets. This limitation has also been shown to
be present in other non-medical applications such as fraud detection, finance, ecology,
and biology [21,22]. As such, in this study we set forth to evaluating the performance
of state-of-the-art machine learning approaches (Decision Trees, NB, SVMs, and ANNs)
enhanced with an undersampling process for dealing with the data imbalance in the dataset.
Furthermore, we present a probabilistic method capable of suggesting the most clinically
relevant variable combinations associated to clinical outcomes.

The paper is organized as follows: Section 2 describes the dataset and the under-
sampling approach. The methods are presented in Section 3, followed by the results and
conclusions sections.

2. Dataset

For the purpose of this study we relied on a previously consolidated dataset including
Vif protein amino acid physicochemical changes and clinical outcome variables (CD4 T
cell numbers and HIV viral load at both initial diagnosis and on follow-up) [23]. From
the original 192 amino-acid sites conforming the Vif protein, those pertaining to 17 pro-
tein motifs were encoded into binary data as either conserved or mutated, as described
previously [20]. Eight of the 17 variables representing Vif protein domains are known to
interact with APOBEC3 proteins (herein designated as APOBEC-1 to APOBEC-8). Other
motifs considered in this study include the Nuclear Localisation Inhibitory Signal (NLIS),
two (CBFβ-1 and -2) interaction sites as well as three Cullin-5 binding sites (Cul5-1, Cul5-2,
and Cul5-3). When the different Vif motif sequences implied a non-conservative change in
physicochemical properties, the genetic variable for that motif was encoded as a “1”, and
when the site was conserved it was encoded as “0”.

The values for the clinical endpoints (outcome class) were encoded based on thresholds
recommended by the World Health Organization and the U.S. Centers for Disease Control
and Prevention. The CD4Ini and CD4Hist clinical endpoints reflect the levels of CD4+ T
cells number (cells/per micro liter) at the first time of diagnosis (CD4Ini) and as the median
number of CD4+ cells from quarterly assessments during two years of patient follow-up
(CD4Hist). For both CD4Ini and CD4Hist, ≥ 500 CD4+ T cells/µL corresponds to a value
of “0”, as CD4+ T cell numbers above this threshold are not indicative of poor clinical
prognosis. Contrarily, the clinical endpoint is encoded as “1”, when≤ 500 CD4+ T cells/µL
when the cell numbers are below normal and reflecting immunodeficiency. Similarly, VLIni
and VLHist outputs reflect another clinical aspect used to assess HIV-prognosis, where
high viral loads are associated with worsening clinical progression. As mentioned above,
VLIni and VLHist reflect HIV viral titres at the time of initial diagnosis and the median of
quarterly follow-up assessments of viral load (copies/milliliter). For both VLIni and
VLHits ≥ 10, 000 copies/mL/µL corresponds to a value of “1”, as viral loads above
10,000 cp/mL are suggestive of intense viral replication and worsening clinical prognosis.
Contrarily, this value is encoded as “0”, when ≤ 500 copies/ml/µL when the viral load is
below 10,000 cp/ml and stable [24].

Undersampling

In the case of binary classification, the class-imbalance is defined as the over repre-
sentation of one class (the majority class) over another class (the minority class). Over
representation affects the learning process of the algorithms as most of them are designed
to construct the most general and simplest hypothesis from the data [25]. Undersampling
can lead to a bias towards the over-represented class during the learning process.
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Different approaches have been used to resolve the problem of undersampling, which
range from applying data balancing strategies (either undersampling or oversampling),
modifying the machine learning process to address data imbalance or through data pe-
nalization to enhance minority class attribute detection [26]. Undersampling balancing
strategies are the most popular approach as they are based on the original dataset, whereas
oversampling requires the generation of artificial data, derived from the original dataset
but not necessarily true in content [27].

As the use of oversampling involves the generation of artificial data, in this work we
decided to use an undersampling approach to better preserve the biological distribution of
genetic variables and clinical endpoints of our dataset.

Figure 1 describes the undersampling process. The original dataset contains m + n
examples where n is the minority class and m is the majority class. The algorithm identifies
the least represented class (i.e., n) and then creates a new balanced dataset by subtracting
m class elements until it is similar in size to n class subset. These undersampled balanced
sets are generated 100 times (1, 2, . . . , p), and each one is used for machine learning and
training.

on the data by modifying the learning process. Finally, the penalty process involves using some
penalty function to help for a better learning of the minority class. Haixiang et al. presented an
extensive review on these problems and approaches [23].

Since the use of oversampling involves the generation of artificial data, in this work we decided
to use undersampling. The goalbeing to avoid generating genetic relations that may not truly
exist in nature. Figure 1 shows the undersampling process. The original dataset contains m + n
examples. The process determines the class with the minimum number of examples (i.e. n), the less
represented class. Then, 1, 2, . . . , p balanced datasets are generated containing the same number of
examples per class (i.e. n = m).

Original
imbalanced dataset

Most represented
class m

Less represented
class n

...

n

n random
elements from m

n

n random
elements from m

n

n random
elements from m

...

Subset
with undersampling

1

2
p

balanced
datasets

p

Figure 1: Undersampling process for imbalanced dataset with m and n elements of the most and less represented
classes, respectively. The process generates p smaller datasets by including n random elements from m.

3. Methods

This paper compares the performance of well known machine learning methods for classification:
Decision Trees, NB, Multi-Layer Perceptron (MLP) and SVM.

3.1. Decision trees
Decision trees represent the simplest and most widely used non-parametric supervised learn-

ing method. There are many algorithmic implementations to generate decision trees from data
including Iterative Dichotomiser 3 (ID3) [24], its successor - C4.5, Classification And Regression
Tree (CART), Chi-square Automatic Interaction Detection (CHAID) and Multivariate Adaptive
Regression Splines (MARS). This paper focus only on the CART implementation [25] available in
Scikit-learn [26, 27].

3.2. Naïve Bayes
The NB classifier is defined as:

classnb = arg max
classj∈C

p(classj)
∏
i

p(vi|classj), (1)

4

Figure 1. Producing multiple (p) balanced datasets through undersampling of the imbalanced dataset
composed of a majority class (m) and a less represented, minority, class (n) by randomly removing
majority class elements until m = n.

3. Methods

This paper compared the classification performance of the well-known machine learn-
ing methods: Decision Trees, NB, SVMs, and Multi-Layer Perceptron (MLP).

3.1. Decision Trees

Decision trees represent the simplest and most widely used non-parametric supervised
learning method. There are many algorithmic implementations to generate decision trees
from data including Iterative Dichotomiser 3 (ID3) [28], its successor—C4.5, Classification
And Regression Tree (CART), Chi-square Automatic Interaction Detection (CHAID), and
Multivariate Adaptive Regression Splines (MARS). This paper focus only on the CART
implementation [29] available in Scikit-learn [30,31].

For CART, the use of the Gini index and a max depth of five were used as predefined
parameters, as they provided a similar performance to the C4.5 algorithm. Contrary to
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C4.5, CART helped identify the most significant variables and to eliminate non-significant
ones [32].

3.2. Multinomial Naïve Bayes

NB classifiers include several highly-scalable and simple probabilistic classifiers that
rely on Bayes theorem with strict independence assumptions between features. When
coupled with kernel density estimation they can achieve elevated classification accuracy
levels [26].

The NB classifier is defined as:

classnb = arg max
classj∈C

p(classj)∏
i

p(vi|classj), (1)

where p(v1, v2, . . . , ai, . . . , v17|classj) = ∏i p(vi|classj), because this classifier assumes that
the variables, vi are conditionally independent, given the class, and classj ∈ C are the classes
or labels [33]. NB usage relied on calculations of the prior probabilities and estimation on
the prior probabilities.

3.3. Multi Layer Perceptron (MLP)

MLP is based on classical ANN models, in particular the Perceptron introduced by F.
Rosenblatt in 1957 [34]. MLP architecture is a more complex ANN where at least one or
more hidden layers are included before the clinical endpoint variable layer [35]. MLP is also
known as backpropagation [36–39], a generalization of the delta rule learning algorithm
proposed by B. Widrow in 1962 [40]. MLPs are also referred to as feedforward neural
networks. Figure 2 illustrates a general MLP architecture with v1, v2, . . . , v17 input variables
(green), a hidden layer (blue) and a single clinical endpoint (red). There is a single MLP for
each of the clinical endpoint variable classes: CD4Ini, CD4Hist, VLIni, and VLHist.

v17

...

v2

v1

Inputs

...

Hidden layer

Output

CD4Ini

1

Figure 2. MLP architecture. There is a MLP per clinical endpoint; here is an example for CD4Ini.

For MLP training, we use the logistic activation function, a hidden layer with 8 neurons,
2 outputs, and 10,000 epochs with the Limited-memory BFGS algorithm (the Broyden–
Fletcher–Goldfarb–Shanno algorithm), which is a method for numerical optimization [41].

3.4. Support Vector Machine (SVM)

SVMs are state-of-the-art algorithms initially introduced by Cortes and Vapnik as
support-vector networks [42,43]. SVM were developed in an effort to develop artificial in-
telligence strategies for complex problems. SVM have mostly been applied to classification
or regression problems. For classification purposes, SVMs aim to produce a mathematical
n-dimensional space function capable of non-linearly distinguishing between different
classes from complex and multivariate (training and test) datasets

Given a dataset

D = {(x1, y1), · · · , (xl , yl)},
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where x ∈ R17 (inputs), y ∈ {−1,+1} (clinical endpoint), and l is the size of the dataset.
The SVM classifier is defined as

f (x) = sgn

(
∑

i∈SVs
αiK(xi, x)

)
(2)

which is a linear combination of kernels, K(xi, x), where the sign function (sgn) gives the
class [42]:

sgn : R → {−1, 0, 1}
x → y = sgn(x).

with constrains, 0 ≤ αi ≤ C, i = 1, · · · , l, and ∑l
j=1 αjyj = 0. The parameter C is known as

the margin and the Support Vectors (SV) will have non-zero Lagrange
multipliers, αi; K(xi, xj) is the kernel function performing the non-linear mapping into
feature space φ, known as the “kernel trick” [26,42,43].

There are many kernel functions available for use with SVMs including linear, Gaus-
sian Radial Basis Function (RBF), sigmoid, and polynomial. Our approach made use of the
RBF kernel, where the width of a kernel is given by the γ parameter.

Across this research, SVMs used RBF as kernel with the following values: C = 10
and γ = 1.0.

3.5. Methods for Assessing the Relevance of each Vif Variable

In order to assess the relevance that the different Vif variables (input) have on each of
the included clinical endpoint variables (output), a series of steps were used, including:

1. Generating p balanced datasets through undersampling (see Section 2);
2. Constructing input variable combinations of less than 10 in size (k);
3. Identifying the variable combinations of each balanced datasets providing the best

classification performance;
4. Calculating the relevance of each variable through a probabilistic approach, and;
5. Optimizing the selection of the most relevant variables by using a threshold value.

For the first step, balanced datasets are generated through undersampling by creating
p partitions, which include all elements of the minority class (n) and an equal number
of randomly selected elements of the majority class (i.e., n examples out of m), as shown
in Figure 1. After producing balanced datasets, a second step addresses the construction
of k size variable combinations by using each of them as input in different classification
algorithms. For this, a five-fold cross-validation training process using weighted accuracy
was used. The construction of the variable combinations relied on using greedy step-wise
variable selection, as shown in Figure 3, in such a way as to identify the best variable
capable of discriminating between the clinical endpoint classes. This process was repeated
for a second variable in combination with the first identified and the process was repeated
k-times so as to identify the k best variable combinations available.
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bi, bj , . . . , j − 1

bi, bj , . . . , j + 1

bi, bj , . . . , h

Figure 2: The process for defining the most relevant variables involves the search for the best combinations of
variables including at most k-elements by using each balanced dataset. This search explores the interactions among
variables and their impact on classification performance.

where p(v1, v2, . . . , ai, . . . , v17|classj) =
∏

i p(vi|classj), because this classifier assumes that the
variables, vi are conditionally independent, given the class, and classj ∈ C are the classes or
labels [28].

3.2.1. Multinomial NB
There are several versions of the NB classifier including Bernoulli, Multinomial and Gaussian

versions. Since we have discrete categorical variable s with possibly more than two distinct values,
this paper employs the Multinomial version which includes the Laplace estimation to avoid the zero
frequency problem.

3.3. Multi-Layer Perceptron
This method is based on classical ANNs models, in particular from the Perceptron (a single

output layer ANN) introduced by F. Rosenblatt in 1957 [29]. A MLP architecture is a more
complex ANN with at least one or more layers (called hidden layers) before the output layer [30].
The MLP is also known across the literature as backpropagation [31, 32, 33, 34], which is the
generalisation of the delta rule (learning algorithm) proposed by B. Widrow in 1962 [35]. The
MLPs are also called feed forward neural networks. Figure 4 show the general MLP architecture

5

Figure 3. The process for defining the most relevant variables involves the search for the best
combinations of variables including at most k-elements by using each balanced dataset. This search
explores the interactions among the variables and their impact on the classification performance.

A third step involved discovering the best k combinations for each p balanced dataset.
As the discovery of a global optimum is not guaranteed, a reasonably good local optimum
(based on classification performance) was used, as shown in Figure 4. Global optimums
are not realistically feasible as the search space exponentially explodes with k.
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Select the qth variable combination
with best classification performance,

with
q ≤ k

Repeat on the
resulting

combination
from the p
balanced
datasets

...
...

Variable
Combination Variables

Classification
Performance

1 b1
c1

2 b1, b2
c2

k b1, b2, . . . , bk ck

...
...

...

q b1, b2, . . . , bq
cq

Best Variable
Combination Variables

q1 b1, b2, . . . , bq11

# Balanced
Dataset

q2 b1, b2, . . . , bq22
...

qp b1, b2, . . . , bqpp

Figure 3: Selection of the overall-best combinations for each p balanced dataset by using their classification perfor-
mance.

with v1, v2, . . . , v17 inputs, a hidden layer and a single output. There is a MLP per output/class,
i.e. CD4Ini, CD4Hist, VLIni and VLHist.

3.4. Support Vector Machine
Given a dataset

D = {(x1, y1), · · · , (xl, yl)},

where x ∈ R17 (inputs), y ∈ {−1,+1} (output), and l is the size of the dataset
The SVM classifier is defined as

f(x) = sgn

( ∑
i∈SV s

αiK(xi, x)

)
(2)

6

Figure 4. The selection of the overall-best combinations for each p balanced dataset by using their
classification performance.

In a fourth step, variable relevance assessment is achieved using the p best combina-
tions through a probabilistic approach. For this, the probability of each input Vif variable
appearing at jth position on the variable combination matrix produced in the previous step
is calculated using Equation (3).

p(vj
i) =

f (vj
i)

∑a f (va
j )

(3)

where p(vj
i) indicates the probability that the ith variable was selected at the jth position

of the generated combinations. The frequencies for the variable and that of the different
variables at the position jth are expressed as f (vj

i). This equation is applied for each one of
the k positions (j ≤ k). These probabilities define the relevance score (r) for each variable
by using Equation (4):

ri =
k

∑
j=1

(k + 1− j)× p(vj
i) (4)

where ri indicates the relevance score for the variable ith, considering its probability of
appearing on each of the k positions in the combination matrix. This process assigns greater
weight to the variables that are found closest to the root (lower entropy) of the combination
matrix and less weight to those that appear farther from the root (higher entropy).

In a fifth step, the relevance scores obtained in the previous step are then used for
sorting the variables considering their relevance scores and by establishing a threshold
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value (which involves calculating the upper limit of a 99% confidence interval of their
relevance scores) to determine the most relevant variables (those surpassing the threshold
limit).

3.5.1. MAREV-1

The first Method for Assessing the Relevance of Each Variable (hereafter called
MAREV-1) considers the classification results produced by each algorithm (CART, Multino-
mial NB, SVMs, and MLP) on p = 100 balanced datasets. This yielded a total of 400 variable
combinations having the highest classification performances, all of which were then tested
further, including traditional statistical analysis, as mentioned below, see Section 3.5.3.

3.5.2. MAREV-2

The second method, MAREV-2, selects only the best variable combinations assessed
as classification performance for each algorithm (the third step described above), see
Section 3.5. This yielded four input variable combinations, one per algorithm. Again, as
mentioned above for the score assessment on each variable, all were then tested through
the following traditional statistical analysis.

3.5.3. Hypothesis Evaluation on the MAREV-1 and MAREV-2 Approaches

Once the most relevant variables had been identified in the previous steps, subsequent
analysis involved establishing the clinical importance of the different machine learning
algorithm-suggested variable combinations and their status (Mut or Cons) through tradi-
tional statistical association methods. For this, the Vif protein conserved sites, synonymous
amino acid substitutions, or those being non-synonymous but conserved in physicochemi-
cal properties were encoded as “0” (Cons in the following discussion, figures, and tables).
Contrarily, mutations leading to non-synonymous amino acid substitutions resulting in
non-conserved physicochemical properties of the Vif protein (polar to non-polar changes,
acidic to basic changes, gross molecular structure size changes, as well as changes in
susceptibility to post-translational modifications such as phosphorilation, ubiquitination,
SUMOylation, methylation, and glycosylation) were encoded as “1” (Mut). The definition
of explicit variable-value combinations used the ID3 algorithm as implemented in the
Waikato Environment for Knowledge Analysis (WEKA) workbench v3.6 [44]. ID3 was
used for generating a decision tree for each clinical endpoint relying on tree branches to
incorporate variable status (Mut or Cons) combinations. The calculation of the statisti-
cal significance of variable frequency differences between clinical endpoint groups relied
on two-sided Fisher’s exact test using IBM SPSS Statistics (version 21, IBM Corporation,
Armonk, NY, USA).

4. Results

The position of the Vif encoding region within the HIV-1 reference sequence HXB2,
and the position and nomenclature of the Vif protein motifs and their putative ligands, is
provided in Figure 1. The APOBEC-1 variable, corresponding to the N-terminal APOBEC3
binding site (14DRMR17), was excluded from the original dataset as it remained conserved.

4.1. Classification on the Balanced Datasets

The assessment of the relevance of each variable, as explained in Section 3.5, was
based on the classification performance from four different classifiers (CART, MLP, SVMs,
and Multinomial-NB) as implemented in the Scikit-learn package [30].

We have identified the top 100 variable-combinations associated to each clinical end-
point class by applying the proposed method to assess variable relevance. We obtained 1600
top-performing genetic variable-combinations associated to each clinical endpoint (CD4Ini,
CD4Hist, VLIni, and VLHist) using the four classification algorithms. The balanced-
accuracy was calculated with a 5-Cross-Validation approach during each training process.
Algorithm accuracy was defined as the correct identification of both true positive and true
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negative registry examples (patients) and encompasses true-positive and true-negative
predictive rates.

Out of the four machine learning algorithms tested, MLP superseded the three other
machine learning algorithms during the analysis of each of the four clinical endpoints,
accurately classifying, 79.6%, 76%, 68.5%, and 66.3% of CD4Ini, CD4HIts, VLIni, and
VLHist patient registries, respectively. The classification performance of each machine
learning algorithm for each clinical endpoint is summarized in Table 1.

Table 1. Summary of the performance of the algorithm considering 100 runs on the balanced datasets
for each clinical endpoint in descending order of their mean value. Our results demonstrate that MLP
produced the best classification performance for all the comparisons made.

Clinical Endpoint Algorithm Mean/S.D. Range Clinical Endpoint Algorithm Mean/S.D. Range

C
D

4I
ni

MLP 79.6 ± 5.7 68.6–93.8

V
LI

ni

MLP 68.5 ± 3.2 61.1–75.2
CART 77.8 ± 6.0 65.7–91.0 CART 68.0 ± 3.7 59.1–80.2
SVMs 76.2 ± 5.6 61.0–88.1 NB 66.5 ± 3.4 57.4–75.0
NB 74.9 ± 5.9 59.5–90.5 SVMs 62.0 ± 4.0 51.7–71.5

C
D

4H
is

t MLP 76.0 ± 5.4 63.3–91.0

V
LH

is
t MLP 66.3 ± 2.7 60.9–73.8

CART 74.0 ± 6.2 62.9–88.1 CART 64.2 ± 2.5 59.1–71.4
NB 72.6 ± 5.8 60.0–87.6 NB 64.1 ± 2.9 57.5–71.1
SVMs 66.7 ± 6.4 53.8–81.9 SVMs 63.2 ± 3.0 51.3–68.5

Although the best classification results achieved higher values than those previously
reported elsewhere [20], this can easily be explained by the use of balanced datasets
and 5-Cross-Validation settings in this report. The genetic variable combinations providing
the best classification performance are summarized in Table 2.

Table 2. Best classification performance achieved by each algorithm, considering 100 balanced
datasets for each clinical endpoint. These combinations were used for calculating the variables scores
with the MAREV-2 approach.

Clinical
Endpoint

Algorithm Combination Accuracy

C
D

4I
ni

MLP BCbox-3, APOBEC-3, BCbox-2, Cul5-3, BCbox-1, APOBEC-5 93.8
CART BCbox-3, BCbox-2, Cul5-3, APOBEC-2, APOBEC-3, APOBEC-5 91.0
NB APOBEC-2, BCbox-3, APOBEC-3, BCbox-2, Cul5-3, APOBEC-6 90.5
SVMs BCbox-2, APOBEC-2, APOBEC-3, APOBEC-4, BCbox-1, BCbox-3 88.1

C
D

4H
is

t MLP APOBEC-2, Cul5-3, APOBEC-4, BCbox-3, APOBEC-7, BCbox-2, NLIS, BCbox-1 91.0
CART APOBEC-2, BCbox-3, BCbox-2, APOBEC-4, APOBEC-5 88.1
NB APOBEC-2, APOBEC-4, Cul5-3, CBFb-2, BCbox-3, APOBEC-7 87.6
SVMs APOBEC-2, APOBEC-3, APOBEC-4, APOBEC-5, APOBEC-6, APOBEC-8, APOBEC-7, BCbox-3 81.9

V
LI

ni

CART APOBEC-2, BCbox-1, APOBEC-4, BCbox-2 80.2
MLP APOBEC-2, BCbox-1, APOBEC-8, APOBEC-3, APOBEC-4, APOBEC-5, Cul5-2 75.2
NB APOBEC-2, APOBEC-4, BCbox-1, BCbox-2, NLIS, Cul5-3, APOBEC-3, APOBEC-5, CBFb-1 75.0
SVMs APOBEC-2, APOBEC-7, APOBEC-3, APOBEC-4, APOBEC-5, APOBEC-6, APOBEC-8, BCbox-2 71.5

V
LH

is
t MLP NLIS, APOBEC-3, APOBEC-2, APOBEC-8, BCbox-1, CBFb-1, Cul5-1, Cul5-2 73.8

CART APOBEC-2, BCbox-3, BCbox-1, APOBEC-8, NLIS total 71.4
NB APOBEC-2, Cul5-3, NLIS, BCbox-2, APOBEC-3, BCbox-1, APOBEC-8, CBFb-2, APOBEC-6, APOBEC-7 71.1
SVMs NLIS, APOBEC-4, BCbox-1, APOBEC-2, APOBEC-5, APOBEC-6, BCbox-3 68.5

Considering the top scores per clinical endpoint shown in Table 2, the best discrimina-
tion was achieved for the CD4 T cells counts (CD4Ini and CD4Hist clinical endpoints).

On the other hand, low performance was observed on the VLIni clinical
endpoint [71.5–80.2], and even lower for the VLHist [68.5–73.8].

Some variables were shown to be present in all “top combinations” identified for
each different clinical endpoints. These were: [BCbox-3, BCbox-2, and APOBEC-2] for
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CD4Ini, [APOBEC-2, APOBEC-4, and BCbox-3] for CD4Hist, [APOBEC-2 and APOBEC-4]
for VLIni, and [NLIS, APOBEC-2, and BCbox-1] for VLHist. Only the variable APOBEC-2
was present in 15 of the 16 best-combinations, except for in the combination with the
highest classification when using MLP with the CD4Ini clinical endpoint. On the other
hand, BCbox-3 was present in all the best combinations related to the CD4 T cell count.

4.2. Results Using the MAREV-1

After defining the 100 best-combinations per clinical endpoint by each algorithm, an
assessment on the relevance of each variable was then undertaken. This involved calcu-
lating the probabilities for each variable of being selected as the most informative (i.e.,
root variable) in each of the best combinations. The relevance scores (r) per algorithm and
positions are shown in Appendix A, see Tables A1–A4. After evaluating all the variables
for each clinical endpoint, a threshold was calculated per clinical endpoint and used for
selecting the most relevant variables as mentioned previously; see Section 3.5. The cal-
culated threshold values for the most relevant variables are summarized in Appendix A,
see Table A6a. The variables indicated as most relevant for CD4Ini (ordered by their rele-
vance scores) were: [BCbox-3, APOBEC-3, APOBEC-5, APOBEC-2]; for
CD4Hist: [APOBEC-2, APOBEC-3, APOBEC-5]; for VLIni they were [APOBEC-2, BCbox-1,
APOBEC-3] and, finally; for VLHist they were [NLIS, APOBEC-3, APOBEC-5]. Considering
these most relevant variables, APOBEC-3 proved to be associated with all the clinical
endpoints, while APOBEC-2 and APOBEC-5 were present in only three clinical endpoints.
BCbox-1 was seen to be the most relevant for only VLIni. BCbox-3 was only relevant for
CD4Ini, and NLIS was suggested as being the most relevant in only VLHist.

The most relevant variables identified were in agreement with the best variables
identified in previous efforts using alternative approaches [20], as shown in Table A7b;
see Appendix A. This was also the case for the second variables in the clinical endpoints
CD4Hist and VLIni. Another difference was that the quantity of variables defined as
the most relevant when using the MAREV-1 approach was much higher for the clinical
endpoints CD4Ini and CD4Hist than reported previously.

4.3. Results Using the MAREV-2

In this approach, the variable assessment process was done considering only the
combinations of variables having the best classification performance, see Table 2. As
happens with MAREV-1, MAREV-2 also calculated the probability for each variable to
appear at every available position. This was later used to determine the score per variable
and clinical endpoint as shown in Table A6b); see Appendix A. The variables discovered to
be more relevant for CD4Ini (ordered by their scores) were: [BCbox-3, BCbox-2]; [APOBEC-
2, APOBEC-4, BCbox-3] for CD4Hist; [APOBEC-2, APOBEC-4, BCbox-1] for VLIni; and
[APOBEC-2, NLIS, BCbox-1] for VLHist. None of the variables were shown to be present
in all clinical endpoints unlike MAREV-1. However, APOBEC-2 was present in CD4Hist,
VLIni and VLHist. On the other hand, APOBEC-2 and APOBEC-4 are related to CD4Hist
and VLIni; BCbox-1 is relevant for VLIni and VLHist. Finally, BCbox-3 is relevant for
CD4Ini and CD4Hist. BCbox-2 is only relevant for CD4Ini, while NLIS is relevant for
VLHist. These variables are compared with the previous findings and those suggested by
the 100-model analysis (see Table A7c in Appendix A).

The comparison among the variables identified as the most relevant by the previous
approach, MAREV-1 and MAREV-1, show a coincidence in some of the variables detected
as most relevant. This is the case of BCBox-3 in CD4Ini and APOBEC-2 in both CD4Hist
and VLIni. Although MAREV-1 and the previous approach agreed on assigning NLIS as
the most relevant variable for VLHist, this motif was only suggested as the second most
relevant for this clinical endpoint by MAREV-2.
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4.4. Decision Trees and the Most Relevant Variable Combinations from MAREV-1 and MAREV-2

The decision trees defined with the variables determined by the MAREV-1 are shown
in Figure 5, while those using the MAREV-2 are shown in Figure 6.
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Figure 5. ID3 inducted trees using the selected most relevant variables per output as defined by the
MAREV-1 approach. (a) The tree for CD4Ini; (b) The tree for CD4Hist; (c) The tree for VLIni; (d) The
tree for VLHist.
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Figure 6. ID3 inducted trees using the suggested most relevant variables per output as defined by the
MAREV-2 approach. (a) The tree for CD4Ini; (b) The tree for CD4Hist; (c) The tree for VLIni; (d) The
tree for VLHist.

ID3 branch frequency was used to identify specific combinations of input variable
status (Mut or Cons) as related to the clinical endpoints in Fisher’s exact test. Only branches
having more than 1 variable were considered, yielding a total of 20 variable combinations
for the MAREV-1 approach (6 for CD4Ini, 5 for CD4Hist, 6 for VLIni, and 3 for VLHist)
whereas the MAREV-2 approach identified 22 different relevant variable combinations
(4 for CD4Ini, 6 for CD4Hist, 6 for VLIni, and 6 for VLHist. The results of the statistical
assessment for the MAREV-1 and MAREV-2 approaches are shown in Table 3.

Table 3. The most relevant Vif protein variable combinations associated with the clinical endpoints.
(a) Significant associations after testing the 20 hypothesis suggested by the MAREV-1 approach; (b)
Significant associations after testing the 22 hypothesis suggested by the MAREV-2 approach. Vif
protein regions can either be conserved (Cons) or mutated (Mut) and associated with protection (prot)
or risk to either <500 cells/µL CD4 T cells or ≥10,000 cp/mL of viral load.

Contingency Tables Classification

Approach Output Vif Variable Combination Status ≥500
cells/µL

<500
cells/µL Accuracy Error p-Valueeffect

(a
)M

A
R

EV
-1

Initial CD4 BCbox-3Mut, APOBEC-3Cons absent 8 53 81.3% 18.7% 0.0011prot
present 8 6 (61/75) (14/75)

Historic CD4
APOBEC-2Mut, APOBEC-3Cons, APOBEC-5Cons absent 14 35 52.0% 48.0%

0.0136risk
present 1 25 (39/75) (36/75)

APOBEC-2Cons, APOBEC-3Cons absent 2 29 56% 44.0% 0.0182prot
present 13 31 (42/75) (33/75)

<10,000
cp/mL

≥10,000
cp/mL

Initial VL APOBEC-2Mut, BCbox-1Cons, APOBEC-3Cons absent 22 28 57.3% 42.7%
0.0207risk

present 4 21 (43/75) (32/75)

Historic VL —– —– —– —– —– —– —– —– — — — — — —
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Table 3. Cont.

Contingency Tables Classification

Approach Output Vif Variable Combination Status ≥500
cells/µL

<500
cells/µL Accuracy Error p-Valueeffect

(b
)M

A
R

EV
-2

Initial CD4
BCbox-3Cons, BCbox-2Cons absent 15 33 54.7% 45.3%

0.0068risk
present 1 26 (41/75) (34/75)

BCbox-3Mut, BCbox-2Mut absent 10 55 81.3% 18.7% 0.0049prot
present 6 4 (61/75) (14/75)

Historic CD4 APOBEC-2Mut, BCbox-3Cons absent 15 40 53.3% 46.7%
0.0077risk

present 0 20 (40/75) (35/75)

<10,000
cp/mL

≥10,000
cp/mL

Initial VL APOBEC-2Mut, BCbox-1Cons, APOBEC-4Mut absent 25 38 52.0% 48.0%
0.0477risk

present 1 11 (39/75) (36/75)

Historic VL NLISMut, BCbox-1Cons, APOBEC-2Mut absent 41 27 62.7% 37.3%
0.0392risk

present 1 6 (47/75) (28/75)

Four of the 20 ID3-combinations defined from the MAREV-1 approach were detected
as associated with clinical endpoints after further statistical testing. One was present for
CD4Ini (p-value = 0.0011), two for CD4Hist (p-value = 0.0136, p-value = 0.0182), and one
for VLIni (p-value = 0.0207). None of the associated combinations were present in VLHist.
The combination for CD4Ini [BCboc-3Mut, APOBEC-3Cons] suggests protection from having
lower numbers of CD4 T lymphocytes at the time of initial medical assessment as it was
present in only 6 patient samples having ≤500 CD4 T cells, compared to 53 patient samples
not having said combination. In the case of CD4Hist, only one combination [APOBEC-2Cons,
APOBEC-3Cons] suggested protection from having less than 500 T Lymphocytes on medical
follow-up, as was also found in our previously published work. A second combination
[APOBEC-2Mut, APOBEC-3Cons, APOBEC-5Cons] was found to be associated with the risk
of progression to less than 500 CD4 T lymphocytes on medical follow-up. The absence of
said combination was detected in 14 out of 15 sequences with ≥500 CD4 T cells. Finally, in
the case of VLIni, the [APOBEC-2Mut, BCbox-1Cons, APOBEC-3Cons] combination suggested
a risk of having higher HIV viral loads on the first medical examination as it was absent in
22 out of the 26 cases with less than 10,000 virus copies.

On the other hand, the 22 ID3-combinations generated using the variables defined
by the MAREV-2 yielded 5 clinical associations. Both of the associations found in CD4Ini
involved variables BCBox-2 and BCBox-3 where the conservation of both protein regions
was associated with a higher risk of having lower initial CD4 T lymphocytes on the first
medical examination (p-value = 0.0068). This variable combination was present in 26 of
the patient cases with < 500 CD4 cells/µL, compared with a single occurrence in a patient
having ≥ 500. A second variable combination, [BCBox-2Mut and BCBox-3Mut], was associ-
ated with protection from low CD4 T lymphocytes counts as it was observed to be more
frequent in patients having≥ 500 CD4 cell count/µL (p-value = 0.0049). Regarding historic
CD4 T cell counts, one variable combination [APOBEC-2Mut, BCbox-3Cons] was associated
with the risk of having low CD4 T cell counts on medical follow-up as it was present in
20 cases with a CD4 cell count below 500 and not in patients having ≥ 500 CD4 T cells/µL.
Regarding initial viral load assessments, [APOBEC-2Mut, APOBEC-4Mut, BCbox-1Cons] was
associated with the risk of having high viral titres (≥10,000 viral copies) at the time of
initial medical examination and was present in 11 patients having ≥10,000 viral copies,
yet in only a single patient having lower viral loads. Finally, [NLISMut, APOBEC-2Mut,
BCbox-1Cons] was observed to be associated with a higher risk of low historical viral loads
on patient follow-up as it was seen only once in a patient having <10,000 copies but it was
present in 6 patients having more than 10,000 copies of the virus. As mentioned before,
eight novel HIV associations were identified through this approach: three by MAREV-1,
and five with MAREV-2.
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Distinct Vif protein regions were identified through this approach as being highly
relevant by MAREV-1, mainly involved in APOBEC3 interactions and Elongin B/C bind-
ing. Relevant APOBEC3 interaction motifs included APOBEC-3, which was found to be
conserved in all cases as well as APOBEC-2, which only failed to be relevant with regard to
CD4Ini. Similarly, APOBEC-5 was found to be absent in CD4Hist while BCbox-1 was re-
lated to VLIni. Similarly, MAREV-2 also identified APOBEC-3, APOBEC-2, and APOBEC-4,
and the Elongin B/C-box binding motifs, BCbox-1, BCbox-2, and BCbox-3 as most relevant.
The results from the MAREV-2 for VLHist agree with our previously published findings by
suggesting a higher relevance of the NLIS segment.

These results help supporting the variables detected as more informative in our
previous findings [20], being: (i) [BCbox-3] for CD4Ini, (ii) [APOBEC-2] for CD4Hist, VLIni
and VLHist, (iii) [BCbox-1] for VLIni and VLHist, and iv) [NLIS] for VLHist. Additionally,
the MAREV-1 approach places relevance for the variables [APOBEC-3 and APOBEC-5]
while MAREV-2 places relevance for [APOBEC-4, BCbox-2, and BCbox-3]. On the other
hand, the four associations determined with MAREV-1 and the five determined by MAREV-
2 were less than the seven suggested with the previously methodology. Only one of said
associations was present when using both approaches. Fewer associations were found
when considering the viral load clinical status, both the initial and historical. This was
the case for VLHist, where no association was found when using the MAREV-1 approach.
However, determining which set of associations have more biological significance requires
further research.

Table 3 concentrates the most relevant associations of genetic variable combinations
with each of the four clinical endpoint variables out of the 20 and 22 hypotheses tested by
the MAREV-1 and MAREV-2 algorithms, respectively. On initial examination, the reiterative
appearance of APOBEC and Elongin B/C Box motifs stands out in the results generated
by both algorithms, irrespective of site status (mutated or conserved). This is a reflection
of the importance of Vif protein, a function which involves both binding of Elongin B/C
and recognition of APOBEC molecules to provide HIV with the capacity to escape from
APOBEC-mediated innate immunity. From within the eight different APOBEC binding
sites included in the analysis, APOBEC-2 and APOBEC-3 stand out for the number of times
they appear in the associations shown in Table A5. Interestingly, the APOBEC-2 and -3
sites bind APOBEC3G and APOBEC3F, the two most relevant members of the APOBEC3
family of antiviral proteins. Nevertheless, our results are indicative that the APOBEC3G
and APOBEC3F protein binding site (APOBEC-2) is perhaps the least important of all the
genetic Vif variables assessed. This is based on the fact that both MAREV-1 and MAREV-2
results show higher viral titres and lower CD4 T cell numbers (suggesting ongoing viral
robustness) even in the presence of APOBEC-2 mutations, as long as the other APOBEC-
binding regions or Elongin B/C binding regions remain conserved. This was observed in
historic CD4 T cell numbers, the initial viral loads, and regarding the historic viral loads.

Similarly, the recursive appearance of Elongin B/C box-1 and box-3 binding sites also
highlights the relevance that the Elongin interactions have for the Vif protein mediated
ubiquitination of APOBEC3 anti-viral proteins. Overall, our results emphasize the clinical
relevance of both APOBEC3G and Elongin B/C binding sites from among the remaining
Vif protein domains assessed. Figure 7 illustrates the position of the Vif encoding region
within a reference (HXB2) HIV-1 genome, the Vif protein domains and regions, as well
as some of the putative or known ligands. Even greater detail is provided by our results
regarding the weight of each of these genetic variables when individual clinical outcomes
are considered. At least one previous report has identified that amino acid substitutions in
Elongin B/C sites lead to a loss-of-infectivity in HIV [45].
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Figure 7. Position of the Vif encoding region within a reference (HXB2) HIV-1 genome.

The results of both MAREV-1 and -2 suggest that initial CD4 T cell numbers seem to
depend more on Elongin B/C site status than any other Vif protein attribute. When Elongin
B/C box mutations are present, such as in [BCbox-3Mut, APOBEC-3Cons] (MAREV-1) and
[BCbox-3Mut, BCbox-2Mut] (MAREV-2), a greater number of patients are seen to be present
in the ≥500 cells/µl class than in the ≤500 cells/µl class. This supports the notion that
Elongin B/C binding box mutations are detrimental to viral fitness and thus prevent HIV
from escaping APOBEC3 inhibition or interference.

An additional interesting finding relates to historic CD4 T cell numbers and viral loads.
HIV patients are normally enrolled into anti-retroviral therapy protocols after being diag-
nosed, irrespective of CD4 T cell counts and viral load numbers. The clinical impact that
viral mutations have at this stage, after initiating treatment, has largely been linked to pro-
tease, reverse-transcriptase, and integrase sites, those most subjected to selective pressures
by anti-retroviral drugs. Our results indicate that the conservation of APOBEC binding mo-
tifs are essential to viral fitness (and worsening clinical progression), at least in the MAREV-1
results. As such, [APOBEC-2Mut, APOBEC-3Cons, APOBEC-5Cons] and [APOBEC-2Cons,
APOBEC-3Cons] were more common among patients having lower CD4 T Cell numbers
on follow-up. This was also true for BCbox-3 in MAREV-2 results, where [APOBEC-2Mut,
BCbox-3Cons] was also more common among patients having ≤500 cells/µL. Previous
reports have highlighted how the conservation of APOBEC binding sites is crucial for vif-
mediated viral fitness. Our results suggest that the mutation of certain APOBEC3 binding
site motifs (i.e., APOBEC-2) is tolerated without a significant effect on viral fitness as long
as other, perhaps more important, remaining motifs are conserved (i.e., APOBEC-3 and
or -5) [46].

5. Conclusions

This paper proposes a new methodology based on machine learning algorithms (CART,
NB, SVMs, and MLP) combined with an undersampling approach to deal with an imbal-
anced HIV dataset. Additionally, we present evidence of the classification performance of
two different approaches (MAREV-1 and MAREV-2) for the identification of associations
of Vif protein motifs with clinical endpoints in HIV. These variables subsequently proved
to play a crucial role when different combinations of them were linked to HIV outcome, a
difficult task that is not possible to achieve in human terms without relying on statistical
corrections that decrease the statistical power of the study. These findings are in agreement
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with the known properties and with the functional and clinical relevance of the different
Vif protein motifs found to be relevant. Needless to say, further research employing cell
biology and molecular epidemiology tools is warranted so as to provide further support
for these claims. Efforts are currently underway in our group to test the clinical utility of
the identified variable combinations in a novel, larger HIV cohort.

When comparing the different strategies described in this manuscript, MAREV-2 was
able to identify many more clinical associations, at least one per clinical outcome. This
might be interpreted to suggest that this approach might prove more useful in future
analysis and in clinical settings.

Many techniques are currently available to deal with imbalanced datasets. Although
we studied the capacity of an undersampling approach to resolve this limitation, future
work will explore the performance of oversampling techniques. These results provide
further evidence on the usefulness and potential that machine learning methods have at
analyzing complex datasets. Given the exponential growth of applications of artificial
intelligence and classification strategies, this field is likely to benefit from the results
presented herein.

Elongin B/C binding site mutations might prove to be the single most important
Vif genetic feature determining CD4 T cell numbers at the time of clinical debut and at a
time when viral replication has not been subjected to the influence of anti-retroviral drugs
(as patients are treatment-naïve at this time). This opens the possibility that molecular
approaches targeting HIV-1 Elongin B/C binding motifs or those inhibiting the interactions
of Elongin B/C and Vif might provide innovative preventative strategies in the fight against
HIV.

Overall, our results provide insight into the utility that both MAREV-1 and -2 algo-
rithms have at discriminating complex genetic variable combinations linked to clinical
endpoints in HIV, the practical utility of screening for accessory protein encoding region
mutations in HIV prognosis, as well as at guiding the development of novel therapeutic
interventions in HIV.
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Abbreviations
The following abbreviations are used in this manuscript:

HIV Human Immunodeficiency Virus
Vif Viral Infectivity Factor
CD4 Cluster of Differentiation 4
APOBEC3 APOlipoprotein Bmessenger RNA Editing enzyme, Catalytic polypeptide-like
NLIS Nuclear Localisation Inhibitory Signal
SVMs Support Vector Machines
ANNs Artificial Neural Networks
NB Naïve Bayes
MLP Multi-Layer Perceptron
RBF Radial Basis Function

Appendix A. Variable Assessment

Following the proposed methodology for assessing the relevance of each variable
(see Section 3.5), the results from the fourth step are in Tables A1–A4. There is a table per
clinical endpoint CD4Ini, CD4Hist, VLIni, and VLHist, respectively. Each table shows the
results from each classification algorithm: CART, MLP, NB, and SVMs.

Table A1. Relevance scores (r) in a descending order per algorithm and variable considering the
clinical endpoint CD4Ini using the MAREV-1 approach. The four variables with higher values are
highlighted in bold.

(a) CART

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 BCbox-3 6 1.355 0.545 0 0.188 0 0 0.107 0.087 0 8.282
2 APOBEC-3 0 2.71 1.818 1.793 0.469 0.192 0 0 0 0 6.982
3 APOBEC-5 0 0 2 1.11 1.875 0.673 0.186 0.107 0.087 0 6.038
4 APOBEC-2 0 2.613 1.364 0.768 0.562 0.288 0.186 0 0 0 5.782
5 BCbox-2 2.4 1.161 0.273 0.939 0.094 0.096 0.093 0 0.348 0.1 5.504
6 APOBEC-6 0 0 0 0.939 0.469 1.346 0.744 0.321 0.435 0 4.254
7 APOBEC-4 1.6 0.097 0.455 0.427 0.656 0.096 0.093 0 0.087 0 3.511
8 Cul5-3 0 0 1.091 0.427 0.562 0.385 0.279 0 0.087 0.2 3.031
9 CBFb-1 0 0 0 0.085 0.281 0.673 0.465 0.964 0.348 0.1 2.917
10 APOBEC-7 0 0.097 0.091 0.341 0.375 0.288 0.837 0 0 0.3 2.33
11 APOBEC-8 0 0 0.091 0.171 0.094 0.288 0.279 0.536 0.174 0 1.633
12 NLIS 0 0.968 0.182 0 0 0.192 0 0.107 0 0 1.449
13 CBFb-2 0 0 0.091 0 0.188 0.096 0.279 0.214 0 0.1 0.968
14 Cul5-1 0 0 0 0 0.094 0.096 0.372 0.214 0.087 0.1 0.963
15 Cul5-2 0 0 0 0 0.094 0.096 0.093 0.321 0.087 0.1 0.791
16 BCbox-1 0 0 0 0 0 0.192 0.093 0.107 0.174 0 0.566

(b) MLP

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 BCbox-3 7.3 0.09 0.33 0.151 0 0.07 0.07 0 0 0.125 8.136
2 APOBEC-3 0 2.79 2.062 0.527 0.714 0.211 0.14 0.071 0 0 6.516
3 APOBEC-5 0 0 1.732 1.355 0.643 0.915 0.211 0.071 0.069 0.062 5.059
4 BCbox-2 1.2 1.44 0.495 0.527 0.357 0.211 0.211 0 0.069 0.062 4.572
5 APOBEC-2 0 2.07 0.825 0.527 0.357 0.282 0.14 0.143 0 0.062 4.406
6 APOBEC-4 1.3 0.09 0.577 0.903 0.286 0.282 0.211 0 0.069 0.062 3.78
7 Cul5-2 0 0 0.082 0.376 1.714 0.352 0.281 0.286 0.138 0.062 3.292
8 APOBEC-7 0.1 1.35 0.412 0.301 0.143 0.423 0.351 0.071 0.069 0.062 3.283
9 Cul5-3 0 0.09 0.66 0.602 0.357 0.282 0.421 0.357 0.345 0 3.114
10 APOBEC-6 0 0.09 0.33 0.828 0.357 0.563 0.281 0.286 0.138 0.188 3.06
11 APOBEC-8 0 0.09 0 0.226 0.5 0.352 0.421 0.143 0.207 0 1.939
12 CBFb-1 0 0 0 0.075 0.214 0.423 0.632 0.357 0 0.125 1.826
13 NLIS 0.1 0.72 0.165 0.151 0.071 0.211 0.14 0.071 0.069 0.062 1.761
14 CBFb-2 0 0.09 0.165 0.301 0 0.141 0.14 0.357 0.276 0.062 1.533
15 BCbox-1 0 0.09 0.165 0.075 0.214 0.211 0.211 0.286 0.138 0 1.39
16 Cul5-1 0 0 0 0.075 0.071 0.07 0.14 0.5 0.414 0.062 1.334
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Table A1. Cont.

(c) NB

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 APOBEC-2 10 0 0 0 0 0 0 0 0 0 10
2 BCbox-3 0 6.48 0.08 0.298 0.468 0.317 0.186 0.077 0 0 7.906
3 APOBEC-3 0 0.27 1.92 0.968 1.091 0.952 0.372 0 0 0.1 5.673
4 APOBEC-4 0 0.09 2.08 0.968 0.545 0.397 0.186 0.308 0.143 0 4.717
5 BCbox-2 0 0.09 1.12 1.117 0.156 0.317 0.279 0.308 0.143 0 3.53
6 APOBEC-6 0 0 0.64 0.521 0.779 0.556 0.186 0.308 0.286 0 3.276
7 CBFb-2 0 0.63 0.72 0.298 0.312 0.159 0.186 0.231 0.143 0.1 2.778
8 APOBEC-5 0 0 0.08 0.223 0.701 0.476 0.651 0.231 0.286 0.1 2.749
9 APOBEC-7 0 1.08 0.08 0.447 0.312 0.238 0.093 0.308 0.143 0 2.7
10 Cul5-3 0 0 0.64 0.521 0.156 0.238 0.744 0.154 0.143 0 2.596
11 NLIS 0 0.27 0.08 0.521 0.234 0.397 0.279 0.154 0.143 0.2 2.278
12 BCbox-1 0 0 0.4 0.223 0.623 0.397 0.093 0.231 0.143 0.1 2.21
13 CBFb-1 0 0 0 0.223 0.39 0.238 0.279 0.385 0 0.2 1.715
14 APOBEC-8 0 0.09 0.16 0.372 0.156 0.159 0.279 0.154 0.143 0 1.513
15 Cul5-2 0 0 0 0.223 0.078 0 0.186 0.077 0 0.2 0.764
16 Cul5-1 0 0 0 0.074 0 0.159 0 0.077 0.286 0 0.596

(d) SVMs

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 BCbox-3 5.5 0.827 0.774 0.402 0.676 0.323 0 0.083 0 0 8.585
2 BCbox-2 1.5 2.02 1.29 0.805 0.423 0.081 0.226 0 0.286 0 6.631
3 APOBEC-4 2.6 0.276 1.118 0.885 0.761 0.323 0.226 0.167 0 0.1 6.455
4 APOBEC-2 0.1 1.745 1.376 0.563 0.423 0.726 0 0.417 0.19 0.1 5.64
5 APOBEC-3 0 0.276 1.032 2.011 0.676 1.048 0.302 0.167 0.095 0 5.607
6 APOBEC-7 0 2.663 0.688 0.483 0.507 0.242 0.226 0.083 0.19 0 5.083
7 NLIS 0.1 0.643 1.032 0.483 0.169 0.242 0.528 0.083 0.19 0 3.471
8 APOBEC-5 0 0.092 0.086 0.241 0.592 0.645 0.906 0.583 0.19 0 3.335
9 Cul5-3 0 0.092 0.258 0.483 0.676 0.565 0.528 0.083 0.19 0 2.875
10 APOBEC-6 0 0 0 0.161 0.423 0.242 0.679 0.583 0.19 0.2 2.478
11 CBFb-2 0.1 0.367 0.258 0.322 0 0.242 0.075 0 0.19 0 1.555
12 APOBEC-8 0.1 0 0.086 0.08 0.338 0.161 0.075 0.25 0.095 0.2 1.387
13 BCbox-1 0 0 0 0.08 0.169 0.081 0.075 0.167 0 0.1 0.672
14 Cul5-2 0 0 0 0 0.169 0.081 0.075 0.167 0.095 0 0.587
15 CBFb-1 0 0 0 0 0 0 0 0.167 0.095 0.3 0.562
16 Cul5-1 0 0 0 0 0 0 0.075 0 0 0 0.075

Table A2. Relevance scores (r) in descending order per algorithm and variable considering the
clinical endpoint CD4Hist using the MAREV-1 approach. The three variables with higher values are
highlighted in bold.

(a) CART

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 APOBEC-2 6.8 0.2 0.494 0.467 0.338 0.094 0 0 0 0 8.393
2 APOBEC-3 0 4.8 0.691 0.467 0.676 0 0.133 0 0 0 6.767
3 APOBEC-5 0 0.4 1.481 2.24 0.845 0.377 0.4 0.214 0 0 5.958
4 BCbox-3 2.1 1.3 0.889 0.653 0.169 0.189 0 0 0.167 0 5.467
5 APOBEC-4 0 0.4 2.765 0.28 0.761 0.472 0.133 0.214 0.333 0 5.359
6 Cul5-3 0.5 0.8 0.198 0.653 0.254 0.66 0.4 0.536 0.167 0 4.167
7 APOBEC-6 0 0.3 0.099 1.12 1.183 0.472 0.4 0.321 0 0.111 4.006
8 APOBEC-7 0.1 0 0.395 0.093 0.93 0.377 0.533 0.214 0 0.222 2.865
9 CBFb-1 0 0 0 0.093 0.254 1.038 0.933 0.214 0.167 0 2.699
10 BCbox-2 0.5 0.6 0.395 0.467 0.169 0.189 0 0.107 0 0.111 2.538
11 CBFb-2 0 0.1 0.296 0.28 0.085 0.094 0.667 0.321 0.333 0 2.177
12 APOBEC-8 0 0.1 0.099 0 0 0.66 0 0.536 0 0.111 1.506
13 Cul5-1 0 0 0 0 0 0.189 0.4 0 0.5 0.111 1.2
14 NLIS 0 0 0.099 0.187 0.338 0.189 0 0.107 0 0.222 1.142
15 Cul5-2 0 0 0.099 0 0 0 0 0.214 0 0.111 0.424
16 BCbox-1 0 0 0 0 0 0 0 0 0.333 0 0.333
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Table A2. Cont.

(b) MLP

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 APOBEC-2 6.7 0.36 0.495 0 0.207 0.074 0 0.075 0 0.136 8.047
2 APOBEC-3 0 4.05 0.825 0.692 0.276 0.147 0.17 0 0.148 0 6.308
3 BCbox-3 2.1 0.54 0.247 0.385 0.345 0.147 0.255 0.375 0.222 0.045 4.662
4 APOBEC-5 0 0.63 1.567 1.385 0.345 0.588 0.085 0 0 0.045 4.645
5 APOBEC-6 0 0.81 1.155 0.769 0.828 0.294 0.255 0.225 0.074 0.045 4.455
6 APOBEC-4 0 0.36 1.897 0.231 0.621 0.294 0.34 0.225 0.148 0 4.116
7 Cul5-3 0.5 0.9 0.495 0.846 0 0.368 0 0.525 0 0.045 3.679
8 CBFb-1 0 0 0.33 0.385 0.552 0.735 0.596 0.15 0.148 0 2.895
9 APOBEC-8 0 0.27 0.082 0.846 0.276 0.368 0.511 0.15 0.074 0.045 2.622
10 Cul5-2 0 0.54 0.082 0.154 0.621 0.294 0.255 0 0.444 0.227 2.618
11 APOBEC-7 0.1 0 0.165 0.462 0.69 0.515 0.085 0.15 0.222 0.045 2.434
12 BCbox-2 0.5 0.27 0.165 0.385 0.276 0.147 0.255 0.225 0.074 0 2.297
13 NLIS 0 0.09 0.165 0.154 0.345 0.441 0.34 0.075 0 0.136 1.747
14 CBFb-2 0.1 0.18 0.165 0.077 0.138 0.221 0.426 0.075 0.148 0.136 1.665
15 Cul5-1 0 0 0.165 0.077 0.138 0.294 0.34 0.3 0 0.091 1.405
16 BCbox-1 0 0 0 0.154 0.345 0.074 0.085 0.45 0.296 0 1.404

(c) NB

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 APOBEC-2 10 0 0 0 0 0 0 0 0 0 10
2 APOBEC-4 0 1.8 0.851 0.612 1 0.317 0.651 0.143 0.065 0.111 5.551
3 APOBEC-3 0 0.09 2.043 1.4 0.923 0.397 0.186 0.071 0.065 0 5.174
4 APOBEC-6 0 0 0.596 0.875 0.538 0.794 0.837 0.143 0.323 0.111 4.217
5 APOBEC-8 0 1.89 0.426 0.525 0.231 0.238 0.279 0.286 0.129 0 4.003
6 BCbox-2 0 2.52 0.426 0.088 0.154 0 0.093 0.286 0.065 0.222 3.852
7 APOBEC-5 0 0 0.255 1.05 0.538 0.952 0.465 0.286 0.129 0.111 3.787
8 BCbox-3 0 0.54 0.17 0.7 0.846 0.873 0.093 0.286 0.129 0 3.637
9 Cul5-3 0 1.35 0.596 0.175 0.231 0.317 0.093 0.214 0.065 0 3.041
10 APOBEC-7 0 0 0.085 0.525 0.538 0.397 0.465 0.214 0.129 0.222 2.576
11 CBFb-2 0 0 0.681 0.438 0.385 0.159 0 0.143 0.387 0 2.192
12 NLIS 0 0.81 0.17 0.438 0.231 0.238 0 0.071 0.129 0 2.087
13 CBFb-1 0 0 0.17 0.175 0.231 0 0.372 0.357 0.323 0.111 1.739
14 Cul5-2 0 0 1.362 0 0.077 0.079 0 0.214 0 0 1.732
15 Cul5-1 0 0 0.085 0 0.077 0.159 0.372 0.143 0.065 0 0.9
16 BCbox-1 0 0 0.085 0 0 0.079 0.093 0.143 0 0.111 0.511

(d) SVMs

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 APOBEC-2 8.8 0.329 0.107 0 0 0 0 0 0 0 9.236
2 BCbox-3 0.1 2.854 0.96 1.242 0.941 0.645 0.19 0.4 0 0 7.332
3 APOBEC-3 0 2.854 0.853 1.242 0.471 0.484 0 0 0.25 0.167 6.32
4 APOBEC-5 0 0 0.427 1.016 1.529 0.806 0.571 0.6 0.25 0.167 5.367
5 APOBEC-4 0 0.659 2.133 0.565 0.824 0.323 0.571 0 0 0 5.074
6 APOBEC-7 0 0.659 1.067 0.452 0.118 0 0.762 0.4 0.25 0.167 3.873
7 APOBEC-6 0.1 0.11 0.64 0.339 0.706 0.484 0.19 0.4 0.5 0 3.469
8 BCbox-2 0.4 0.439 0.64 0.677 0.235 0.161 0.19 0.2 0 0.167 3.11
9 Cul5-3 0.4 0.439 0.64 0.226 0.471 0.323 0 0 0.5 0 2.998
10 APOBEC-8 0.1 0.22 0.32 0.339 0.118 0.645 0.571 0.2 0 0 2.512
11 NLIS 0.1 0.22 0.107 0.226 0.118 0.484 0.571 0.2 0 0 2.025
12 CBFb-2 0 0.11 0.107 0.452 0.353 0.323 0.19 0.2 0 0 1.734
13 CBFb-1 0 0 0 0.113 0.118 0.323 0.19 0.4 0.25 0.333 1.727
14 Cul5-2 0 0 0 0.113 0 0 0 0 0 0 0.113
15 BCbox-1 0 0.11 0 0 0 0 0 0 0 0 0.11
16 Cul5-1 0 0 0 0 0 0 0 0 0 0 0
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Table A3. Relevance scores (r) in descending order per algorithm and variable considering the clinical
endpoint VLIni using the MAREV-1 approach. The three variables with higher values are highlighted
in bold.

(a) CART

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 APOBEC-2 6.3 0.276 0.556 0 0 0 0.444 0 0 0 7.576
2 BCbox-1 0 5.235 0.667 0.75 0.13 0 0 0 0 0.25 7.032
3 APOBEC-3 0 0.827 1.778 1.625 0.783 0.167 0.148 0.2 0 0 5.527
4 APOBEC-5 0 0.918 0.889 0.875 1.435 0.333 0.593 0 0 0 5.043
5 CBFb-2 1 0.551 1.333 0.75 0.13 0.167 0.296 0 0 0 4.228
6 APOBEC-4 0 0.643 1.556 0.5 0.522 0.667 0.296 0 0 0 4.183
7 APOBEC-7 0 0.276 0.667 0.375 0.652 0.5 0.296 0.2 0 0.25 3.216
8 APOBEC-6 0 0.092 0.222 0.375 0.783 0.833 0.296 0.4 0.2 0 3.201
9 BCbox-2 2.7 0 0.111 0.125 0 0 0.148 0 0 0 3.084
10 CBFb-1 0 0 0 0.125 0.522 1.167 0.296 0.2 0.2 0.25 2.76
11 Cul5-1 0 0 0 0 0.13 0.333 0.296 1 0.4 0 2.16
12 NLIS 0 0.092 0 0.375 0.261 0.5 0.148 0.6 0 0 1.976
13 Cul5-3 0 0.092 0.111 0.625 0.261 0 0.148 0.2 0.2 0 1.637
14 Cul5-2 0 0 0 0.125 0 0 0.296 0.2 0.6 0 1.221
15 APOBEC-8 0 0 0.111 0.125 0.261 0.167 0.148 0 0.4 0 1.212
16 BCbox-3 0 0 0 0.25 0.13 0.167 0.148 0 0 0.25 0.945

(b) MLP

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 APOBEC-2 6.3 0.273 0.4 0.092 0 0.357 0.118 0.13 0.154 0.125 7.949
2 BCbox-1 0 5.182 0.5 0.276 0.689 0.476 0.118 0 0.154 0 7.394
3 APOBEC-5 0 0.545 1 0.276 1.082 0.952 0.471 0.261 0.154 0 4.741
4 CBFb-2 1 0.818 1.7 0.368 0.098 0.357 0.118 0 0 0 4.46
5 APOBEC-3 0 1.182 0.8 1.105 0.59 0.238 0 0.13 0.308 0 4.353
6 CBFb-1 0 0 0.1 1.289 0.492 0.238 0.471 0.652 0.154 0.125 3.521
7 BCbox-2 2.7 0 0.3 0.092 0 0 0 0 0 0 3.092
8 Cul5-1 0 0 0.1 0.553 0.59 0.595 0.588 0.652 0 0 3.078
9 APOBEC-4 0 0.273 0.8 0.645 0.393 0 0.353 0.13 0.154 0 2.748
10 APOBEC-7 0 0.182 0.8 0.553 0.59 0.238 0.118 0.13 0 0 2.611
11 Cul5-2 0 0 0.1 0.092 0.295 0.833 0.471 0.261 0.308 0.125 2.485
12 NLIS 0 0 0.6 0.184 0.197 0.119 0.353 0.13 0.154 0.25 1.987
13 BCbox-3 0 0.091 0.1 0.737 0.197 0.238 0 0.13 0.308 0 1.801
14 APOBEC-8 0 0 0.3 0.092 0.492 0.119 0.353 0.13 0 0.25 1.736
15 APOBEC-6 0 0.182 0.3 0.368 0.098 0.119 0.235 0.13 0 0.125 1.558
16 Cul5-3 0 0.273 0.1 0.276 0.197 0.119 0.235 0.13 0.154 0 1.484

(c) NB

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 APOBEC-2 10 0 0 0 0 0 0 0 0 0 10
2 Cul5-3 0 5.22 1.495 0.236 0.651 0.069 0 0.073 0 0.143 7.887
3 APOBEC-4 0 3.24 0.703 0.393 0.651 0.347 0.082 0.146 0 0.143 5.705
4 CBFb-2 0 0 1.495 0.708 0.94 0.347 0.49 0.366 0.133 0 4.478
5 APOBEC-3 0 0 0.967 1.416 0.217 0.833 0.408 0.366 0.067 0 4.274
6 BCbox-1 0 0.36 1.319 0.787 0.578 0.208 0.327 0 0.067 0.143 3.788
7 BCbox-2 0 0 0.44 1.573 0.434 0.139 0.408 0.073 0.067 0.143 3.276
8 APOBEC-5 0 0 0.791 0.157 0.361 0.278 0.571 0.22 0.133 0.143 2.655
9 APOBEC-7 0 0 0.176 0.236 0.578 0.625 0.327 0.512 0.133 0 2.587
10 CBFb-1 0 0 0.088 0.157 0.578 0.833 0.163 0.293 0.4 0 2.513
11 NLIS 0 0.18 0.088 0.393 0.361 0.486 0.163 0.073 0.133 0.143 2.021
12 APOBEC-6 0 0 0.352 0.236 0.361 0.208 0.245 0.439 0 0 1.841
13 BCbox-3 0 0 0.088 0.157 0 0.347 0.245 0.293 0.2 0 1.33
14 APOBEC-8 0 0 0 0.236 0.072 0.069 0.408 0.073 0.333 0 1.192
15 Cul5-1 0 0 0 0.157 0.145 0.139 0.082 0.073 0.267 0 0.862
16 Cul5-2 0 0 0 0.157 0.072 0.069 0.082 0 0.067 0.143 0.59
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Table A3. Cont.

(d) SVMs

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 APOBEC-2 5.8 1.299 1.129 0.339 0 0.179 0 0 0 0 8.746
2 BCbox-2 2.1 1.485 1.6 0.339 0.15 0.179 0 0.167 0 0 6.018
3 APOBEC-3 0.2 1.206 1.318 1.581 0.6 0.357 0.462 0 0 0 5.723
4 CBFb-2 0.3 2.876 1.035 0.565 0.15 0.179 0 0 0 0 5.105
5 APOBEC-5 0 0.093 0.188 0.903 1.05 0.357 0.615 0.667 0.364 0 4.237
6 APOBEC-7 0.4 0.186 0.565 0.226 1.8 0.179 0 0.333 0.364 0 4.052
7 BCbox-3 0.3 0.742 0.282 0.339 0 0.893 0.308 0 0.182 0.5 3.546
8 APOBEC-4 0.6 0.371 0.471 0.903 0.15 0.536 0.308 0 0.182 0 3.52
9 NLIS 0.1 0.186 0.376 0.113 0.45 0.536 0.923 0.5 0 0 3.184
10 Cul5-3 0.2 0.278 0.659 0.452 0.45 0.179 0.154 0.167 0.182 0 2.72
11 APOBEC-8 0 0.186 0 0.339 0.6 0.714 0.154 0.333 0.364 0 2.689
12 APOBEC-6 0 0 0.282 0.452 0.45 0.357 0.308 0 0.182 0 2.031
13 CBFb-1 0 0 0 0.113 0.15 0.357 0.154 0.5 0.182 0 1.456
14 BCbox-1 0 0.093 0.094 0.226 0 0 0.615 0.333 0 0 1.361
15 Cul5-1 0 0 0 0.113 0 0 0 0 0 0.5 0.613
16 Cul5-2 0 0 0 0 0 0 0 0 0 0 0

Table A4. Relevance scores (r) in descending order per algorithm and variable considering the
clinical endpoint VLHist using the MAREV-1 approach. The three variables with higher values are
highlighted in bold.

(a) CART

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 NLIS 9.9 0 0 0 0.158 0 0 0 0 0 10.058
2 APOBEC-3 0 5.091 0.427 0.28 0 0 0.2 0 0 0 5.998
3 APOBEC-5 0 0.909 4.16 0.28 0 0 0.2 0 0 0 5.549
4 APOBEC-2 0.1 2 0.747 0.7 0.474 0 0.4 0.5 0.4 0 5.32
5 CBFb-1 0 0 0.64 1.12 1.263 0.833 0.4 0 0 0 4.256
6 BCbox-1 0 0.636 0.853 0.42 0.632 0.333 0.4 0.5 0.4 0 4.175
7 APOBEC-8 0 0 0.213 1.82 0.632 0.5 0.8 0 0 0 3.965
8 APOBEC-7 0 0.182 0.107 0.42 0.632 0.5 0.8 0.25 0.4 0 3.29
9 Cul5-1 0 0 0.213 0.42 0.474 0.833 0.4 0.75 0 0 3.09
10 APOBEC-6 0 0 0.107 1.12 0.789 0 0 0.5 0 0 2.516
11 APOBEC-4 0 0.091 0.107 0.28 0 0.333 0.2 0.25 0 0.5 1.761
12 BCbox-3 0 0.091 0.32 0 0.158 1 0 0 0 0 1.569
13 CBFb-2 0 0 0.107 0.14 0.158 0.333 0 0 0 0.5 1.238
14 Cul5-2 0 0 0 0 0.158 0.167 0.2 0.25 0.4 0 1.175
15 BCbox-2 0 0 0 0 0.158 0.167 0 0 0.4 0 0.725
16 Cul5-3 0 0 0 0 0.316 0 0 0 0 0 0.316

(b) MLP

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 NLIS 9.9 0 0 0 0 0 0 0 0 0 9.9
2 BCbox-1 0 3.33 0.791 1.28 0.312 0.137 0.123 0.45 0.16 0.053 6.636
3 CBFb-1 0 0 1.67 0.768 1.169 0.753 0.308 0.225 0 0 4.894
4 APOBEC-5 0 0.81 1.319 1.11 0.39 0.479 0.185 0.075 0.4 0.053 4.82
5 APOBEC-3 0 2.43 0.44 0.683 0.234 0 0.246 0.075 0.16 0.053 4.32
6 Cul5-1 0 0 0.264 0.427 1.169 1.096 0.8 0.375 0.08 0.105 4.316
7 APOBEC-2 0.1 1.62 0.615 0.341 0.156 0.205 0.431 0.15 0.16 0.158 3.937
8 Cul5-2 0 0 0 0.256 1.325 0.753 0.862 0.375 0.16 0.105 3.836
9 APOBEC-8 0 0 0.44 0.854 0.39 0.137 0.492 0.45 0.32 0.053 3.135
10 APOBEC-7 0 0.09 1.319 0.427 0.078 0.205 0.185 0.225 0.16 0.053 2.741
11 APOBEC-4 0 0.36 0.527 0 0 0.274 0 0 0 0.158 1.319
12 APOBEC-6 0 0 0.352 0.085 0.312 0.205 0.062 0.15 0.08 0.053 1.298
13 BCbox-3 0 0.36 0 0.171 0.078 0.274 0.123 0.15 0.08 0.053 1.288
14 CBFb-2 0 0 0.264 0.171 0.234 0.137 0.062 0.15 0.08 0.053 1.149
15 Cul5-3 0 0 0 0.256 0.156 0.137 0.123 0.075 0.08 0.053 0.88
16 BCbox-2 0 0 0 0.171 0 0.205 0 0.075 0.08 0 0.531
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Table A4. Cont.

(c) NB

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 APOBEC-2 10 0 0 0 0 0 0 0 0 0 10
2 Cul5-3 0 1.71 3.2 0.794 0.174 0.574 0.073 0.077 0 0 6.601
3 NLIS 0 3.78 1.04 1.01 0.087 0.082 0.145 0.154 0.125 0 6.424
4 BCbox-1 0 0.54 1.12 1.155 1.13 0.656 0.218 0.231 0.125 0 5.175
5 APOBEC-8 0 2.16 0.32 0.361 0.435 0.41 0.582 0.231 0 0 4.498
6 APOBEC-3 0 0.09 0.24 1.227 0.783 0.41 0.727 0.308 0.125 0.222 4.131
7 APOBEC-5 0 0 0.32 0.289 0.87 0.656 0.291 0.077 0.375 0 2.877
8 CBFb-1 0 0 0.16 0.433 0.435 0.656 0.364 0.308 0.125 0.111 2.591
9 APOBEC-7 0 0.09 0.08 0.505 0.261 0.41 0.218 0.385 0.25 0.222 2.421
10 BCbox-3 0 0 0.24 0.433 0.696 0.164 0.291 0 0.25 0 2.073
11 CBFb-2 0 0 0.56 0.289 0.174 0.41 0.145 0.231 0.125 0.111 2.045
12 BCbox-2 0 0.45 0.16 0.361 0.087 0.246 0.218 0.231 0 0 1.753
13 APOBEC-4 0 0.18 0.32 0 0.174 0.246 0.436 0 0.125 0 1.481
14 APOBEC-6 0 0 0.16 0.144 0.348 0 0.145 0.308 0.125 0.111 1.341
15 Cul5-1 0 0 0.08 0 0 0 0.145 0.231 0.25 0.111 0.817
16 Cul5-2 0 0 0 0 0.348 0.082 0 0.231 0 0.111 0.772

(d) SVMs

Rank Variable pos1 pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10 Total

1 NLIS 9.2 0.45 0.188 0.106 0 0 0 0 0 0 9.944
2 BCbox-3 0.1 3.51 0.941 0.636 0.8 0.568 0.2 0.097 0.2 0 7.052
3 APOBEC-2 0.3 1.8 1.976 0.955 0.533 0.227 0.1 0 0 0 5.892
4 APOBEC-4 0 0.9 1.6 1.379 0.4 0.568 0.1 0.194 0.2 0 5.341
5 APOBEC-3 0 0.27 1.035 1.273 0.533 0.455 0.6 0.484 0 0 4.65
6 BCbox-1 0.2 0.27 0.376 0.742 0.133 1.023 0.7 0.387 0.6 0 4.432
7 APOBEC-8 0 0.09 0.471 0.424 1.333 0.227 0.3 0.194 0 0.556 3.595
8 APOBEC-5 0 0 0.282 0.636 0.667 0.455 0.5 0.29 0.2 0.222 3.252
9 BCbox-2 0 0.9 0.094 0.424 0.267 0.341 0.4 0.194 0 0 2.619
10 APOBEC-6 0 0 0.094 0.106 0.267 0.455 0.3 0.387 0.4 0 2.008
11 CBFb-2 0.2 0.63 0.376 0.106 0.133 0 0.1 0.097 0.2 0 1.843
12 Cul5-3 0 0 0.565 0.106 0.133 0.114 0.4 0.29 0 0 1.608
13 APOBEC-7 0 0.18 0 0.106 0.533 0.227 0.2 0.097 0 0 1.343
14 CBFb-1 0 0 0 0 0.267 0.114 0.1 0.097 0.2 0.111 0.888
15 Cul5-2 0 0 0 0 0 0.114 0 0.194 0 0 0.307
16 Cul5-1 0 0 0 0 0 0.114 0 0 0 0.111 0.225

Table A5 shows the results from the fourth step of the proposed methodology, see Sec-
tion 3.5.

Table A5. Assessment on the variables considering the clinical endpoints using the MAREV-1
approach. The variables with values surpassing the calculated threshold are highlighted in bold.

CD4Ini

Rank Variable CART MLP NB SVMs Total

1 BCbox-3 8.282 8.136 7.906 8.585 32.909
2 APOBEC-3 5.782 4.406 10 5.64 25.828
3 APOBEC-5 6.982 6.516 5.673 5.607 24.778
4 APOBEC-2 5.504 4.572 3.53 6.631 20.237
5 BCbox-2 3.511 3.78 4.717 6.455 18.463
6 APOBEC-6 6.038 5.059 2.749 3.335 17.181
7 APOBEC-4 2.33 3.283 2.7 5.083 13.396
8 Cul5-3 4.254 3.06 3.276 2.478 13.068
9 CBFb-1 3.031 3.114 2.596 2.875 11.616
10 APOBEC-7 1.449 1.761 2.278 3.471 8.959
11 APOBEC-8 2.917 1.826 1.715 0.562 7.02
12 NLIS 0.968 1.533 2.778 1.555 6.834
13 CBFb-2 1.633 1.939 1.513 1.387 6.472
14 Cul5-1 0.791 3.292 0.764 0.587 5.434
15 Cul5-2 0.566 1.39 2.21 0.672 4.838
16 BCbox-1 0.963 1.334 0.596 0.075 2.968
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Table A5. Cont.

CD4Hist

Rank Variable CART MLP NB SVMs Total

1 APOBEC-2 8.393 8.047 10 9.236 35.676
2 APOBEC-3 6.767 6.308 5.174 6.32 24.569
3 APOBEC-5 5.467 4.662 3.637 7.332 21.098
4 BCbox-3 5.359 4.116 5.551 5.074 20.1
5 APOBEC-4 5.958 4.645 3.787 5.367 19.757
6 Cul5-3 4.006 4.455 4.217 3.469 16.147
7 APOBEC-6 4.167 3.679 3.041 2.998 13.885
8 APOBEC-7 2.538 2.297 3.852 3.11 11.797
9 CBFb-1 2.865 2.434 2.576 3.873 11.748
10 BCbox-2 1.506 2.622 4.003 2.512 10.643
11 CBFb-2 2.699 2.895 1.739 1.727 9.06
12 APOBEC-8 2.177 1.665 2.192 1.734 7.768
13 Cul5-1 1.142 1.747 2.087 2.025 7.001
14 NLIS 0.424 2.618 1.732 0.113 4.887
15 Cul5-2 1.2 1.405 0.9 0 3.505
16 BCbox-1 0.333 1.404 0.511 0.11 2.358

VLIni

Rank Variable CART MLP NB SVMs Total

1 APOBEC-2 7.576 7.949 10 8.746 34.271
2 BCbox-1 5.527 4.353 4.274 5.723 19.877
3 APOBEC-3 7.032 7.394 3.788 1.361 19.575
4 APOBEC-5 4.228 4.46 4.478 5.105 18.271
5 CBFb-2 5.043 4.741 2.655 4.237 16.676
6 APOBEC-4 4.183 2.748 5.705 3.52 16.156
7 APOBEC-7 3.084 3.092 3.276 6.018 15.47
8 APOBEC-6 1.637 1.484 7.887 2.72 13.728
9 BCbox-2 3.216 2.611 2.587 4.052 12.466
10 CBFb-1 2.76 3.521 2.513 1.456 10.25
11 Cul5-1 1.976 1.987 2.021 3.184 9.168
12 NLIS 3.201 1.558 1.841 2.031 8.631
13 Cul5-3 0.945 1.801 1.33 3.546 7.622
14 Cul5-2 1.212 1.736 1.192 2.689 6.829
15 APOBEC-8 2.16 3.078 0.862 0.613 6.713
16 BCbox-3 1.221 2.485 0.59 0 4.296

VLHist

Rank Variable CART MLP NB SVMs Total

1 NLIS 10.058 9.9 6.424 9.944 36.326
2 APOBEC-3 5.32 3.937 10 5.892 25.149
3 APOBEC-5 4.175 6.636 5.175 4.432 20.418
4 APOBEC-2 5.998 4.32 4.131 4.65 19.099
5 CBFb-1 5.549 4.82 2.877 3.252 16.498
6 BCbox-1 3.965 3.135 4.498 3.595 15.193
7 APOBEC-8 4.256 4.894 2.591 0.888 12.629
8 APOBEC-7 1.569 1.288 2.073 7.052 11.982
9 Cul5-1 1.761 1.319 1.481 5.341 9.902
10 APOBEC-6 3.29 2.741 2.421 1.343 9.795
11 APOBEC-4 0.316 0.88 6.601 1.608 9.405
12 BCbox-3 3.09 4.316 0.817 0.225 8.448
13 CBFb-2 2.516 1.298 1.341 2.008 7.163
14 Cul5-2 1.238 1.149 2.045 1.843 6.275
15 BCbox-2 1.175 3.836 0.772 0.307 6.09
16 Cul5-3 0.725 0.531 1.753 2.619 5.628

Table A6 shows the results from the fifth step of the proposed methodology, see
Section 3.5.
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Table A6. The most informative variables per clinical endpoint considering those surpassing a
calculated threshold (relevance scores in boldface). a, Scores when considering the classifications
results from all the combinations; b, Scores calculated using only the best classification performance
per clinical endpoint and algorithm (see Table 2).

a MAREV-1 b MAREV-2

Variable CD4Ini CD4Hist VLIni VLHist CD4Ini CD4Hist VLIni VLHist

APOBEC-2 20.237 35.676 34.271 19.099 6.5 10.0 10.0 8.75
APOBEC-3 25.828 24.569 19.575 25.149 7.75 2.25 5.083 3.75
APOBEC-4 13.396 19.757 16.156 9.405 1.75 8.0 8.0 2.25
APOBEC-5 24.778 21.098 18.271 20.418 2.5 3.25 5.167 1.5
APOBEC-6 17.181 13.885 13.728 9.795 1.25 1.5 1.667 3.667
APOBEC-7 8.959 11.797 15.47 11.982 0 5.167 2.25 1.0
APOBEC-8 7.02 7.768 6.713 12.629 0 1.667 3.333 4.833
BCbox-1 2.968 2.358 19.877 15.193 3.0 1.5 6.5 7.167
BCbox-2 18.463 10.643 12.466 6.09 8.5 3.667 5.0 1.75
BCbox-3 32.909 20.1 4.296 8.448 8.5 7.0 0 3.583
CBFb-1 11.616 11.748 10.25 16.498 0 0 2.0 1.667
CBFb-2 6.472 9.06 16.676 7.163 0 1.75 0 1.5
Cul5-1 5.434 7.001 9.168 9.902 0 0 0 1.333
Cul5-2 4.838 3.505 6.829 6.275 0 0 1.333 1.5
Cul5-3 13.068 16.147 7.622 5.628 5.25 4.25 1.667 2.25
NLIS 6.834 4.887 8.631 36.326 0 2.0 2.0 8.5

Threshold 20.2 20.25 19.18 19.85 8.187 6.328 6.454 5.326

Table A7 compares the findings of MAREV-1 and MAREV-2 with the previous results.

Table A7. Variables with the highest scores per clinical endpoint. a, Previous results [20]; b, Consider-
ing the MAREV-1 approach; c, Considering the MAREV-2 approach.

a Previous Results b MAREV-1 c MAREV-2

Clinical
End-
point

Variable Rank Rank Variable Rank Variable

CD4Ini BCbox-3 1 = 1 BCbox-3 = 1 BCbox-3
APOBEC-
4 2 - APOBEC-

3 - BCbox-2

Cul-5 3 - APOBEC-
5

- APOBEC-
2

CD4Hist APOBEC-
2 1 = 1 APOBEC-

2 = 1 APOBEC-
2

APOBEC-
3 2 = 2 APOBEC-

3 - APOBEC-
4

- APOBEC-
5 - BCbox-3

VLIni APOBEC-
2 1 = 1 APOBEC-

2 = 1 APOBEC-
2

BCbox-1 2 = 2 BCbox-1 - APOBEC-
4

BCBox-2 3 - APOBEC-
3 - BCbox-1

VLHist NLIS 1 = 1 NLIS - APOBEC-
2

BCbox-1 2 - APOBEC-
3 - NLIS

APOBEC-
2 3 - APOBEC-

5 - BCbox-1
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