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Abstract: Exploring potential associations between small molecule drugs (SMs) and microRNAs
(miRNAs) is significant for drug development and disease treatment. Since biological experiments
are expensive and time-consuming, we propose a computational model based on accurate matrix
completion for predicting potential SM–miRNA associations (AMCSMMA). Initially, a heteroge-
neous SM–miRNA network is constructed, and its adjacency matrix is taken as the target matrix.
An optimization framework is then proposed to recover the target matrix with the missing values
by minimizing its truncated nuclear norm, an accurate, robust, and efficient approximation to the
rank function. Finally, we design an effective two-step iterative algorithm to solve the optimization
problem and obtain the prediction scores. After determining the optimal parameters, we conduct
four kinds of cross-validation experiments based on two datasets, and the results demonstrate that
AMCSMMA is superior to the state-of-the-art methods. In addition, we implement another validation
experiment, in which more evaluation metrics in addition to the AUC are introduced and finally
achieve great results. In two types of case studies, a large number of SM–miRNA pairs with high pre-
dictive scores are confirmed by the published experimental literature. In summary, AMCSMMA has
superior performance in predicting potential SM–miRNA associations, which can provide guidance
for biological experiments and accelerate the discovery of new SM–miRNA associations.

Keywords: MicroRNA; small molecule; association prediction; truncated nuclear norm regularization;
matrix completion

1. Introduction

MicroRNAs (miRNAs) are a class of single-stranded noncoding RNA molecules con-
taining 17–24 nucleotides [1–3]. The first miRNA, lin-4, and the first mammalian miRNA,
let-7, were found in the 1990s [4,5]. With these two significant discoveries, a wave of
genomic research took place, resulting in the discovery of a large number of miRNAs in
many organisms [6,7]. At the same time, it has become increasingly evident to researchers
that miRNAs are involved in complex and diverse life processes. Specifically, miRNAs
can bind to complementary target mRNAs, resulting in mRNA translational inhibition or
degradation, which means that miRNAs have a significant impact on cell differentiation,
proliferation, and apoptosis [1]. In addition, miRNAs play essential roles in various cel-
lular activities, including immune responses and neurotransmitter synthesis [8,9]. More
significantly, miRNAs participate in tumorigenesis and host–pathogen interactions [10–13].
For instance, Liu et al. [14] identified that the abnormal expression of miR-181c is involved
in the pathogenesis of glioblastoma. Therefore, restoring the expression level of miR-181c in
glioblastoma cancer cells can effectively treat the disease, which also provides new insight
for the clinical treatment of many refractory diseases, including cancer.
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Indeed, as a low-molecular-weight compound, small molecule (SM) drugs have been
demonstrated to target dysregulated miRNAs and modulate their expression [15–17].
For instance, SPC3649, the first miRNA-targeted drug administered in human clinical
trials, successfully inhibits the expression of miR-122, which is required for hepatitis C
virus replication [18]. Consequently, utilizing miRNAs as diagnostic and therapeutic
targets has become a promising pathway in drug development and disease treatment.
Since developing new SMs is time-consuming and expensive, it is extremely difficult to
develop specific SMs for each dysregulated miRNA. Therefore, researchers can look into
utilizing existing SMs to target and modulate a wider variety of miRNAs [19]. Furthermore,
determining the potential associations between the known SMs and miRNAs through
biological experiments is of great significance and urgency.

Given the abundance of existing SMs and miRNAs, it is critical to pre-screen out
SM–miRNA samples with high association probabilities for complex and expensive bio-
logical experiments. The proposed predictive approaches may be divided into network
inference-based models and matrix-completion-based models. For the first kind of model,
Guan et al. [20] proposed a model called Graphlet Interaction-based Inference for Small
Molecule–miRNA Association Prediction (GISMMA). Based on the integrated SM/miRNA
similarity (the widely used SM/miRNA similarities include the side-effect-based SM sim-
ilarity, the chemical-structure-based SM similarity, the functional consistency-based SM
similarity, the indication phenotype-based SM similarity, the gene functional consistency-
based miRNA similarity, and the disease-phenotype-based miRNA similarity), they first
constructed the SM/miRNA similarity network. Then, a specific SM–miRNA association
score was calculated by counting the number of graphlet interactions throughout the
SM/miRNA similarity network. Furthermore, Li et al. [21] developed the Small Molecule–
miRNA Network-Based Inference (SMiR-NBI) predictive model. In a constructed SM–
miRNA heterogeneous network, a given SM node evenly distributes the obtained initial
resources to the miRNA nodes regulated by it. Following this, these miRNA nodes immedi-
ately distribute the obtained resources to the SM nodes adjacent to them. As the resources
are continuously propagated through the network, the resource allocation of all nodes
eventually stabilizes. The final resource fraction of the miRNA nodes reflects the possibility
of being regulated by the given SM. Notably, the model is incapable of predicting miRNAs
or SMs that are potentially associated with new SMs or miRNAs. Additionally, Qu et al. [22]
proposed the Triple Layer Heterogeneous Network-based Small Molecule–miRNA Associa-
tion (TLHNSMMA) predictive model. They first constructed an SM–miRNA-disease triple
layer heterogeneous network. An iterative update algorithm was then applied to obtain the
association scores of all SM–miRNA pairs. Benefiting from the introduction of additional
information, the model demonstrated excellent prediction accuracy. However, it is likewise
not applicable to predict miRNAs or SMs that are potentially associated with new SMs
or miRNAs. In view of the unreliability of all the aforementioned methods due to the
presence of noise data, Yin et al. [23] developed a new computational method called Sparse
Learning and Heterogeneous Graph Inference for Small Molecule–miRNA Associations
(SLHGISMMA) prediction. They first decomposed the SM–miRNA association matrix into
two parts, in which the first part is a linear combination of the original association matrix
and a low-rank matrix, and the second part is a sparse noise matrix. After eliminating the
noise matrix, they integrated the SM/miRNA similarity information and the information in
the reacquired association matrix into a heterogeneous graph. Finally, the association scores
were obtained by implementing a heterogeneous graph inference algorithm. The drawback
of SLHGISMMA is that it cannot restrict the prediction scores in [0, 1], which reduces the
interpretability and accuracy of the association scores.

Additionally, several matrix-completion-based heuristic algorithms are likewise ap-
plied in predicting potential SM–miRNA associations. Inspired by the traditional CMF [24]
method, Wang et al. [25] developed a model called Dual-Network Collaborative Matrix
Factorization (DCMF) for predicting small molecule–miRNA associations. They first pre-
processed the SM–miRNA association matrix utilizing the Weighted K-Nearest Known
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Neighbors (WKNKN) method. In addition to the Tikhonov regularization term, they in-
corporated two new regularization terms in the optimization framework of the traditional
matrix factorization model. After solving the optimization problem, they calculated the
matmul product of the two low-rank feature matrices as the completed matrix, and the
completed values were considered as the association scores. Moreover, a model named Pre-
dicting Potential Small Molecule–miRNA Associations based on Bounded Nuclear Norm
Regularization (BNNRSMMA) was developed by Chen et al. [26]. They recovered the target
matrix with the missing values by minimizing its nuclear norm. Although BNNRSMMA
restricts the completed value in [0, 1], it may obtain a highly biased solution as the nu-
clear norm may not be the optimal convex approximation to the rank function, and the
prediction accuracy cannot be guaranteed. Considering that the rank of the result matrix
is non-adjustable, this decreases the adaptability of BNNRSMMA on different datasets.
The main innovative points and limitations of the above models are shown in Table 1.

Considering that the previous models have some limitations, we develop a more
accurate predictive model called AMCSMMA, which overcomes the insufficiencies listed
in Table 1, and its framework is shown in Figure 1. In Validation Experiment A, the AUC
scores achieve the best results with values ranging from 0.9974 to 0.9981 when parameter
r ≤ 13, and we finally set r ∈ {1, 2, 3} to reduce the computational complexity. Addi-
tionally, we design Validation Experiment B in which the values of the AUC, Precision,
Recall, F1 Score, Accuracy, and MCC are all above 0.97. Moreover, we conduct four types
of cross-validation (CV) experiments based on Dataset 1 (Dataset 2). As a result, the AUC
values of AMCSMMA are 0.9910 ± 0.0004 (0.8768 ± 0.0039), 0.9923 (0.8861), 0.9898 (0.8880),
and 0.8222 (0.7232) under five-fold CV, Global Leave-One-Out CV (LOOCV), miRNA-Fixed
Local LOOCV, and SM-Fixed Local LOOCV, respectively, which are a significant improve-
ment compared with previous models. In the first type of case study, 9 (33) among the top
20 (100) associations predicted by AMCSMMA are confirmed by the published experimen-
tal literature. In the second type of case study to the SMs 5-FU and 5-Aza-2’-deoxycytidine,
20 (34) and 16 (26) among the top 20 (50) associations are, respectively, verified by published
references. In conclusion, AMCSMMA demonstrates superior accuracy and reliability in
predicting potential SM–miRNA associations. It can be used for screening SM–miRNA
samples with high association probabilities for complex biological experiments, thus signif-
icantly reducing the time and financial cost of discovering new SM–miRNA associations.
This paper’s significant contributions are summarized as follows:

1. We integrate a variety of SM/miRNA similarities and consider the adjacency matrix
of the constructed SM–miRNA heterogeneous network as the target matrix, which
can not only effectively utilize the integrated similarity to improve the prediction
accuracy but also enhance its information content as the iteration progresses.

2. We utilize the truncated nuclear norm regularization as the strategy to approximate
the rank function, which not only achieves the rank minimization more accurately,
robustly, and efficiently but also increases the adaptability to different datasets.

3. We design an effective two-step iterative scheme to solve the optimization prob-
lem. In order to solve the convex sub-problem in the second step, we introduce the
Alternating Directional Multiplier Method (ADMM).

Table 1. The main innovative points and limitations of the proposed models.

Model Main Innovative Points Main Limitations

BNNRSMMA Bounded nuclear norm Failing to obtain the unbiased solution and adjust the target rank
DCMF WKNKN method Failing to adjust the target rank
TLHNSMMA Triple layer heterogeneous network Failing to predict miRNAs/SMs associated with new SMs/miRNAs
GISMMA Graphlet interactions Failing to avoid noise interference
SLHGISMMA Sparse learning method (SLM) Failing to restrict prediction scores in [0, 1]
SMiR-NBI Resources allocation Failing to predict miRNAs/SMs associated with new SMs/miRNAs
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Figure 1. The framework of AMCSMMA. (1) Integrating different biological data similarities.
(2) Constructing the SM–miRNA heterogeneous network and the target matrix. (3) Constructing the
objective function and the optimization algorithm. (4) Obtaining the prediction score matrix through
matrix division.
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2. Materials and Methods
2.1. SM–miRNA Associations

In this study, we obtained 664 known SM–miRNA associations from the SM2miR
v1.0 [27] database. Then, we collected 831 SMs from the SM2miR v1.0 [27], PubChem [28],
and DrugBank [29] databases, as well as 541 human-related miRNAs from the HMDD [30],
miR2Disease [31], PhenomiR [32], and SM2miR v1.0 [27] databases. The first dataset
(Dataset 1) was constructed from all the data described above, which contained 831 SMs,
541 miRNAs, and 664 confirmed SM–miRNA associations.

The second dataset (Dataset 2) was then constructed by removing SMs and miR-
NAs without confirmed associations in Dataset 1. It contained 39 SMs, 286 miRNAs, and
664 identical known associations as Dataset 1. Moreover, we constructed a novel indepen-
dent dataset (Dataset 3) that contained the identical 831 SMs and 541 miRNAs as Dataset 1
but with 132 additional known associations collected from the latest experimental literature
(the complete information can be found on our Github page or Supplementary File).

To represent associations between SMs and miRNAs more directly, we constructed an
association matrix M ∈ Rns×nm in each dataset, where ns and nm, respectively, represent
the number of SMs and miRNAs in the dataset. Specifically, each row of M represents a
specific SM, and each column of M represents a specific miRNA. The (i,j)-th element of the
association matrix, mij, is set to 1 if SMi is associated with miRNAj, otherwise it is set to 0.
Table 2 shows the complete data information for these three datasets.

Table 2. The complete data information for three datasets.

Dataset Number of
SMs: ns

Number of
miRNAs: nm

Number of
Known

Associations

Number of
Unknown

Associations

Dimension of
Association

Matrix

Dataset 1 831 541 664 448,907 831× 541
Dataset 2 39 286 664 10,490 39× 286
Dataset 3 831 541 132 449,439 831× 541

2.2. Integrated SM Similarity

Referring to the previous work of Lv et al. [33], we introduce four kinds of widely
used SM similarities: the side-effect-based SM similarity [34], the chemical-structure-based
SM similarity [35], the functional consistency-based SM similarity [36], and the indication
phenotype-based SM similarity [34].

• The side-effect-based SM similarity was calculated according to the Jaccard score
based on the number of shared side effects between two SMs. The SM-related side
effects were extracted from the SIDER [37] database.

• The chemical-structure-based SM similarity was calculated by analyzing the maximal
common sub-graphs between the chemical structure graphs of two SMs.

• The indication phenotype-based SM similarity was calculated according to the similar-
ity between MeSH [38] terms of diseases associated with SMs. The disease information
related to SMs was extracted from the DrugBank [29] database.

• The functional consistency-based SM similarity was calculated based on the functional
association between the target gene sets of SMs. The target gene information of SMs
was extracted from the DrugBank [29] and TTD [39] databases.

We constructed four SM similarity matrices of dimension ns× ns (represented by Ssm
S ,

Ssm
C , Ssm

F , and Ssm
P ) where each row and its corresponding column represent a specific SM .

The element in the i-th row and j-th column denotes the similarity score between SMi and
SMj. To minimize the bias of a single similarity measure, we integrated these similarity
matrices utilizing the weighted averaging strategy as follows:

Ssm =
α1Ssm

S + α2Ssm
C + α3Ssm

F + α4Ssm
P

∑4
i=1 αi

(1)
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where Ssm ∈ Rns×ns indicates the integrated SM similarity matrix, and αi denotes the
weight of the i-th SM similarity matrix, which is set to 1.

2.3. Integrated miRNA Similarity

Similarly, we introduce two types of miRNA similarities: the gene functional consistency-
based miRNA similarity [36] and the disease-phenotype-based miRNA similarity [34].

• The gene functional consistency-based miRNA similarity was calculated based on the
functional identity between target gene sets of miRNAs.

• The disease-phenotype-based miRNA similarity was calculated according to the Jac-
card score based on the number of shared diseases between two miRNAs. The miRNA-
related diseases were extracted from three databases: HMDD [30], miR2Disease [31],
and PhenomiR [32].

We constructed two miRNA similarity matrices of dimension nm× nm (represented
by Sm

G , and Sm
D), in which each row and its corresponding column represent a specific

miRNA. The (i,j)-th element denotes the similarity score between miRNAi and miRNAj.
The integrated similarity matrix is calculated as follows:

Sm =
β1Sm

G + β2Sm
D

∑2
j=1 β j

(2)

where Sm ∈ Rnm×nm denotes the integrated miRNA similarity matrix, and β j indicates the
weight of the j-th miRNA similarity matrix, which is also set to 1.

2.4. SM–miRNA Heterogeneous Network and Target Matrix

In this section, we detail the construction of an SM–miRNA heterogeneous network.
First, we built an SM similarity network containing ns SM nodes, in which the similarity
scores between SMs were used as the weights of the edges. Then, we constructed a miRNA
similarity network with nm miRNA nodes and utilized the similarity scores between
miRNAs as the weights of the edges. Finally, we connected these two similarity networks
based on known SM–miRNA associations to construct the SM–miRNA heterogeneous
network. We consider the adjacency matrix of this heterogeneous network as the target
matrix as shown in Formula (3).

H =

[
Ssm M
MT Sm

]
(3)

where Ssm ∈ Rns×ns, M ∈ Rns×nm, MT ∈ Rnm×ns, Sm ∈ Rnm×nm, H ∈ R(ns+nm)×(ns+nm).

2.5. AMCSMMA
2.5.1. Overview

Predicting potential associations between small molecules and miRNAs can be con-
sidered as a matrix completion problem, which means recovering the elements with a
value of 0 in the association matrix. In this study, we propose a predictive model called
AMCSMMA, and its framework is shown in Figure 1. Initially, we introduce and integrate
different SM/miRNA similarities. The SM–miRNA heterogeneous network is then con-
structed, and its adjacency matrix is considered as the target matrix. After that, we design
an optimization framework and implement an effective two-step iterative scheme to solve
it. Finally, we obtain the prediction score matrix by matrix division.

2.5.2. Optimization Framework

Based on the assumption that the underlying matrix has a low-rank structure, this
matrix completion problem is mathematically described in the following form.

min
X

rank(X) s. t. PΩ(X) = PΩ(H) (4)
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where X ∈ R(ns+nm)×(ns+nm), rank(·) denotes the rank function, Ω denotes the indices of
the observed entries of H, and PΩ is the orthogonal projection operator onto the span of
matrices vanishing outside of Ω.

(PΩ(X))ij =

{
Xij i f (i, j) ∈ Ω
0 i f (i, j) /∈ Ω

}
(5)

Unfortunately, owing to the existence of non-convexity and the discontinuous nature
in the rank function, the optimization problem (4) becomes an NP-hard problem. Fazel
M. [40] proposed a convex relaxation strategy as follows:

min
X
‖X‖∗ s. t. PΩ(X) = PΩ(H) (6)

where ‖X‖∗ = ∑ns+nm
i=1 σi denotes the nuclear norm of X, σi is the i-th singular value

of X, which satisfies the relationship of σ1 ≥ σ2 ≥ . . . ≥ σi ≥ . . . ≥ σ(ns+nm). With
strong theoretical guarantees, the optimization algorithms for nuclear norm regularization
frequently achieve the biased solution in practical applications. This occurs because the
nuclear norm treats the singular values differently compared to the rank function, in which
all the nonzero singular values have equal contributions to the true rank.

Inspired by Hu et al. [41], on the premise that the rank of the underlying matrix is
r (r << (ns + nm)), we found that r only corresponds to the r largest singular values.
Therefore, we obtained a more accurate approximation to the rank function, as shown in
Formula (7), by minimizing the smallest ns + nm − r singular values and leaving the r
largest singular values to be free.

min
X
‖X‖r s. t. PΩ(X) = PΩ(H) (7)

where ‖X‖r = ∑ns+nm
i=r+1 σi denotes the truncated nuclear norm of X. Considering that the

optimization problem (7) is non-convex, it needs to be rewritten as (8). The complete
process of proof can be found in Appendix A.1.

min
X
‖X‖∗ − max

AAT=I,BBT=I
Tr(AXBT) s. t. PΩ(X) = PΩ(H) (8)

where A ∈ Rr×(ns+nm), B ∈ Rr×(ns+nm), and I ∈ Rr×r denotes the identity matrix. It is
necessary to elaborate when Tr(AXBT) obtains the maximum value. The Singular Value
Decomposition (SVD) to X is as follows:

(U, S, VT) = SVD(X) (9)

where U = (u1, . . . , ur, . . . , u(ns+nm)) ∈ R(ns+nm)×(ns+nm) and V = (v1, . . . , vr, . . . , v(ns+nm))

∈ R(ns+nm)×(ns+nm) are unitary matrices, and S ∈ R(ns+nm)×(ns+nm). Some previous re-
search [41,42] suggested that Tr(AXBT) obtains the maximum value that equals ∑r

i=1 σi(X)

when A equals UT
r ∈ Rr×(ns+nm) and B equals VT

r ∈ Rr×(ns+nm), where Ur = (u1, . . . , ur) ∈
R(ns+nm)×r and Vr = (v1, . . . , vr) ∈ R(ns+nm)×r. The calculation proof is as follows:

Tr(AXBT) = Tr
(
(u1, u2, . . . , ur)

TUSVT(v1, v2, . . . , vr)
)
= Tr(diag(σ1(X), σ2(X), . . . , σr(X), 0, . . . , 0)) =

r

∑
i=1

σi(X) (10)

Further, to avoid the interference of noisy data on the results, we relax the tight
constraint as a part of the objective function and set the parameter α to control the weight
of this term in the objective function. Additionally, we constrain the completed values
between 0 and 1. Ultimately, the optimization framework is described as follows:
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min
X
‖X‖∗ − max

AAT=I,BBT=I
Tr(AXBT) +

α

2
‖PΩ(X)− PΩ(H)‖2

F s. t. 0 ≤ Xij ≤ 1, 0 ≤ i, j ≤ (ns + nm) (11)

where ‖·‖F denotes the Frobenius norm.

2.5.3. Optimization Algorithm

In this section, we design an effective two-step iterative algorithm. We initialize X1
as PΩ(H). In the first step of the l-th iteration, we implement the SVD algorithm to Xl to
obtain the left singular matrix Ul and the right singular matrix Vl . Then, we construct the
truncated matrices Al and Bl by, respectively, utilizing the first r-columns of Ul and Vl . In
the second step of the l-th iteration, we fix Al , Bl and update Xl+1 by solving the following
convex sub-problem.

Xl+1 = arg min
Z
‖Z‖∗ − Tr(AlZBT

l ) +
α

2
‖PΩ(Z)− PΩ(H)‖2

F s. t. 0 ≤ Zij ≤ 1, 0 ≤ i, j ≤ (ns + nm) (12)

where Z ∈ R(ns+nm)×(ns+nm). According to different datasets, we set the maximal iterations
in [1, 4].

For solving the convex sub-problem (12), we introduce the Alternating Direction
Multiplier Method (ADMM). Specifically, we introduce the auxiliary matrix W, which
satisfies Z = W, and the optimization problem is given by (13).

min
Z
‖Z‖∗ − Tr(AlWBT

l ) +
α

2
‖PΩ(W)− PΩ(H)‖2

F s. t. Z = W, 0 ≤Wij ≤ 1, 0 ≤ i, j ≤ (ns + nm) (13)

The Augmented Lagrangian Function of (13) is described as:

L(W, Z, Y, α, β) = ‖Z‖∗ − Tr(AlWBT
l ) +

α

2
‖PΩ(W)− PΩ(H)‖2

F + Tr
(

YT(Z−W)
)
+

β

2
‖Z−W‖2

F (14)

where Y is the Lagrange multiplier, and β > 0 is the penalty parameter. We initialize the
variables W1, Z1 and Y1 as PΩ(H) and update the variables alternately by minimizing the
Augmented Lagrange Function L(W, Z, Y, α, β) with respect to the variables in a Gauss–
Seidel manner. The exact procedure of the k-th iteration is shown below.

Computing Wk+1: Fix Zk, Yk and minimize the Augmented Lagrangian Function
L(W, Zk, Yk, α, β) for updating Wk+1.

Wk+1 = arg min
0≤Wij≤1

‖Zk‖∗ − Tr(AlWBT
l ) +

α

2
‖PΩ(W)− PΩ(H)‖2

F + Tr
(

YT
k (Zk −W)

)
+

β

2
‖Zk −W‖2

F (15)

Discarding the constant terms, the above equation can be rewritten as (16).

Wk+1 =arg min
0≤Wij≤1

− Tr
(

AlWBT
l

)
+

α

2
‖PΩ(W)− PΩ(H)‖2

F + Tr
(

YT
k (Zk −W)

)
+

β

2
‖Zk −W‖2

F (16)

Ignoring the constraint, L(W, Zk, Yk, α, β) obtains the minimum value when and only
when the derivative of (16) equals zero as follows:

−AT
l Bl + αP∗Ω

(
PΩ
(
Wk+1

)
− PΩ(H)

)
−Yk − β

(
Zk −Wk+1

)
= 0 (17)
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where P∗Ω denotes the adjoint operator of PΩ that satisfies P∗ΩPΩ = PΩ, and Wk+1 denotes
the transition matrix, which is calculated as Equation (18). The complete calculation process
can be found in Appendix A.2.

Wk+1 =

(
1
β

Yk +
α

β
PΩ(H) +

1
β

AT
l Bl + Zk

)
− α

α + β
PΩ

(
1
β

Yk +
α

β
PΩ(H) +

1
β

AT
l Bl + Zk

)
(18)

To update Wk+1, we implement the operation as Equation (19) on the matrix Wk+1,
which limits the completed values in [0, 1].

Wk+1ij
=


0 if Wk+1ij

≤ 0
Wk+1ij

if 0 < Wk+1ij
< 1

1 if Wk+1ij
≥ 1

(19)

Computing Zk+1: Fix Wk+1, Yk and update Zk+1 by minimizing L(Wk+1, Z, Yk, α, β).

Zk+1 = arg min
Z
‖Z‖∗ − Tr

(
AlWk+1BT

l

)
+

α

2
‖PΩ(Wk+1)− PΩ(H)‖2

F + Tr
(

YT
k (Z−Wk+1)

)
+

β

2
‖Z−Wk+1‖2

F (20)

Ignoring the constant terms, we obtain Equation (21).

Zk+1 = arg min
Z
‖Z‖∗ + Tr

(
YT

k (Z−Wk+1)
)
+

β

2
‖Z−Wk+1‖2

F

= arg min
Z
‖Z‖∗ +

β

2

∥∥∥∥Z−
(

Wk+1 −
1
β

Yk

)∥∥∥∥2

F
(21)

According to the singular value shrinkage operator Dτ and the related theorem [43],
the updating formula is described as follows:

Zk+1 = D 1
β

(
Wk+1 −

1
β

Yk

)
(22)

where Dτ(L) = UDτ(S)VT , τ is the threshold parameter, U, S, VT = SVD(L), Dτ(S) =
diag(max{0, σi − τ}), σi denotes the main diagonal elements of S.

Computing Yk+1: Fix Wk+1, Zk+1 and update the Lagrange multiplier Yk+1 using the
gradient ascent method.

Yk+1 = Yk + γβ

(
∂L(Wk+1, Zk+1, Y, α, β)

∂Y

)
= Yk + γβ(Zk+1 −Wk+1) (23)

where γ is the learning rate.
Ultimately, we set the iterative stop conditions for the sub-problem according to

previous research [44].

d1k+1 =
‖Zk+1 − Zk‖F
‖Zk‖F

≤ ε1

d2k+1 =
|d1k+1 − d1k|
max{|d1k|, 1} ≤ ε2 (24)

where ε1 and ε2 are the given accuracies.
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After the two-step iterative algorithm converges, we obtain the result matrix and
divide it as follows:

H′ =

[
Ssm′ M′

M′T Sm′

]
(25)

where Ssm′/Sm′ is the enhanced SM/miRNA similarity matrix that contains more precise
and abundant SM/miRNA similarity information, M′ is the prediction score matrix, and
recovering values are considered as the association scores that represent the possibility
of potential association. The complete pseudocode and parameter settings are shown
in Algorithm 1.

Algorithm 1 AMCSMMA.

Require: M, (Ssm
S , Ssm

C , Ssm
F , Ssm

P ) ∈ Rns×ns, (Sm
G , Sm

D) ∈ Rnm×nm, PΩ ∈ R(ns+nm)×(ns+nm)

Ensure: M′

1: Ssm ∈ Rns×ns ← Matrix_Fusion(Ssm
S , Ssm

C , Ssm
F , Ssm

P , αi)
2: Sm ∈ Rnm×nm ← Matrix_Fusion(Sm

G , Sm
D, βi)

3: H :
[

Ssm M
MT Sm

]
∈ R(ns+nm)×(ns+nm)

4: X1 ← PΩ(H), l ← 0, r ← 1, iterations ← 3, maxiter ← 300, ε1 = 2× 10−3, ε2 = 10−5,
α = 1, β = 10, γ = 1

5: repeat
6: l ← l + 1, (Ul , Sl , VT

l ) ← SVD(Xl), where Ul : (u1, u2, . . . , ur, . . . , u(ns+nm)), Vl :
(v1, v2, . . . , vr, . . . , v(ns+nm))

7: Al ← (u1, u2, . . . , ur)T , Bl ← (v1, v2, . . . , vr)T

8: W1, Z1, Y1 ← PΩ(H), k← 0
9: repeat

10: k← k + 1,
11: Wk+1 ← ( 1

β Yk +
α
β PΩ(H) + 1

β AT
l Bl + Zk)− α

α+β PΩ( 1
β Yk +

α
β PΩ(H) + 1

β AT
l Bl + Zk)

12: Wk+1ij
←


0 if Wk+1ij

≤ 0
Wk+1ij

if 0 < Wk+1ij
< 1

1 if Wk+1ij
≥ 1


13: Zk+1 ← D 1

β

(
Wk+1 − 1

β Yk

)
, Yk+1 ← Yk + γβ(Zk+1 −Wk+1)

14: until
{

d1k+1 ←
‖Zk+1−Zk‖F
‖Zk‖F

≤ ε1 and d2k+1 ←
|d1k+1−d1k |
max{|d1k |,1}

≤ ε2

}
or k == maxiter

15: Xl+1 ←Wk+1
16: until l == iterations

17: H′ :

[
Ssm′ M′

M′T Sm′

]
∈ R(ns+nm)×(ns+nm)← Xl+1

18: M′ ∈ Rns×nm ← Matrix_Devide(H′)
19: return M′

3. Results
3.1. Validation Experiment A

In this section, we design Validation Experiment A to quantitatively analyze the effect
of the truncated position r on the predictive performance of AMCSMMA. Specifically,
all confirmed associations in Dataset 1 are regarded as the training samples, all verified
associations in Dataset 3 are treated as the testing samples, and all SM–miRNA pairs in
Dataset 1 that are neither part of the training set nor the testing set are considered as the
candidate samples.

Under specific r ∈ {1, 3, 5, . . . , 11, 12, . . . , 16, 20, 25}, we conduct AMCSMMA only
utilizing the training samples to recover the SM–miRNA association matrix with missing
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values. Then, the association scores of the candidate samples and the testing samples are
extracted and arranged in descending order to calculate the False Positive Rate (FPR, 1-
specificity) and the True Positive Rate (TPR, sensitivity) at a specific threshold. Furthermore,
we set the FPR as the abscissa and the TPR as the ordinate and plot the Receiver Operating
Characteristic (ROC) curves based on different thresholds.

The AUC between 0 and 1 is the area under the ROC curve, and the larger the
numerical value is, the better the predictive performance of the model. According to
Figure 2, we find that AMCSMMA achieved excellent and stable performance when
r ∈ {1, 3, 5, . . . , 11, 12, 13}. With the increase of r value in [1,13], the computational com-
plexity increased, whereas the prediction accuracy improved weakly. Considering that the
adjustable target rank can increase the adaptability of the model to different datasets, we
finally set r ∈ {1, 2, 3}. The AUC reached 0.9981 at the optimal parameters, which strongly
demonstrates the superiority of our model in predicting potential SM–miRNA associations.

Figure 2. The influence of parameter r on the predictive performance of AMCSMMA.

3.2. Validation Experiment B

To comprehensively evaluate the predictive performance of our model, we design
Validation Experiment B, in which 664 confirmed SM–miRNA associations in Dataset 1
are utilized as the training samples, and 132 verified SM–miRNA associations in Dataset
3 are assembled into the positive testing set. Then, we randomly select 132 unknown
SM–miRNA associations from Dataset 1 to form the negative testing set. The intersection
set of the training set, the positive testing set, and the negative testing set is an empty set.

In addition, the AUC, five additional metrics are introduced, which include the Preci-
sion, Recall, F1 Score, Accuracy, and MCC. We calculate the above metrics based on three
thresholds that maximize the F1 Score, the Accuracy, and the MCC. Considering the fluctu-
ation of experimental results caused by randomly selecting the negative testing samples,
we repeat the above procedure 100 times and consider the average value as the final result.
It can be seen from Table 3 and Figure 3 that all metrics achieved a significant result.
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Figure 3. The ROC curve and AUC value of Validation Experiment B.

Table 3. The result of Experiment B in terms of the Precision, Recall, F1 Score, Accuracy,
and MCC value.

Threshold Setting Precision Recall F1 Score Accuracy MCC

t1 0.9851 0.9861 0.9856 0.9855 0.9711
t2 0.9882 0.9830 0.9855 0.9856 0.9708
t3 0.9868 0.9839 0.9852 0.9853 0.9713

Note: t1, t2, and t3 are the thresholds that maximize the F1 Score, Accuracy, and MCC separately.

3.3. Four Cross-Validation Experiments

Based on Dataset 1 and Dataset 2 separately, we implemented five-fold cross-validation
(CV), Global Leave-One-Out CV (LOOCV), miRNA-Fixed Local LOOCV, and SM-Fixed
Local LOOCV to further validate the predictive performance of AMCSMMA. At the same
time, we likewise applied the above four CVs to other association predictive models.

In the five-fold CV, all the confirmed SM–miRNA associations (664 items) were ran-
domly divided into five parts, of which one part incorporated 132 items and each remaining
part included 133 items. Specifically, we alternately utilized one part as the testing set,
and the remaining four parts were fused as the training set. Additionally, all the unknown
SM–miRNA associations were assembled in the candidate set. In each fold, only utilizing
the training samples, we conducted AMCSMMA to recover the SM–miRNA association
matrix. Likewise as in Validation Experiment A, the association scores of the testing and
candidate samples were integrated into a descending sequence.

Then, we plotted the ROC curve and derived the AUC value under this fold. After five
folds, the average AUC value was regarded as the result of one five-fold CV. It is worth
noting that we repeated the five-fold CV 100 times and took the average AUC value as
the final result, which insulates the validation result against the randomness of sample
partitioning. Additionally, we calculated the Standard Deviation (SD) value that can reflect
the robustness of the model. Finally, the AUC±SD of AMCSMMA under five-fold CV
reached 0.9910 ± 0.0004 and 0.8768 ± 0.0039 based on Datasets 1 and 2, respectively.

From Table 4, we observe that AMCSMMA achieved a higher AUC and a lower SD
than did the compared models based on both datasets, which indicates that it has superior
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predictive performance and robustness. Figure 4 shows the ROC curves of each fold in one
five-fold CV based on two datasets and the areas under the curves.

Table 4. The result comparison in terms of the AUC values between AMCSMMA, BNNRSMMA,
DCMF, TLHNSMMA, GISMMA, SLHGISMMA, and SMiR-NBI in four kinds of cross-validation
experiments based on two datasets.

Dataset Model 5-Fold CV Global LOOCV miRNA-Fixed Local LOOCV SM-Fixed Local LOOCV

Dataset1 AMCSMMA 0.9910 ± 0.0004 0.9923 0.9898 0.8222
BNNRSMMA 0.9758 ± 0.0029 0.9822 0.9793 0.8253
DCMF 0.9836 ± 0.0030 0.9868 0.9833 0.8377
TLHNSMMA 0.9851 ± 0.0012 0.9859 0.9845 0.7645
GISMMA 0.9263 ± 0.0026 0.9291 0.9505 0.7702
SLHGISMMA 0.9241 ± 0.0052 0.9273 0.9365 0.7703
SMiR-NBI 0.8554 ± 0.0063 0.8843 0.8837 0.7497

Dataset2 AMCSMMA 0.8768 ± 0.0039 0.8861 0.8880 0.7232
BNNRSMMA 0.8759 ± 0.0041 0.8433 0.8852 0.7350
DCMF 0.8632 ± 0.0042 0.8770 0.8836 0.7591
TLHNSMMA 0.8168 ± 0.0022 0.8149 0.8244 0.6057
GISMMA 0.8088 ± 0.0044 0.8203 0.8640 0.6591
SLHGISMMA 0.7724 ± 0.0032 0.7774 0.7973 0.6556
SMiR-NBI 0.7104 ± 0.0087 0.7264 0.7846 0.6100

Note: Each bold value means that it is the best value in the experiment.

(a) (b)

Figure 4. (a) The ROC curves and AUC values of five folds based on Dataset 1. (b) The ROC curves
and AUC values of five folds based on Dataset 2.

In Global LOOCV, each verified SM–miRNA association was sequentially selected as
the testing sample, and the remaining 663 confirmed associations were considered as the
training samples. Additionally, all unknown SM–miRNA associations were treated as the
candidate samples.

Similarly, we calculated the AUC values successively under 664 folds according to the
association scores of the testing and candidate samples and regarded the average AUC as
the result. From Table 4, we discover that the AUC of AMCSMMA under Global LOOCV
reached 0.9923 (0.8861) based on Dataset 1 (Dataset 2), which exceeds all other models
proposed in recent years and once again demonstrates the superior predictive performance
of our model.

In miRNA-Fixed Local LOOCV and SM-Fixed Local LOOCV, the testing and training
samples were selected in the same way as in Global LOOCV. Nevertheless, the candidate
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set in miRNA/SM-Fixed Local LOOCV only consisted of the unknown SM–miRNA associ-
ations that have the same miRNA/SM with the testing sample in each fold. After several
computational steps, the AUC of AMCSMMA reached 0.9898 (0.8880) based on Dataset 1
(Dataset 2) under miRNA-Fixed Local LOOCV, which surpasses all comparative models.
The AUC reached 0.8222 (0.7232) based on Dataset 1 (Dataset 2) under SM-Fixed Local
LOOCV, which is superior to the other four models (TLHNSMMA, GISMMA, SLHGIS-
MMA, and SMiR-NBI). The DCMF achieved the best performance because it was able to
obtain the exact SM feature matrix.

As shown in Table 4, AMCSMMA achieved better performance based on Dataset 1
than on Dataset 2 in cross-validation experiments. The reason for this is that Datasets
1 and 2 provide the same positive samples (divided into training and testing samples),
but Dataset 1 provides a much larger number of candidate samples compared with Dataset
2. Since these additional candidate samples contain SMs/miRNAs that have no known
associations with miRNAs/SMs, they have relatively low association scores compared to
the testing samples, resulting in a higher AUC value based on Dataset 1 than on Dataset
2. Therefore, we expect that the accuracy of AMCSMMA will improve as more SMs and
miRNAs are added to the dataset.

3.4. Case Studies
3.4.1. The First Type of Case Study

In this section, we initially utilize AMCSMMA to obtain the predictive scores of all
unknown SM–miRNA associations in Dataset 1. Subsequently, we count the number of
associations confirmed by published literature in PubMed. Finally, 9 (33) among the top
20 (100) associations can be confirmed. Table 5 lists the top 20 associations and the literature
evidence (PubMed ID).

Specifically, Khorrami et al. [45] identified that miR-146a is overexpressed in a colon
cancer cell line (HT-29), which can increase its resistance to 5-FU and irinotecan, thereby
diminishing the prognostic effect of chemotherapy. Additionally, Zhang et al. [46] revealed
that CYP11A1 and CYP19A1 expression in human CCs, and the resulting production of
progesterone and estradiol, are transcriptionally down-regulated by miR-320a deficiency.
Moreover, the colorectal cancer hallmark (CXCL12) is able to induce miR-125 upregulation
and generate the chemotherapy drugs 5-FU resistance [47].

Table 5. The top 20 SM–miRNA associations predicted by AMCSMMA in the first type of case study.

Small Molecule miRNA Evidence Small Molecule miRNA Evidence

CID:3385 hsa-mir-125b-1 28176874 CID:3385 hsa-let-7b 25789066
CID:3385 hsa-mir-125b-2 28176874 CID:3385 hsa-mir-126 26062749
CID:36314 hsa-mir-518c unconfirmed CID:3385 hsa-mir-26a-2 unconfirmed
CID:3385 hsa-mir-26a-1 unconfirmed CID:3229 hsa-let-7g unconfirmed
CID:3385 hsa-mir-107 26636340 CID:3385 hsa-mir-181b-1 19948396
CID:3229 hsa-let-7e unconfirmed CID:3385 hsa-mir-146a 28466779
CID:3385 hsa-mir-103a-1 unconfirmed CID:451668 hsa-mir-15b unconfirmed
CID:3229 hsa-mir-27b unconfirmed CID:60750 hsa-mir-23a unconfirmed
CID:451668 hsa-mir-23a unconfirmed CID:3229 hsa-mir-27a unconfirmed
CID:3385 hsa-mir-181a-1 29795190 CID:3385 hsa-mir-155 28347920

Note: (1) The top 1–10 associations and corresponding evidence are presented in the first three columns, while
the top 11–20 are presented in the last three columns. (2) CID denotes the compound number from the Pubchem
database. (3) Evidence shows the PubMed IDs of the experimental literature.

We implement this type of case study on other comparative models. From Table 6, our
model achieves the best performance.
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Table 6. The number of confirmed SM–miRNA associations in the top 20 associations predicted by
AMCSMMA and other models separately.

AMCSMMA BNNRSMMA DCMF TLHNSMMA GISMMA SLHGIS-
MMA

Number 9 6 7 7 1 5

3.4.2. The Second Type of Case Study

To explore the applicability of AMCSMMA to new SMs, we conducted the second type
of case study to two SMs, 5-FU and 5-Aza-2’-deoxycytidine based on Dataset 1. In detail,
we first removed all verified associations related to the specific SM. Then, a descending
sequence consisting of association scores between the specific SM and all miRNAs was
obtained. We counted the number of associations confirmed by the SM2miR database [27]
and published references. Finally, in the second type to 5-FU, 20 (34) among the top 20 (50)
associations were confirmed as shown in Table 7.

Specifically, the sensitivity of 5-FU was significantly correlated with the antitumor
effect, and overexpression of miR-329 and let-7c enhanced the sensitivity of 5-FU by
affecting the apoptotic pathway, thus enhancing the antitumor effect [48,49]. In another
study, Wang et al. [50] found that 5-FU was abnormally sensitive to MCF-7 cells due to
its negative regulation on Bcl-xl expression via let-7b. Additionally, Bamodu et al. [51]
concluded that the SOD2-enhanced 5-FU chemoresistance of colorectal cancer cells was
inhibited by inducing the re-expression of hsa-miR-324. Furthermore, Han et al. [52]
discovered that miR-874 can reduce the resistance of colorectal cancer cells to 5-FU.

Table 7. The top 50 SM–miRNA associations predicted by AMCSMMA in the second type of case
study to the SM 5-FU.

miRNA Evidence miRNA Evidence

hsa-let-7a-1 26198104 hsa-mir-217 unconfirmed
hsa-let-7b 25789066 hsa-mir-23a 26198104
hsa-let-7c 25951903 hsa-mir-24-2 26198104
hsa-let-7d 26198104 hsa-mir-26a-1 unconfirmed
hsa-mir-1226 26198104 hsa-mir-27a 26198104
hsa-mir-125b-1 28176874 hsa-mir-299 unconfirmed
hsa-mir-125b-2 28176874 hsa-mir-320a 26198104
hsa-mir-128-1 26198104 hsa-mir-324 30103475
hsa-mir-128-2 26198104 hsa-mir-328 unconfirmed
hsa-mir-132 26198104 hsa-mir-329-1 30127965
hsa-mir-133a-1 26198104 hsa-mir-329-2 30127965
hsa-mir-139 27173050 hsa-mir-342 26198104
hsa-mir-155 28347920 hsa-mir-345 unconfirmed
hsa-mir-16-1 26198104 hsa-mir-346 unconfirmed
hsa-mir-18a 26198104 hsa-mir-34b unconfirmed
hsa-mir-181a-1 29795190 hsa-mir-372 unconfirmed
hsa-mir-181a-2 24462870 hsa-mir-409 unconfirmed
hsa-mir-181b-1 19948396 hsa-mir-412 unconfirmed
hsa-mir-181b-2 19948396 hsa-mir-431 unconfirmed
hsa-mir-24-1 26198104 hsa-mir-455 21743970
hsa-mir-197 26198104 hsa-mir-500a unconfirmed
hsa-mir-199a-2 26198104 hsa-mir-501 26198104
hsa-mir-202 unconfirmed hsa-mir-518c unconfirmed
hsa-mir-21 26198104 hsa-mir-650 unconfirmed
hsa-mir-212 unconfirmed hsa-mir-874 27221209

Note: (1) Evidence shows the PubMed IDs of the experimental literature. (2) “26198104" denotes the SM2miR v1.0
database [27]. (3) 20 (34) of the top 20 (50) associations were verified successfully.

In the second type to 5-Aza-2’-deoxycytidine, 16 (26) of the top 20 (50) associations
were confirmed as shown in Table 8. Particularly, Liu et al. [53] found that the demethylation
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agent 5-Aza-2’-deoxycytidine inhibited the proliferation of esophageal cancer cells by
increasing the expression of miR-203a. Moreover, the expression of miR-19b and let-7b
increased in gastric cancer cells after 5-Aza-2’-deoxycytidine treatment [54,55]. In addition,
Sun et al. [56] found that hypermethylation of the promoter region in gastrointestinal cancer
cell lines correlated with the expression of miR-148a in gastric cancer, and thus treatment
with the demethylation agent 5-Aza-2’-deoxycytidine can be performed.

Table 8. The top 50 SM–miRNA associations predicted by AMCSMMA in the second type of case
study to the SM 5-Aza-2’-deoxycytidine.

miRNA Evidence miRNA Evidence

hsa-mir-125b-1 26198104 hsa-mir-197 unconfirmed
hsa-mir-125b-2 26198104 hsa-mir-199a-2 unconfirmed
hsa-mir-203a 26577858 hsa-mir-133a-1 unconfirmed
hsa-let-7b 26708866 hsa-mir-133a-2 unconfirmed
hsa-let-7c 24704393 hsa-mir-20a 26198104
hsa-let-7d 26802971 hsa-mir-200c 23626803
hsa-mir-19b-1 25270964 hsa-let-7a-1 unconfirmed
hsa-mir-132 unconfirmed hsa-mir-205 unconfirmed
hsa-mir-181a-1 26198104 hsa-mir-21 26198104
hsa-mir-181a-2 26198104 hsa-mir-221 unconfirmed
hsa-mir-137 23200812 hsa-mir-222 unconfirmed
hsa-mir-141 unconfirmed hsa-mir-23a 25213664
hsa-mir-145 26198104 hsa-mir-24-2 26198104
hsa-mir-148a 24920927 hsa-mir-26a-1 unconfirmed
hsa-mir-149 unconfirmed hsa-mir-27a 26198104
hsa-mir-155 26198104 hsa-mir-27b 26198104
hsa-mir-16-1 26198104 hsa-mir-29a 26198104
hsa-mir-17 26198104 hsa-mir-324 unconfirmed
hsa-mir-18a unconfirmed hsa-mir-328 23991164
hsa-mir-19a 26198104 hsa-mir-342 unconfirmed
hsa-mir-1226 unconfirmed hsa-mir-346 unconfirmed
hsa-mir-181b-1 unconfirmed hsa-mir-500a unconfirmed
hsa-mir-181b-2 unconfirmed hsa-mir-501 unconfirmed
hsa-mir-24-1 26198104 hsa-mir-650 unconfirmed
hsa-mir-194-1 unconfirmed hsa-mir-874 unconfirmed

Note: (1) Evidence shows the PubMed IDs of the experimental literature. (2) “26198104" denotes the SM2miR v1.0
database [27]. (3) 16 (26) of the top 20 (50) associations were verified successfully.

Furthermore, we conducted the second type of case study on BNNRSMMA and DCMF,
which are both heuristic algorithms based on matrix completion. As shown in Table 9, our
model achieved the best performance except in Number D.

Table 9. The number of confirmed SM–miRNA associations in the top 20/50 associations predicted
by AMCSMMA, BNNRSMMA, and DCMF.

Model Number A Number B Number C Number D

AMCSMMA 20 34 16 26
BNNRSMMA 17 32 16 27
DCMF 17 29 16 27

Note: Number A/B denotes the number of confirmed SM–miRNA associations in the top 20/50 associations to
SM 5-FU. Number C/D denotes the number of confirmed SM–miRNA associations in the top 20/50 associations
to SM 5-Aza-2’-deoxycytidine.

In conclusion, the above experimental results demonstrate that AMCSMMA is an
excellent model with superior predictive performance and high robustness in predicting
potential SM–miRNA associations, which can provide guidance for complex and expensive
biological experiments and accelerate the discovery of new SM–miRNA associations, thus
facilitating drug development and disease treatment.
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4. Discussion

In recent years, an increasing number of studies have shown that the abnormal expres-
sion of miRNAs is closely related to a variety of physiological and pathological processes,
including cancer, cardiovascular diseases, and metabolic diseases [13,57]. As a result, tar-
geting and modulating miRNAs with small molecule (SM) drugs has become a significant
modality for clinical treatment.

Given the complexity and expense of developing new SMs, it is extremely difficult to
develop specific SMs for each dysregulated miRNA. Therefore, exploring potential associa-
tions between known SMs and miRNAs is both significant and urgent in drug development
and disease treatment. Since confirming SM–miRNA associations through biological exper-
iments is time-consuming and expensive, more effective predictive approaches need to be
proposed for identifying the SM–miRNA associations with high association probabilities,
which can provide guidance for biological experiments and discover potential SM–miRNA
associations more cost-effectively.

In this paper, we proposed a more accurate predictive model based on the truncated nu-
clear norm, called AMCSMMA. After determining the optimal parameter values, the results
of Validation Experiment A, four cross-validation experiments, Validation Experiment B,
and two types of case studies indicated that AMCSMMA had superior prediction accuracy
and high robustness. The reasons for this are discussed in the following.

• All the known SM–miRNA associations were acquired from the SM2miR v1.0 database [27]
and the published experimental literature, which are extremely reliable.

• We constructed the SM–miRNA heterogeneous network and defined its adjacency
matrix as the target matrix. This not only well utilized similarity information but also
enriched it as the iteration progressed.

• Unlike the nuclear norm regularization, the truncated nuclear norm regularization
only minimized the sum of partial singular values, which not only made the result
matrix more closely approximate the true solution but also improved the adaptability
to different datasets.

• We designed an effective two-step iterative scheme to solve the optimization problem.

Although the advancement of AMCSMMA in predicting potential SM–miRNA as-
sociations enables it to provide reliable guidance for biological experiments, the model
still has some limitations. For instance, the small number of known SM–miRNA associa-
tions greatly restricts the prediction accuracy of our model. Moreover, the biological data
closely related to SM or miRNA, such as lncRNA and the circRNA, can be introduced
to construct heterogeneous networks with more information to improve the prediction
accuracy. Furthermore, the work of Yu et al. [58] inspired the idea that deep-learning-based
approaches may be able to achieve good results. Due to the multiple utilization of the SVD
algorithm, our model requires a relatively high time cost, which will be the focus of our
future research.
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Appendix A

Appendix A.1

Proof of Formula (8). By Von Neumann’s trace inequality, we have:

Tr(AXBT) = Tr(XBT A) ≤
ns+nm

∑
i=1

σi(X)σi(BT A) (A1)

where X ∈ R(ns+nm)×(ns+nm), A ∈ Rr×(ns+nm), B ∈ Rr×(ns+nm), AAT = I, BBT = I, r(r ≤
(ns + nm)) is a non-negative integer, I ∈ Rr×r denotes the identity matrix, and σi is the i-th
singular value and satisfies the relationship of σ1 ≥ σ2 ≥ . . . ≥ σi ≥ . . . ≥ σ(ns+nm) ≥ 0.
As rank(A) = rank(B) = r, we have rank(BT A) = s ≤ r. Owing to BT A(BT A)T = I,
σi(BT A) equals 1 if i ≤ s, otherwise it equals 0, and then we have:

ns+nm

∑
i=1

σi(X)σi(BT A) =
s

∑
i=1

σi(X)σi(BT A) +
ns+nm

∑
i=s+1

σi(X)σi(BT A) =
s

∑
i=1

σi(X) · 1 +
ns+nm

∑
i=s+1

σi(X) · 0 =
s

∑
i=1

σi(X) (A2)

Combining inequalities A1 and A2, we have:

Tr(AXBT) ≤
ns+nm

∑
i=1

σi(X)σi(BT A) =
s

∑
i=1

σi(X) ≤
r

∑
i=1

σi(X) (A3)

Then, we have:

||X||∗ − max
AAT=I,BBT=I

Tr(AXBT) = ||X||∗ −
r

∑
i=1

σi(X) = ||X||r (A4)

Appendix A.2

According to the equation
(

I + α
β P∗ΩPΩ

)−1
=
(

I − α
α+β P∗ΩPΩ

)
[59], where (·)−1 de-

notes the reverse operator, we have:

https://github.com/a1657884486/AMCSMMA.git


Cells 2023, 12, 1123 19 of 21

Wk+1 =

(
I +

α

β
P∗ΩPΩ

)−1
(

AT
l Bl

β
+

α

β
P∗ΩPΩ(H) +

Yk
β

+ Zk

)

=

(
I − α

α + β
P∗ΩPΩ

)(
AT

l Bl

β
+

α

β
P∗ΩPΩ(H) +

Yk
β

+ Zk

)

=

(
1
β

Yk +
α

β
PΩ(H) +

1
β

AT
l Bl + Zk

)
− α

α + β
PΩ

(
1
β

Yk +
α

β
PΩ(H) +

1
β

AT
l Bl + Zk

)
(A5)
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